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ABSTRACT. The main objective of a maize breeding program is to generate 
hybrid combinations that are more productive than those pre-existing in the 
market. However, the number of parents, and consequently the number 
of crosses, increases so rapidly that the phenotypic evaluation of all the 
possible combinations becomes economically and technically infeasible. In 
this context, predicting the performance of the most promising genotypes 
may increase the genetic gains with increased selection intensity and 
reduced breeding cycles. Thus, the present study aimed to use the total 
effects of associated markers method to predict genomic breeding values 
(GBVs) via cross-validation and by using different imbalance levels (10, 30, 
50, and 70%). A set of 51 genotyped strains was used with 79 microsatellite 
markers and 273 hybrids that were generated by a partial diallel. A total of 
186 and 272 hybrids were analyzed in the experiments within the southern 
and central regions of Brazil, respectively. The GBVs were, thus, predicted 
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for each location in both the regions, and for training in one region and 
validation in another region. The correlation between the predicted and 
observed GBVs ranged from 0.48 to 0.91, depending on the imbalance 
level and the region analyzed. Overall, the results obtained in the present 
study were promising, particularly considering that a small number of 
markers were used and that the training and predictions occurred in the 
very distinct regions of southern and central Brazil.

Key words: Genome wide selection; Microsatellite markers; Genotype-by-
environment interaction

INTRODUCTION

In maize breeding programs, to successfully obtain more productive hybrids adapted to 
different farming conditions, selection and evaluation of the best genotypes is extremely important 
(Ferreira et al., 2010) in identifying superior hybrids. As phenotypic evaluations of crosses between 
strains require many resources (Schrag et al., 2010), evaluating all the possible combinations is 
often economically and technically infeasible. With the growing number of strains, driven by the 
double-haploid technique, the number of crosses between the strains of different heterotic groups 
increases faster, thereby, further hindering the selection of the most promising combinations. Thus, 
in practice, only a small proportion of the crosses are evaluated in field experiments.

Identifying the best hybrids without phenotypically evaluating them has been called 
‘prediction’; it involves assessment of field data from related trials and, has more recently, used 
molecular marker information (Meuwissen et al., 2001; Schrag et al., 2010; Guo et al., 2013a).

Prediction has a long history in plant genetic improvement. The development of quantitative 
genetic theories for both animal and plant genetic improvement was intensively motivated by the need 
for a genetic prediction structure to more clearly guide the breeding programs (Walsh, 2014). Therefore, 
the prediction of the performance of a hybrid based on the information of its parents is of great interest 
for breeders, and it may substantially increase the efficiency of breeding programs (Fu et al., 2012).

Molecular markers, discovered in the 1980s, began to be used in animal and plant 
breeding on the premise that the information at the DNA level could lead to faster genetic gain 
compared to the use of phenotypic data alone (Meuwissen et al., 2001). The possibility of using 
markers to establish heterotic groups arose from the theoretical relationship between genetic 
distance and heterosis (Charcosset and Essioux, 1994; Melchinger, 1999). Although a positive 
relationship between heterosis and genetic divergence was observed in such studies, conflicting 
results were reported by Balestre et al. (2008), Dhliwayo et al. (2009), and Devi and Singh (2011). 
Correlation between the predicted and observed values has been demonstrated to be low, which 
could be due to low or no linkage disequilibrium between the markers and genes involved in the 
trait (Charcosset and Essioux, 1994). Thus, these methods failed to make accurate predictions that 
could be integrated into the breeding programs (Melchinger, 1999).

In addition to molecular markers, several models have been proposed to predict the 
performance of maize hybrids. It was proposed that the performance of hybrids should be directly 
predicted based on the trait means of their parents. Although, this is considerably, a direct method, 
it is ineffective because it does not consider the high dominance level present in the yield trait 
(Guo et al., 2013a). Some authors have tried to predict the yield in maize hybrids using the general 
combining activity (GCA; Melchinger et al., 1987). However, this technique ignores the specific 
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combination ability (SCA), which is related to heterosis and is an important component in hybrid 
performance (Gardner and Eberhart, 1966). Some models also proposed inclusion of the SCA in 
the prediction, which has demonstrated advantages when its variance is greater than or equal to 
the GCA variance (Schrag et al., 2006).

