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ABSTRACT. The prediction of single-cross hybrids in maize is a promising 
technique for optimizing the use of financial resources in a breeding 
program. This study aimed to evaluate Genomic Best Linear Unbiased 
Predictors models for hybrid prediction and compare them with the Bayesian 
Ridge Regression, Bayes A, Bayesian LASSO, Bayes C, Bayes B, and 
Reproducing Kernel Hilbert Spaces Regression models, with inclusion or 
absence of non-additive effects under three heritability scenarios. Data 
from a maize germplasm bank belonging to USDA were used to determine 
the effects of molecular markers, which were considered to be parametric, 
to build 400 single-cross hybrids between two line groups via simulation. 
The following parameters were used to compare the models: predictive 
ability, estimation of variance components, heritability of genetic effects 
present in all situations, and the sum of squares of the predicted errors. 



18472J.P.R. Santos et al.

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (4): 18471-18484 (2015)

The models responded positively when dominance effects were included 
in non-additive models, with all models tending to show an increase in 
the values of heritability parameters under all scenarios. Differences occur 
between models depending on the heritability range considered. Estimates 
of additive and dominant effects were better than estimates of epistatic 
effects. Estimates increased in accuracy for all models when non-additive 
effects for maize cob weight were considered.
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INTRODUCTION

One of the main problems in maize breeding programs is the need for a large number 
of crossings to obtain single-cross hybrids, which generates considerable demand for labor and 
financial resources (Bernardo, 1994). This is mainly due to the need for these hybrids to be evaluated 
in experiments with large numbers of replicates and often in multiple locations. Thus, effective 
ways of predicting the performance of traits of economic importance have great potential to reduce 
costs due to fewer hybrids being tested in the field. A pioneering study investigating performance 
prediction of maize hybrids was carried out by Jenkins (1934). In this study, four double-cross 
hybrid performance prediction methods were proposed using data on the performance of single-
cross hybrids. The most effective method was method B, in which predictions were based on 
the average performance of four non-parental single-cross hybrids. At that time, the methodology 
was widely accepted and significantly reduced the number of double hybrids tested, which led 
to a considerable increase in the efficiency of breeding programs (Hallauer et al., 2010). Later, 
Eberhart (1964) carefully studied the methods proposed by Jenkins (1934) and suggested a new 
methodology for the prediction of double hybrids using average yield values of single and triple-
cross hybrids. Cockerham (1967) also proposed a new prediction methodology for double-cross 
hybrids, in which both genetic and environmental effects were considered and values of single-
cross hybrid performance were also used in predictions of double-cross hybrids.

Although there is now high interest in the use of phenotypic information in predictive 
processes, the discovery of DNA in the 1950s led researchers to explore information relating to 
molecular markers to forecast plant performance. Many studies have exploited the information of 
molecular markers in predictive performance procedures of single-cross hybrids of maize (Lee et 
al., 1989). The main justification for using molecular markers in predictions of single-cross hybrids 
came from the theory of quantitative genetics, in which hybrids containing loci with a high level 
of positive directional dominance obtained from lines with greater genetic diversity show higher 
heterosis (Falconer and Mackay, 1996). Therefore, it was believed that the genetic divergence 
estimated by molecular markers in the form of genetic distance could predict the best combinations 
among the lines used to generate the best single-cross hybrids (Lee et al., 1989). However, over 
the years, this hypothesis was not proven correct; in fact, genetic divergence only considered the 
genome in its state, regardless of whether the genomic regions are responsible for the predicted 
traits or if they are unimportant for the inheritance of these traits, which are indispensable factors 
for the success of the prediction using genetic information for molecular markers. 

Subsequently, based on the mixed models theory proposed by Henderson (1985a), 
Bernardo (1994) proposed its application to predict quantitative traits with the relationship among 
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hybrids being estimated by molecular markers. This relationship can also be determined on the basis 
of pedigree information as originally proposed; however, such information is not always available 
in breeding programs, and, when available, does not always have high reliability. Thus, markers 
could be used to estimate kinship between individuals; as a result, it was possible to determine 
hereditary information for individuals and use this information in mixed models. However, despite 
the greater efficiency observed with this methodology, it also presented a constraint because it 
encourages the use of low density molecular markers during kinship estimation, which limits the 
linkage disequilibrium among markers and genes, resulting in rapid reduction in the efficiency of 
predictions across generations.

More recently, a new method for predicting quantitative traits was presented by Meuwissen 
et al. (2001), known as genome wide selection (GWS). The concept of genomic selection is based 
on the hypothesis that, with a high density of markers, all polymorphisms that contribute to trait 
variation will be in linkage disequilibrium with markers, which will segregate with the same pattern 
in the population under study (Goddard and Hayes, 2007). At that time, one of the main limitations 
of this method was the high cost of genotyping individuals, which was not yet economically 
feasible for breeding programs. However, with a significant decrease in the price of genotyping, 
and increased phenotyping, the adoption of a GWS method in breeding programs has become 
financially feasible. Currently, this is a successful technique used in animal breeding and is still in 
the early stages of testing and adoption for the improvement of annual crops (Heffner et al., 2009).

In terms of predictive models, it is common to use mixed and Bayesian models in GWS, 
which differ with regard to hypotheses about marker variance. The main feature of mixed models 
is their hypothesis of the infinitesimal gene with respect to the genetic control of traits. These 
models assume that the genetic effects of markers follow a common and normal probability 
distribution. The most popular mixed models in GWS are ridge regression BLUP (rr-BLUP) and 
G-BLUP (Meuwissen et al., 2001; Vanraden, 2008). Bayesian models allow the incorporation of a 
priori information, modeling of the variance heterogeneity of loci, and the selection and shrinkage 
of markers of small effect, thereby relaxing strong assumptions and permitting more modeling 
versatility. Many Bayesian models have been proposed in recent years with hypotheses of changes 
in a priori distributions of the effect estimates of molecular markers (Gianola, 2013). Despite the 
large number of models used for trait predictions with information from molecular markers, currently, 
little is known about the genetic architecture of quantitative traits.

In particular, some information is already known about some traits of economic importance 
and the nature of their genetic architecture. Currently, these traits are known to be controlled by 
a large number of genes; some genes are common for small effects and other rare genes have a 
high effect and are strongly affected by the environment when co-expressed (Mackay et al., 2009). 
In addition, these genes may present  highly complex patterns of inheritance, including their allelic 
interactions given rise to so-called epistasis effects and its pervasive influence across several traits 
(pleiotropic effects) (Mackay et al., 2009).

Heterosis is a specific genetic event of great importance in maize crops and its genetic 
nature remains unknown. This event has been widely studied and exploited in maize crops, but 
the physiological and biochemical mechanisms remain unclear (Reif et al., 2005). However, non-
additive genetic effects such as dominance and epistasis are necessary for heterosis to occur. 
Some traits can show a strong non-additive inheritance. If plant breeders were aware of the relative 
magnitude of these components, more accurate selection could be practiced (Henderson, 1985b).

Currently, there is great interest in improving GWS predictive models with the incorporation 
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of non-additive effects to increase the efficiency of complex trait predictions. However, until date, 
few comparative studies have been performed to evaluate the impact of non-additive effects on the 
predictive performance of both mixed and Bayesian models. Thus, the main objective of this study 
was to evaluate G-BLUP models and to compare them with Bayesian Ridge Regression (BRR), 
Bayes (BA), Bayes LASSO, Bayes C (BC), Bayes B (BB), and Bayesian Reproducing Kernel 
Hilbert Spaces Regression (RKHS) models with the inclusion or absence of non-additive genetic 
effects in the prediction of performance of maize cob weight of single-cross hybrids of maize.

MATERIAL AND METHODS

Description of database used

Genotypic and phenotypic data of 3215 lines of the Nested Association Mapping population 
(NAM population), belonging to the maize germplasm bank of the United States Department of 
Agriculture (USDA-ARS), available through the Panzea project (http://www.panzea.org/) were 
used. Genotyping data were provided by Romay et al. (2013); however, systematic sampling of 
these markers was carried out in this study at intervals 25 positions apart to obtain 27,000 molecular 
markers distributed across the genome. Among the available phenotypic data, the weight of maize 
cobs was chosen.