Best linear unbiased prediction (BLUP) is another approach for random effect prediction, 
used since 1990s (Henderson, 1984). The inclusion of marker information to calculate the genetic 
values obtained using BLUP was first demonstrated in animal breeding by Fernando and Grossman 
(1989). It has been estimated that the use of this method can increase genetic gains by 8-38% 
(Meuwissen et al., 2001). Thus, this method, which has previously been extensively used in animal 
breeding, also began to be adopted in plant breeding, particularly for maize (Bernardo, 1994, 1996).

BLUP uses any available marker to calculate the relationship between genotypes, thereby, 
estimating the performance of the untested hybrids based on the performance of the tested hybrids 
by comparing the relatedness between the two (Bernardo, 1994, 1996). Bernardo (1996) used this 
method in simple maize hybrids and obtained correlations between the predicted and observed 
values that ranged from 0.42 to 0.76 for kernel yield, 0.75 to 0.93 for kernel moisture content, 0.30 
to 0.74 for breakage, and 0.16 to 0.53 for lodging. Since then, this method has been routinely used 
in maize breeding programs (Massman et al., 2013a).

More recently, Schrag et al. (2007, 2009) suggested replacing the relationship matrix used 
by Bernardo (1994) with the genotype matrix of the markers observed in the mixed model equation 
matrix in which they directly used the marker incidence matrix. This method was denominated ‘total 
effects of associated markers’ (TEAM). A training population is used to estimate genetic values 
for each marker and is then validated via untested hybrids (Schrag et al., 2009). This method 
demonstrated better results than those found with the method proposed by Bernardo (1994). 
Another important advantage of this method is the possibility of working with data sets that have 
missing observations (Schrag et al., 2007).

In this context, commercial hybrid breeding programs are optimal sources of data for 
studying prediction models because they generate a large number of hybrids and evaluate them 
under multiple environments (Massman et al., 2013a) and fulfill the needs of a real breeding program, 
such as phenotypic evaluation at several sites over the course of several years. The genotypes 
evaluated in the experiments may be used as a training population and are cross-validated using 
imbalance levels, thus identifying the most promising genotypes and testing the model’s efficiency 
under real conditions, which is not easily available in publications of this nature. These conditions 
give realism to the model analysis, leading to more certainty in choosing the best model.

The present study aimed to predict simple maize hybrid yield using TEAM, microsatellite 
marker data, and phenotypic information from Brazilian national maize breeding trials at different 
sites and in different cropping seasons.

MATERIAL AND METHODS

Phenotypic evaluation

A total of 51 strains belonging to different heterotic groups were used in the crosses to 
generate the population. From the crosses of these strains, 273 hybrids were obtained in a partial 
diallel system.

Of all the hybrids generated, 186 were evaluated for bean production at six sites, 
distributed throughout southern Brazil [Guarapuava, Paraná (PR); Vacaria, Rio Grande do Sul 
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(RS); Ipiranga, PR; Sananduva, RS; Faxinal dos Guedes, Santa Catarina (SC); and Itapeva, São 
Paulo (SP)], during the 2011/2012 crop season. Two hundred and seventy two hybrids (including 
the 186 hybrids evaluated from the southern region) were evaluated at nine sites within central 
Brazil [Presidente Olegário, Minas Gerais (MG); Uberaba, MG; Capinópolis, MG; Araguari, MG; 
Madre de Deus, MG; Nazareno, MG; Boa Esperança, MG; Lavras, MG; and Araguari, MG)] during 
the 2011/2012 crop season. The experiment was conducted using an incomplete block design with 
two replicates per site and plots comprising four 5-m rows spaced 0.7 m apart.

Hybrid production was evaluated, and the plot weight was corrected to a moisture content of 
13%, which was converted into t/ha. The site was prepared, and the topdressing fertilizer was used 
according to that recommended for each experimental site; moreover, necessary crop practices 
were followed to control fall armyworm (Spodoptera frugiperda) and corn earworm (Helicoverpa 
zea), and to control weeds.

Genotypic analysis

A total of 79 microsatellite markers, distributed throughout the ten maize linkage groups, 
were used to genotype the 51 strains (Table 1).

Table 1. Distribution of the 79 microsatellite markers in the ten linkage groups (LGs) of maize.