Genetic analysis of the lines

The Bayes B method was used to estimate the genetic effects of 27,000 molecular 
markers, and the phenotypic data of maize cob weight were considered as the response variable. 
The genetic model used for analysis with BB is given below:

y = jμ + W1a + W2d + ɛ (Equation 1)

where y is a vector of n x 1 observations, in which n is the number of observations; j is an incidence 
vector of fixed effects n x 1; μ is a scalar of fixed effects (mean); W1 and W2 are deviation matrices 
of allelic substitution and dominance effects n x q, respectively, in which q  is the number of 
random effects; a, d are vectors of the marker’s allelic substitution and dominance effects q x 1, 
respectively; and ɛ is the vector of residual effects n x 1. Matrices of W1 and W2 incidence were built 
following Cockerham’s metric (Cockerham, 1954; Zeng et al., 2005):
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where p is the frequency of the favorable allele at k locus.
A full description of specifications of the probability distributions of the random effects and 

the Bayes B model parameters can be found in de los Campos et al. (2013). All statistical analyzes 
were performed on Bayesian Generalized Linear Regression (BGLR) package (Pérez and de los 
Campos, 2014) of the R software (R Core Team, 2014), with the BGLR function, adjusted to 10,000 
iterations with the first 1000 cycles discarded as burn-in, according to Meuwissen et al. (2001). 
The π mixing parameter (100/27,000) of the Bayes B model was introduced to adjust 100 allele 
substitution effects and 100 dominance effects of molecular markers. All other settings of BGLR 
function were maintained in the standard package mode.

Simulation of hybrid yield

Four-hundred single-cross hybrids were simulated using artificial crossing in a partial diallel 
scheme without reciprocals (20 x 20). The two line groups were defined graphically by principal 
component analysis using spectral decomposition of the additive relationship matrix among lines. 
Group 1 was set by the lines next to the B73 line; and Group 2 was set by the lines next to Mo17 
line (Table 1). Many commercial hybrids have these two lines in their genetic background.

Group 1		  Group 2

B73	 GEMS-0086	 Mo17	 EZ18
NC328	 PI01004	 Mo44	 NC44
Ames22753	 PI559382	 R177	 Va17
PI539927	 PI539923	 B97	 GEMN-0081
Ames27151	 NSL438033	 GA224	 IDS91
Ames27218	 GEMS-0223	 PI601685	 PI601416
PI538009	 N192	 A682	 Ames19008
NSL437913	 PI46485	 Ames10261	 Ames19287
A679	 Ames30797	 Ames27178	 Ames26764
B109	 PI550473	 NSL437903	 PI542778

Source: Panzea (2014).

Table 1. Groups of lines defined by principal component analysis.

The genotypic status of each hybrid locus during artificial crossing was defined by 
expectation of the allelic contribution of each parental line in the concerned hybrid. The mathematical 
expectation was calculated by:

(Equation 4)E(Zij) = pλjpΩj 2 + pλj(1 - pΩj) 1 + pΩj(1 - pλj) 1 

where E(Zij) is the expectation of genotypic value in j locus of the i hybrid coming from the crossing 
between λ and Ω lines; pλj: favorable allele frequency of the λ line to the j locus; and pΩj: favorable 
allele frequency of Ω line in j locus.

The phenotypic value of the hybrid was obtained by:

(Equation 5)yHS = μ + W1a* + W2d* + W3aa* + W4ad* + W5da* + W6dd* + ɛ 

where yHS is a vector of observations of single-cross hybrids; μ is the sample mean obtained by the 
Bayes B model using the actual phenotypic data of the lines; a* is the vector of allele substitution 
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effects of the artificially constructed genome; d* is the vector of dominance effects; aa* (epistatic 
effect of the additive-additive type), ad* (epistatic effect of the additive-dominant type), da* (epistatic 
effect of the dominant-additive type), and dd* (epistatic effect of the dominant-dominant type) are 
vectors of the simulated epistatic effects; ɛ is the sampled residual vector of a univariate normal 
distribution adjusting observations for heritability scenarios of 0.3, 0.5, and 0.7; W1 and W2 are the 
matrices of additive and dominance deviations built by the M matrix of hybrids; W3, W4, W5, and W6 
are epistatic deviation matrices built as established by Cockerham (1954). Columns related to the 
233 largest additive effects estimated in the analysis of lines and columns involving the 233 largest 
dominance effects were separated in order to construct these matrices. These effects come from 
225 quantitative trait loci (QTLs) that showed only additive effects, 225 QTLs that showed only 
dominance effects, and a further eight QTLs that showed both effects, additive and dominance.

Epistatic effects were simulated by the product of all two-by-two combinations among the 
values of the genetic markers (233 higher values) for each class of epistatic effects without the 
reciprocal to obtain vectors of classes aa*, ad*, da*, and dd*.

The heritability ranges were adjusted in by varying the magnitude of residual values (ɛ), 
which were sampled from normal distributions centered on zero. The residual variance parameters 
of these distributions were defined by:

σ2
e = [(1 – h2)/ h2] * σ2

g (Equation 6)

where h2 is the broad sense heritability desired for adjustment; σ2
g is the total genetic variance of 

the trait.

Estimates of the weight of maize cobs with and without the inclusion of 
non-additive effects

After the simulation procedure, the data from single-cross hybrids were analyzed. The 
overall G-BLUP model used to predict additive effects and non-additive genetic values of hybrids 
was as follows:

(Equation 7)y = jμ + Zg + ɛ 

where y (n x 1) is the vector of phenotypic observations of single-cross hybrids; j (n x 1) is the 
incidence vector of fixed effects; μ (1 x p) is the vector of fixed effects (sample average); Z (n x 
q) is the incidence matrix of random effects and in the case of G-BLUP, it is an identity matrix of 
dimension (n x n); g is the genetic value (random) of hybrids, which, depending on the model, were 
decomposed into α (allele substitution effects), δ (dominance deviations), and epistatic effects, αα, 
αδ, and δδ; and finally ɛ (n x 1) is the vector of residual effects.

For the g decomposition, three configurations of G-BLUP models were used: i) G-BLUP A 
considering only the α effects in the model; ii) G-BLUP AD with the inclusion of α and δ effects; iii) 
G-BLUP EP including α, δ, αα, αδ, and δδ effects.

The variance components for the analysis were obtained by maximizing the residual 
maximum likelihood estimation (REML) function of Patterson and Thompson (1971), using the 
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expectation maximization algorithm (EM) of Dempster (1977).
The predictive ability of the G-BLUP model was compared with some predictive models 

available in the BGLR package. Thus, analysis of the simulated hybrid was performed using the 
Bayesian Ridge Regression (BRR), Bayes, Bayes LASSO, Bayes C, Bayes B, and RKHS models. 
Analyses in the BGLR package were performed with the default settings of the program. Probability 
distribution specifications and detailed descriptions of Bayesian and RKHS models can be found in 
the studies by Gianola (2009) and de los Campos et al. (2013).

A preliminary study was carried out on epistatic effects in the G-BLUP model, which is less 
computationally intensive, and aimed to determine the relevance of their inclusion in other models. 

Effects of allele substitution and dominance deviation from these models were estimated, 
except for the RKHS method. This predictive methodology lacks a genetic basis and does not 
consider additive or dominant relationship matrices, using only a Euclidean distance function to 
map the covariance between the genetic effects (our study case).

Comparison of models

The predictive ability of the models was evaluated using Pearson’s correlation among 
the estimated and parametric genetic values. In addition, the heritability of genetic effects was 
calculated by:

(Equation 8)h2
gyi = COV(ĝ, y)/ var(y) 

where ĝ is only α (additive model), α + δ (additive-dominant model), or α + δ + αα + αδ + αδ + δδ 
(epistatic model).

Furthermore, we evaluated the ability of the G-BLUP model to partition the additive and 
non-additive components of genetic variance, given that it is the model most consistent with the 
theory of quantitative genetics. All of the other models tested assume prior distributions (Bayesian 
models) or modeling structure (RKHS model) that do not permit inference of genetic variance 
components.

Another statistic used was the prediction sum of squares (PRESS):

(Equation 9)PRESS = Σ
n

i=1 
(Ôi – Ô)2 

where Ôi is the estimated value calculated individually for each variable referred to αi; δi; αiαi; and 
αiδi, and δiδi variables, and Ô, the parameter values.

RESULTS

When comparing the quality of G-BLUP models in the estimation of variance components 
(Table 2), it can be observed that, for the variance of additive effects (Va), a closer approximation 
to the parametric value occurred when a complete model was used, i.e., by including dominance 
deviation effects and epistasis in the model. Considering all the effects, the approximation of 



18478J.P.R. Santos et al.