Marker LG Bin Marker LG Bin Marker LG Bin Marker LG Bin 
bnlg1179 1 1.01 dupssr08 3 3.09 bnlg1200 7 7.01 umc1139 8 8.01 
bnlg1014 1 1.01 bnlg1496 3 3.09 bnlg1808 7 7.02 bnlg1056 8 8.01 
bnlg1007 1 1.02 umc1136 3 3.09 bnlg1305 7 7.03 bngl2082 8 8.03 
bnlg1614 1 1.02 phi072 4 4.01 umc1342 7 7.04 bngl1067 8 8.03 
bnlg1866 1 1.03 umc1101 4 4.09 bnlg2259 7 7.04 umc1858 8 8.04 
umc1128 1 1.07 umc1109 4 4.1 umc1154 7 7.05 phi015 8 8.08 
phi037 1 1.08 umc1197 4 4.11 umc1075 8 8.01 bnlg1131 8 8.09 
bnlg1643 1 1.08 umc1058 4 4.11 umc1414 8 8.01 bnlg2122 9 9.01 
umc1725 1 1.11 phi019 4 4.11 bnlg1194 8 8.01 umc1040 9 9.01 
umc1797 1 1.12 umc1591 5 5.04 phi119 8 8.02 bnlg1724 9 9.01 
umc1079 2 2.06 umc1482 5 5.04 umc1034 8 8.03 umc1078 9 9.05 
bnlg1036 2 2.06 bnlg1237 5 5.05 phi115 8 8.03 umc1310 9 9.06 
dupssr24 2 2.08 bnlg1118 5 5.07 mmc412 8 8.03 umc1319 10 10.01 
bnlg1520 2 2.09 bnlg1371 6 6.01 umc2146 8 8.03 bnlg1079 10 10.03 
umc1970 3 3.01 umc1006 6 6.02 phi121 8 8.03 umc2043 10 10.05 
bnlg1601 3 3.05 umc1887 6 6.03 umc2147 8 8.03 bnlg1074 10 10.05 
bnlg1160 3 3.06 umc1918 6 6.04 umc1157 8 8.03 umc1061 10 10.06 
umc1148 3 3.07 bnlg1740 6 6.07 umc1202 8 8.05 bnlg1360 10 10.07 
umc1167 3 3.08 phi089 6 6.08 bngl240 8 8.06 umc1084 10 10.07 
bnlg1108 3 3.08 umc1066 7 7.01 umc1933 8 8.08    

 

A marker information matrix was constructed using a binary code: 1, for the presence 
of allele t in marker m in strain i, and 0 for the absence of the allele. This coding facilitates the 
construction of the additive and dominant matrices of the hybrids in contrast to the usual coding in 
which 2 and 0 code for homozygous and diploid strains, respectively.

Using this coding and considering that recombination was irrelevant in the homozygous 
strains, the additive matrix of the hybrids was constructed as follows:

where a was the phenotype of the t-ith allele of marker m in strains i and j, and ∀  indicated all the 

(Equation 1)
1 1

1 1 1 1

1 1

2 1
1 1,0
0 0

i j

lk i j i j

i j

if a a
if a a a a
if a a
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situations in which one or (˅) more strains exhibited different alleles.
Similarly, the matrix of the effects of dominance was constructed using the following 

relationship:

where 1 and 2 were the t-ith alleles of marker m. In the first case, we had the dominance deviation for 
the homozygotes, and in the second case, we had the deviation for the heterozygous complement.

Diallelic analysis and total effects of associated markers

Yield data in all the experiments for each region (southern and central) were subjected to 
analysis using mixed models. The mixed model used was given by:

where X corresponded to the matrix of the fixed effects: replicate within experiment within 
environment, experiment within environment and environment; β was the matrix of the incidence of 
the fixed effects; Z was the matrix of the random effects: block within replicate, within experiment, 
within site; b was the matrix of the incidence of the effects of blocks; W was the matrix of genotypes; 
g was the matrix of the incidence of the genotypes; T was the matrix of the genotype x environment 
interaction; i was the matrix of the incidence of the genotype x environment interaction, and ε was 
the matrix of the residues.

The estimated fixed effects and components of the phenotypic variance and predicted 
random effects were obtained via restricted maximum likelihood (REML) using the expectation-
maximization algorithm. The means were adjusted for each site and the genomic breeding values 
were calculated. Heritability in the broad sense of the analyses between the environments was 
calculated using the following equation:

where σ2
g, σ2

gxe, and σ2
r corresponded to genotypic variance, genotype x environment interaction 

variance, and residual variance, respectively, r corresponded to the number of replicates, and a 
corresponded to the number of environments.