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (4): 18471-18484 (2015)

estimates means that the quality of variance estimates gradually improved when using the 
complete model. The closer approximation to the parameter value indicates the decomposition 
ability of variance components, namely, the confounding reduction among the additive, dominant, 
and epistatic effects.

Parameters*	 S	 h2 = 0.3	 h2 = 0.5	 h2 = 0.7

		  G-BLUP A		
Va	 -	 25.8227	 26.6841	 41.0145
Vg	 -	 25.8227	 26.6841	 41.0145
		  G-BLUP AD		
Va	 -	 24.7678	 21.2032	 26.6961
Vd	 -	 12.5113	 15.8379	 14.8276
Vg	 -	 37.2791	 37.0410	 38.5237
		  G-BLUP EP		
Va	 20.7	 23.8922	 20.0839	 21.1368
Vd	 14.3	 11.1155	 13.9725	 11.9878
Vaa	     2.17	   2.0353	   2.2003	   5.1167
Vad	 0.0792	   0.8026	   1.0696	   0.3495
Vdd	   0.00249	   0.6784	   0.8224	   0.2824
Vg	 37.3	 38.5240	 38.1488	 38.8731

Table 2. Parametric variance components (S) and the estimated components by models at the three heritability 
ranges (h2).

*Va = variance of additive effects; Vd = variance of dominance effects; Vaa = variance of additive-additive epistatic 
effects; Vad = variance of additive-dominant epistatic effects; Vdd = variance of dominant-dominant epistatic effects; 
Vg = total genetic variance for maize cob weight character.

The inclusion of epistatic effects had little effect on estimates of Va, Vd, and especially Vg 
in relation to the estimates obtained by the reduced model only for additive and dominance effects 
(Table 2). In this context, it is expected that other types of genomic selection models with only 
additive and dominance effects show the same performance as their corresponding models, also 
considering the epistatic effects. Because of this, no further analyses were carried out in this study 
that included epistatic effects in other models of genomic selection.

In general, the inclusion of non-additive effects improved estimates of the total genetic 
variance (Vg) when comparing the estimates of the additive only model with others (Table 2). 
Therefore, it is noteworthy that the most accurate estimates of genetic variance were made using 
the G-BLUP EP model in the heritability setting of 0.5, for example, Vd value of 13.97, whereas the 
simulated value was 14.3.

The results suggest that the models responded positively in the three heritability scenarios with 
the inclusion of non-additive effects in predictive ability for the maize cob weight character (Table 3).

For the additive only models, RKHS presents good predictive ability for the heritability 
of 0.7, but high PRESS estimates were observed, ranging from 63,223.56 (simulated in h2 = 0.3) 
to 302,923.44 (simulated in h2 = 0.5). These high estimates of PRESS suggest that the RKHS 
model has only a low ability for isolating the additive genetic effects without confounding other 
components; thus the model interpretation might be prejudiced.

Despite the significant increase in analysis efficiency with the inclusion of dominance 
effects in a strictly additive model, all genomic selection models showed similar responses with 
the inclusion of this effect. The predictive ability of the G-BLUP EP and G-BLUP AD models did not 
differ from each other significantly.
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Models		  Heritabilities

	 0.3	 0.5	 0.7

Including only additive effects
   G-BLUP A	 0.6966 (7066.08)	   0.7599 (5839.64)	 0.7725 (5483.76)
   Bayes A	 0.7073 (7048.04)	   0.7764 (5416.12)	 0.7729 (5478.56)
   Bayes B	 0.7164 (7001.80)	   0.7771 (5400.80)	 0.7909 (5095.12)
   Bayes C	 0.7132 (7001.08)	   0.7735 (5482.28)	 0.7853 (5213.28)
   Bayes LASSO	 0.7359 (6774.84)	   0.7898 (5128.76)	 0.7769 (5392.44)
   BRR	 0.7056 (7057.36)	   0.7616 (5773.44)	 0.7702 (5537.40)
   RKHS	   0.6967 (63,223.56)	       0.7956 (302,923.44)	    0.9155 (15,276.16)
Including non-additive effects
   G-BLUP AD	 0.8331 (4255.36)	   0.9039 (2527.92)	 0.9439 (1711.92)
   G-BLUP EP	 0.8333 (4228.40)	   0.9019 (2550.40)	 0.9436 (1666.32)
   Bayes A	 0.8406 (4676.64)	 0.9025 (559.79)	 0.9424 (1801.12)
   Bayes B	 0.8400 (4727.32)	   0.8997 (2701.83)	 0.9421 (1814.40)
   Bayes C	 0.8399 (4533.60)	   0.9043 (2513.27)	 0.9436 (1728.16)
   Bayes LASSO	 0.8389 (4758.52)	   0.9029 (2539.81)	 0.9438 (1703.52)
   BRR	 0.8410 (4184.16)	   0.9041 (2521.10)	 0.9444 (1697.20)

Table 3. Predictive ability and PRESS (values in parentheses) for the models including only additive effects and 
with inclusion of non-additive effects for the three considered heritability ranges.

Although simulated epistasis was low, its inclusion in the model improved estimates of the 
variance components and, in addition, there was a slight improvement in correlations and in the 
reduction of PRESS with the three heritability scenarios. The major PRESS estimates were always 
associated with the RKHS model without compromising the estimated correlations.

Taking into account all models, heritability ranges, and the inclusion of non-additive effects, 
the magnitude of predictive abilities can be considered high compared to other simulation studies 
and also with real data reported in the literature.

Despite varying the conditions of genetic heritability based on three scenarios, the 
behavior of the evaluated models remained stable and efficient. For larger heritability, an increase 
in the predictive ability occurred.

On the basis of the results found here, it is possible to obtain good predictions of single-
cross hybrids when non-additive effects are included in the model, validating the potential of 
genomic prediction as a tool in breeding programs. As the cost of genotyping decreases, breeding 
programs could make use of genomic prediction models to predict the genotypic value of new 
crossings before reaching the stage of field tests (Pérez-Rodríguez et al., 2012).

In addition, the present results are consistent with those reported by Jia and Jannink 
(2012), who found no difference in the predictive ability of the G-BLUP and Bayes A models under 
conditions of non-additive effects, presenting as low (0.1) or medium (0.5) heritability and small 
(20) or large (200) numbers of QTLs controlling a trait.

Table 4 shows the estimates of heritability in the narrow sense for models considering only 
additive effects when predicting the weight of maize cobs hybrids.

For heritability in the broad sense simulated at 0.3, the G-BLUP model provided the best 
estimate of heritability in the narrow sense. This was not observed for heritability in the broad sense 
at 0.7. The closer the estimate in relation to the parametric value, the more the model was able to 
discriminate the genetic effects in the data. This is another measure that can determine the quality 
of the predictive ability of the models.

Table 5 shows the estimates of heritability when including non-additive effects in predicting 
the heritability simulated at 0.3.
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Broad (Narrow) sense heritability	 0.3 (0.166)	 0.5 (0.2775)	 0.7 (0.388)

Bayes A	 0.2028	 0.2849	 0.4381
Bayes B	 0.2178	 0.2855	 0.4663
Bayes C	 0.2112	 0.2784	 0.4602
Bayes LASSO	 0.2457	 0.3042	 0.4466
BRR	 0.2002	 0.2546	 0.4320
RKHS	 0.1819	 0.2467	 0.4389
G-BLUP A	 0.1695	 0.2705	 0.6420

Table 4. Estimates of the heritability of additive effects for models considering only additive effects for the three 
simulated heritability ranges.

			                                     Nature of heritabilities

	 Additive	 Dominant		  Epistatic*		  Broad sense

			   A-A	 A-D	 D-D

Parametric heritabilities	 0.1665	 0.1150	 0.0175	 0.00064	 0.00002	 0.3
Bayes A	 0.2047	 0.1402	 -	 -	 -	 0.3449
Bayes B	 0.2083	 0.1374	 -	 -	 -	 0.3457
Bayes C	 0.2025	 0.1255	 -	 -	 -	 0.3280
Bayes LASSO	 0.2055	 0.1417	 -	 -	 -	 0.3472
BRR	 0.1876	 0.1050	 -	 -	 -	 0.2926
G-BLUP AD	 0.1818	 0.0809	 -	 -	 -	 0.2627
G-BLUP EP	 0.1755	 0.0717	 0.0104	 0.0051	 0.0047	 0.2674

*Additive-additive epistasis (AA), additive-dominant epistasis (AD), and dominant-dominant epistasis (DD).