In the marker model, the incidence matrices of the effects of the parental and specific 
combinations were replaced with matrices of the additive and dominant effects of the markers. 
Thus, the total effects of the associated markers model were given by:

where y was the vector of observations, X was the incidence matrix of the fixed effects (sites), 
β was the matrix of the fixed effects, A corresponded to the incidence matrix of the additive 

(Equation 2)

(Equation 3)

(Equation 4)

(Equation 5)
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effects (a), and ∆ corresponded to the incidence matrix of the dominance deviations (d), both 
aforementioned in the molecular data section. Unlike the RR-BLUP model, which is commonly 
used in genomic selection, TEAM is characterized as a mixed model because the environmental 
effects are considered in the fixed effects matrix. In addition, the marker environment interaction 
was confounded in the residual because of the high computational cost involved in estimating the 
effect of the interaction between each allele and their interactions with the environment.

The additive and dominant genetic values of each hybrid i were recovered by summing 
the additive effects of each allele that the individual possessed; this was described by the following 
equations:

where k was the total number of allelic interactions l within each marker m, n was the number of 
alleles observed in the m markers, and λ and ϕ were variables indicating the status of the marker m in 
hybrid i for the additive and dominant effects, respectively. They were equivalent to the prediction point 

( ) i i nA aα ×=  and ( ) i i k dδ ×=∆  in which i was the i-ith column of the matrices defined by Melchinger (1999).
The estimated components of phenotypic variance and fixed effects were obtained by 

predicting the additive and dominant effects contained in each marker via REML (Melo et al., 
2014). The total genetic variance recovered was considered common for each marker and was 
calculated by:

where 1
nW −  and 1

kW −  were sub-matrices of the inverse matrix of the mixed model equations.

Cross-validation

Cross-validation was performed in the set of hybrids that contained both the training and 
validation populations. For this analysis, different imbalance levels were applied to the data set.

The imbalance levels used were 10, 30, 50, and 70%. The process was repeated 100 
times for each situation. The additive-dominant model was used to predict the genomic breeding 

(Equation 6)

(Equation 7)

(Equation 8)

(Equation 9)

(Equation 10)
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value (GBV) of each hybrid. The correlation between the observed and predicted GBVs was used 
as a cross-validation parameter.

First, cross-validation was performed considering each location separately (southern and 
central regions); then, the data set was used in the cross-validation.

RESULTS

Table 2 shows the estimated variance components (σg, σgxa, and σresidual) using the REML 
mixed model method (the genotypic variances were 0.34 within the southern region and 0.43 within 
the central region). The higher genotypic variance within the central region reflects the larger set of 
hybrids tested in this region that was responsible for higher variability. The genotype x environment 
interaction variance within the southern region was approximately 50% higher than that within the 
central region. The residual variance was essentially identical in both the regions. The difference 
in the genotype x environment interaction variance was reflected in the higher heritability within the 
central region (0.65) compared to the southern region (0.56).

The genotypic variance was higher than both the variances of the interactions and the 
residual variances at both the sites. Within the southern region, the genotypic variance was three 
times higher than the interaction variance, which was almost six-and-a-half times lower than the 
genotypic variance within the central region.

An analysis of the molecular markers in the 51 strains revealed 636 different alleles with 
a mean of 8.05 alleles per locus. The correlations shown in Table 3 reflect the accuracy when 
selection was based on the GBVs estimated from the markers and the phenotypic data. The 
correlation between the predicted and observed GBVs within the southern region ranged from 0.47 
to 0.81, depending on the imbalance level used. At 10% imbalance, the mean correlation was 0.81, 
with a range of 0.47 to 0.94 and a variance of 0.009. At 30% imbalance, the mean correlation was 
0.74, with a range of 0.50 to 0.90 and a variance of 0.007. At 50% imbalance, the mean correlation 
was 0.64, with a range of 0.32 to 0.79 and a variance of 0.009. Finally, at 70% imbalance, the mean 
correlation was 0.47, with a range of 0.07 to 0.68 (Table 3).

The central region exhibited the highest correlations, ranging from 0.76 to 0.90; these 
correlations were higher than those observed within the southern region. The highest correlation 
was observed when fewer hybrids were missing in the training population and the correlation was 
the lowest when only 30% of the hybrids were used to predict the remainder of the set (Table 3). 
This higher correlation could be explained by heritability, genotypic variance superiority compared 
to the interaction and residual variances, and using most hybrids within the central region.

Table 2. Components of genotypic variance (σg), genotype x environment interaction (σgxa), and residual variance 
(σresidual) and their respective standard errors and heritability (h2).

 Mega-environments 

Southern Region Central Region 

2
gσ  

0.3451* (0.0426) 0.4336* (0.0485) 

2
gxeσ

 

0.1148* (0.0548) 0.0788* (0.0590) 

2
rσ  

0.1564* (0.0428) 0.1511* (0.0500) 

2h  
0.56 0.65 

 *Variance components were significant at 0.01% probability by the Z test.
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Data from both the southern and central regions were considered for the joint analysis. 
A total of 273 hybrid combinations were evaluated. The correlation between the estimated GBVs 
of the common hybrids within the southern and central regions was calculated (0.55) to test the 
effect of the genotype x environment interaction on the predictions. Figure 1A shows the regression 
between the calculated GBVs of the southern and central regions, with a fit of 0.3. This median 
correlation and consequent low-fit of the regression line reflected the interaction of the hybrids 
between the experiments, which were in the entirely contrasting regions. This interaction resulted 
in the genotypes having different responses to each site.

It is noteworthy that in addition to analyzing the hybrids at different locations, they were 
also analyzed in different crop seasons, which allowed for the obtained correlation to be considered 
satisfactory against the genotype x environment interactions. Interestingly, when ranking the best 
and worst 20% hybrids, it could be observed that by using the GBVs calculated for the central region, 
it was possible to correctly select the best 58% GBVs calculated within the southern region, where 
the opposite was true (considering the 186 common hybrids). There would be an error of 5% among 
the worst GBVs calculated, i.e., only two of the hybrids that had higher GBVs would be mistakenly 
discarded when they were present in another region. Thus, it is possible to affirm that the method is 
better for discarding the less promising hybrids than for selecting the most promising ones.

In the joint analysis, there were medium- to high-correlation values between the predicted 

Table 3. Correlations between predicted and observed genomic breeding values within the southern and central 
regions, the joint analysis, the southern region (training) for predicting the central region (southern → central) 
and the central region (training) for predicting the southern region (central → southern) using cross-validation.

Mega-environment (%) 
ˆ
A

g g
r

 ˆ
M

g g
r

 

Variance 
ˆ
L

g g
r

 ˆ
H

g g
r

 
Southern 10 0.808 0.832 0.010 0.469 0.936 

30 0.738 0.750 0.007 0.499 0.895 

50 0.642 0.656 0.009 0.324 0.788 

70 0.465 0.482 0.015 0.073 0.684 

Center 10 0.905 0.911 0.002 0.754 0.985 

30 0.838 0.842 0.002 0.72 0.923 

50 0.761 0.761 0.003 0.628 0.864 

70 0.63 0.647 0.007 0.328 0.767 

Joint 10 0.659 0.675 0.013 0.303 0.902 
30 0.607 0.622 0.007 0.333 0.744 

50 0.557 0.566 0.007 0.194 0.712 

70 0.463 0.461 0.013 0.183 0.706 

Center  Southern 10 0.853 0.863 0.004 0.629 0.956 

30 0.784 0.796 0.003 0.626 0.894 

50 0.732 0.738 0.002 0.618 0.841 

70 0.66 0.663 0.002 0.544 0.743 

Southern  Center 10 0.781 0.786 0.009 0.468 0.943 

30 0.743 0.744 0.005 0.513 0.872 

50 0.717 0.721 0.002 0.61 0.808 

70 0.675 0.679 0.001 0.595 0.757 

 % Unbalance level, average correlation 
ˆ
A

g g
r , median correlation 

ˆ
M

g g
r , lowest correlation ˆ

L
g g

r , and largest correlation 

ˆ
H

g g
r

 
 observed across 100 unbalanced simulation.
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and observed GBVs. At the highest imbalance level, the correlation between them decreased. At 
10% imbalance, higher correlation estimates were obtained, with a mean correlation of 0.66 and a 
range of 0.30 to 0.90. At 30% imbalance, there was a mean correlation of approximately 0.60 and a 
range of 0.33 to 0.74. At 50% imbalance, there was a mean correlation of approximately 0.56 and a 
range of 0.19 to 0.71. As already expected, at 70% imbalance, there was a lower mean correlation 
(0.56) and a range of 0.19 to 0.71 (Table 3).

Figure 1. Regression of the genomic breeding values (GBVs) calculated using the total effects of associated markers 
(TEAM) method for the experiments in the southern and central regions.

The second portion of the study focused on using the GBVs obtained within one of the 
regions to predict the GBVs for the other region (Table 3). In this scenario, it was also observed 
that with more data to be predicted, i.e., a reduced training population, the lowest correlations 
values were observed. Interestingly, the correlation observed in different macroregions was 
equivalent to that obtained when predictions were made within the southern region or even when 
the joint analysis was performed with the data. This indicates that in the present study, the training 
population (using the data from the central region) was able to predict the southern data better, 
compared to the phenotype of the southern region itself. This conformed to the expectations, given 
the specific correlations of each macroregion.

When data of the central region were used to predict the southern region data, the 
mean correlation ranged from 0.85 to 0.66. Furthermore, the highest correlation was observed at 
10% imbalance and the lowest was observed at 70% imbalance of the predicted data. However, 
when the data of the southern region were used to predict the GBVs of the central region at 10% 
imbalance, the observed mean was 0.78, with values ranging from 0.47 to 0.94. At 30 and 50% 
imbalance, the means were 0.74 and 0.72, with minimum values of 0.51 and 0.61 and maximum 
values of 0.87 and 0.81, respectively, whereas at 70% imbalance, the mean was 0.67, with the 
correlations ranging between 0.60 and 0.76. There was a decline in the correlations accompanied 
by a decline in the quantity of data used for prediction.

The frequency distributions of the correlations are shown in the histograms in Figure 2.
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Figure 2. Frequency histograms of the correlations between the predicted and observed genomic breeding values; 
the numbers refer to the sites and the letters refer to the imbalance levels (1: southern region; 2: central region; 3: joint 
analysis; 4: southern region for predicting the central region; and 5: central region for predicting the southern region; 
A. 10% imbalance; B. 30% imbalance; C. 50% imbalance; and D. 70% imbalance).

The correlations tend to remain more asymmetrical as the imbalance increased. This was 
expected, considering that the model had greater difficulty in accurate predictions as more hybrids 
were removed from the training population. However, the ideal day-to-day model of a breeding 
program can accurately predict a large number of crosses that have not yet been evaluated in field 
trials, even with a small training population.

Figure 3 summarizes the results obtained in the present study. Among all the analyses, 
the joint analysis exhibited the lowest correlations at all the imbalance levels. This is most likely 
because of the interaction between the genotypes, sites, and crop seasons. It is also apparent that 
the decline in the correlation was more evident after 50% imbalance, in which the southern region 
exhibited the highest losses with high imbalance levels, and the cross predictions (central/southern 
and southern/central) were less affected.

Figure 3. Relationship between all the performed analyses: southern region, central region, joint analysis, central 
region for predicting the southern region (central/southern), and southern region for predicting the central region 
(southern/central).
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DISCUSSION

As reported in literature, heritability was observed in maize yield experiments over multiple 
years and sites, in both the southern and central regions (Lorenzana and Bernardo, 2009; Combs 
and Bernardo, 2013). It is noteworthy that the experiments were conducted at very distinct locations 
that exhibit very characteristic microclimates despite being located in the same macroregion. Thus, 
there was an effect of the genotype x environment interaction on the heritability.

Within the southern region, the effect of this interaction was further noticeable; heritability 
was lower in the southern region than in the central region, together with a greater effect of the 
interaction. There was also a higher proportion of the residual variance compared to the genotypic 
variance in the southern region.

The genotype x environment interaction is the differential response of the genotypes to 
environments, and this interaction represents a major challenge in genomic prediction (Heslot et 
al., 2015). The interaction can modify the genotype ranking according to each environment. Thus, 
the same genotype cannot have the best performance at all the sites. Genomic prediction can help 
improve the interaction because even if an individual was not tested in a particular environment, 
prediction is possible using their relative information (Heslot et al., 2015).

The correlation values observed in the present study, even under such contrasting 
conditions, were higher than several studies reported in the scientific literature. By using BLUP to 
predict the performance of simple maize hybrids based on information of the parental strains and 
RFLP markers in a population of 54 simple hybrids at different imbalance levels ranging from 10 
to 30%, Bernardo (1994) achieved medium to high correlations (0.65 to 0.80). Thus, the results 
obtained in the present study are more encouraging than those reported by Bernardo (1994), even 
using higher imbalance levels and fewer markers.

Gains in the precision of the genomic selection may be affected by three factors: i) the 
proportion of the training population, ii) marker density, and iii) heritability (Guo et al., 2012). 
Daetwyler et al. (2008) expressed prediction accuracy as a function of the training population size 
(N), heritability (h2), and the number of chromosomal segments affecting the trait (Me), as shown 
in the equation below.

Thus, the superior results found in the central region data set can be explained as the 
combined effect of both higher heritability and more individuals in the training population, as 
observed by the higher number of hybrids in the data set.

Because of the higher heritability observed within the central region, its correlation was 
higher than the correlations found in all the other analyses, considering all the imbalance levels. 
Several studies report heritability as an important point to increase in the correlations (Guo et 
al., 2012). For example, Guo et al. (2012), who studied the effect of heritability on the prediction 
accuracy with different statistical models and training population sizes, found that the prediction 
accuracy for the RR-BLUP model tend to increase with the increasing heritability in all proportions 
of the training population.

Population size is another important point when observing the higher estimates in the 
central region compared to those in the southern region. The population size was approximately 
30% lower within the southern region. Cross-validation studies indicate an increased correlation 



12N.F. Cantelmo et al.

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 15 (1): gmr.15017232

with an increasing population size or the number of instances (Guo et al., 2012; Combs and 
Bernardo, 2013). Lorenzana and Bernardo (2009), who investigated the prediction of genomic 
breeding values for maize yield using the BLUP method and a constant number of markers, found 
that the correlation tends to decrease with decreasing numbers of progeny. The authors reported 
an approximate 40% reduction in the prediction accuracy when the number of progeny decreased 
from 178 to 95, with a constant number of markers.

It is also noteworthy that nine sites were used for the analyses within the central region 
whereas six sites were used within the southern region. Guo et al. (2013b) and Burgueño et al. 
(2012) also found increased correlation in multi-environment analyses. This may be explained by 
using information among related genotypes throughout the different environments and the same 
genotype among environments using the genetic and environmental covariance (Burgueño et al., 
2012). It can also be explained by more precise estimates of the specific effects of the markers in 
each environment using genetic correlation (Guo et al., 2013b).

An important component of the genetic improvement programs is the evaluation of 
genotypes at locations with different environmental conditions. Thus, the studied genotype x 
environment interaction (GEI) can be compared more accurately and the best genotypes within 
and between the environments can be selected with higher reliability (Crossa et al., 2010). In this 
sense, prediction can be useful because it can use the hybrid data at one location to predict data 
at another entirely different location. However, a large portion of the studies on genomic prediction 
focused on the same site/crop season (Guo et al., 2013b), and in these cases, the interaction was 
capitalized for the prediction - which is not always possible to obtain in practice. In the present study, 
the data of one macroregion were used to predict the behavior of the same genotype in another 
macroregion with a very distinct characteristic climate. This was possible because southern and 
central Brazil have predominantly subtropical and tropical climates, respectively. This information 
is extremely important in a breeder’s decision-making process, because it creates the potential for 
resource efficiency by avoiding planting unpromising genotypes at distinct locations.

In the joint analysis, data from both the southern and central regions were used to perform 
the prediction. It is noteworthy that in this case, imbalance was performed in the data set as a 
whole. The values were lower than those obtained in separate analyses of the regions. This was 
because the hybrids were planted at entirely discrepant regions and in different crop seasons and 
the training population comprised both the regions. Moreover, it was previously highlighted that the 
GEI among these regions was high and had a low correlation between the GBVs. Although multi-
environment analyses usually tend to increase the correlation, it is noteworthy that this increase 
depends on the genetic correlation between the environments (Guo et al., 2013b).

In the second portion of the study, the southern region data set was used to predict the 
common genotypes tested within the central region and vice versa. In other words, training in the 
southern region and the performance of the predictions in the central region (southern/central) were 
evaluated and vice versa (central/southern). The results observed were encouraging, considering 
the large contrast between the sites and the crop seasons. When the southern region data were 
used to predict the central region data, the correlations were always greater than 0.68, even at 
the higher imbalance levels. Higher correlations were also observed when the central region data 
were used to predict those of the southern region, with means ranging from 0.85 to 0.66. The 
values were higher in the central region than in the southern region because of the higher quantity 
of information used and the larger data set, as previously mentioned. In this case, it is evident that 
the predictions for the central region were more informative than the data used in the training of 
the southern region.
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Compared to the results obtained in other studies using TEAM, the correlations observed 
in the present study are encouraging, considering the training population size, the number of 
markers used, and the environmental differences between the sites and crop seasons. Schrag 
et al. (2009, 2010) obtained correlation values ranging from 0.16 to 0.65 using 50% imbalance in 
a set of 400 tested hybrids and more than 1000 molecular markers. Using less than 10% of the 
markers and approximately half of the hybrids in the training population, the results of the present 
study achieved mean correlations ranging between 0.56 and 0.76 for the same imbalance level.

Additionally, compared to the study by Massman et al. (2013b), who used cross-validation 
and obtained an accuracy ranging from 0.75 to 0.87 for 10% imbalance, our results exhibited 
similar mean correlations (0.66 to 0.91) for the same level of loss.

With more modern prediction methods, such as GBLUP and Bayes B, Technow et al. 
(2014) used a set of 1254 hybrids resulting from crosses between ‘dent’ and ‘flint’ heterotic groups 
over several years and sites, with a set of approximately 35,000 SNP markers. They observed 
correlations in the cross-validations ranging from 0.75 to 0.92 for kernel productivity, which were 
similar to the results obtained in the present study. In the study by Technow et al. (2014), the 
correlation mostly varied between the number of common parents in the training population and in 
the validation population.

The present study obtained high correlations even when using fewer markers compared 
to the current studies on genomic prediction. One explanation for this is that the current studies 
use SNP markers, which are bi-allelic, whereas SSR markers are multi-allelic, which allows them 
to provide the maximum number of alleles per marker (Lu et al., 2009) and, thus, deliver a higher 
level of information. According to Laval et al. (2002), (k-1) times bi-allelic markers are necessary to 
achieve the same genetic information obtained through a set of SSR markers with k alleles. If this 
proposition is true, approximately 550 SNPs would be necessary to obtain the same information 
rendered by the 79 SSRs used in the present study. In the studies on genetic distance, it has 
been demonstrated that on an average, the number of alleles detected by one SSR and ten SNP 
markers is same (Yan et al., 2010).

It has been reported that a marker density of 10-20 cM, which corresponds to approximately 
150 markers, is sufficient to obtain good prediction estimates in bi-parental maize populations (Lian 
et al., 2014). Marker density marginally affects the prediction accuracy for the performance of 
hybrids with complex traits. However, the accuracy reaches a plateau with the use of a few hundred 
markers for bi-parental populations (Zhao et al., 2013). For example, Zhang et al. (2015) observed 
good predictive abilities in bi-parental maize populations for moderately- to highly-heritable traits, 
by using only 200 SNP markers.

The method described in the present study, which obtained high correlations despite using 
a restricted number of markers, can be particularly useful for small-scale breeding companies, 
public universities, and research centers, which often have limited resources for implementing 
selection in genetic improvement programs (Zhao et al., 2015).

It is noteworthy that only the additive-dominant model was considered in the present study 
and that epistasis was not used to simplify the model. Theoretically, including epistasis in genomic 
prediction may increase the prediction accuracy because it is important for the trait and can be 
modeled accurately (Lorenzana and Bernardo, 2009). However, in practice, both simulation and 
field data studies have not shown advantages or even exhibited reduced prediction accuracy when 
the epistatic effects were added to the model (Lee et al., 2008; Lorenzana and Bernardo, 2009).

Hybrid prediction, particularly of maize, must be further explored. The increase in the 
number of markers and individuals in the training population can be decisive for validating the 
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technique. However, it was evident that validation, using trials over several years, in distinct sites 
and under different crop conditions adopted in the training populations may provide breeders with 
a broader view about the efficacy of this technique.

The continued advances in genotyping techniques and their reduced costs, statistical 
models, and breeding methods based on genomic selection could contribute to genetic improvement 
programs becoming more efficient. The increasing adoption of the double-haploid technique and 
increased phenotyping costs tend to further restrict evaluation of hybrid combinations in field 
experiments. It is believed that genomic prediction will be increasingly adopted in the genetic 
improvement programs in the coming years.

The TEAM method was efficient in predicting the GBVs related to yield in simple maize 
hybrids at different sites and during different crop seasons. Additionally, there were satisfactory 
correlations of the GBVs calculated under different environments.

The results of the present study suggest that validation under different farming conditions 
is possible, and the cross-validation results strongly demonstrate the real performance in the field.

The annual genetic gains can be increased by identifying the promising genotypes by 
genomic prediction. The results obtained in the present study highlight the necessity of further 
research for implementing genomic prediction in breeding programs.
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