Table 5. Estimates of heritability for models considering non-additive effects for heritability simulated at 0.3.

Table 5 shows that the models differed in the quality of the estimate among the dominant 
and additive genetic effects. The G-BLUP models estimated the additive effects accurately but 
not when regarding the effects of dominance. For the G-BLUP EP model, which was the only 
one to consider epistasis, the epistatic variance was of a small magnitude as expected, since the 
epistatic effects explain little about the weight of maize cobs in the simulation scenario used in 
this study.

For heritability of 0.5 (Table 6), the extent of estimates of dominance effects decreased 
in relation to heritability of 0.3. Even so, this was overestimated by all models. Again, the epistatic 
effects were estimated with lower accuracies.

			                             Nature of heritabilities

	 Additive	 Dominant		  Epistatic*		  Broad sense

			   A-A	 A-D	 D-D

Parametric heritabilities	 0.2775	 0.1917	 0.00291	 0.0011	 0.00003	 0.5
Bayes A	 0.2353	 0.2439	 -	 -	 -	 0.4722
Bayes B	 0.2530	 0.2667	 -	 -	 -	 0.5196
Bayes C	 0.2467	 0.2303	 -	 -	 -	 0.4770
Bayes LASSO	 0.2444	 0.2240	 -	 -	 -	 0.4684
BRR	 0.2447	 0.2275	 -	 -	 -	 0.4722
G-BLUP AD	 0.2372	 0.2257	 -	 -	 -	 0.4629
G-BLUP EP	 0.2229	 0.2015	 0.0242	 0.0143	 0.0111	 0.4739

*Additive-additive epistasis (AA), additive-dominant epistasis (AD), and dominant-dominant epistasis (DD).

Table 6. Estimates of heritability for models considering non-additive effects for heritability simulated at 0.5.
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When heritability was simulated at 0.7 (Table 7), differences in the estimates of heritability 
in a broad sense among the models were reduced compared with the heritabilities simulated at 0.3 
and 0.5. This indicates that all models benefitted in this more favorable scenario, which decreased 
the discrepancies among the estimates and, therefore, hindered their discrimination.

The good performance of the G-BLUP models in estimating the heritability of genetic 
effects reinforces the attribute of such models for discriminating genetic effects, except for G-BLUP 
A in the heritability of 0.7.

Another observation is that the analysis of models with the heritability criterion of the 
estimates of genetic effects is not in accordance entirely with the analysis performed with the 
predictive ability criterion, showing that heritability could provides further information on the choice 
of models.

DISCUSSION

Many GWS models were used in this study. In some situations, it was possible to use non-
additive effects and, in others, it was possible to use only the additive effects due to the analysis 
(specific case of RKHS). This comparison between models was motivated by the fact that no 
studies in the literature have compared the G-BLUP model, including non-additive effects, with 
other described models. Most studies consider only additive effects in the exploited models.

Since Meuwissen et al. (2001), many studies have compared the predictive performance 
of additive models in genomic selection and concluded that there is no great discrepancy among 
models and that when there is, it varies depending on the species and the genetic trait architecture 
(de Los Campos et al., 2013; Howard et al., 2014). However, the models tested only considered 
additive effects. One of the goals of the present study was to verify whether this also occurs when 
non-additive effects are included in the models commonly used in genomic selection.

As a result of a non-linear regression process that exploits information on the development 
of kernels without a genetic basis, the RKHS model does not favor the orthogonal decomposition 
of genetic effects in additive and non-additive effects. This predictive model appears to restrictively 
capture additive and non-additive genetic signals confounded in a single component, an event that 
therefore precludes genetic interpretation.

One reason for the widespread lack of response to the inclusion of epistatic effects is the 
low ability of parametric models based on linear regression for capturing multiplicative effects such 
as epistasis (Gianola, 2006). Furthermore, the magnitude of epistatic variance components in this 

			                                   Nature of heritabilities

	 Additive	 Dominant		  Epistatic*		  Broad sense

			   A-A	 A-D	 D-D

Parametric heritabilities	 0.3884	 0.2683	 0.0407	 0.0015	 0.00005	 0.7
Bayes A	 0.4133	 0.3183	 -	 -	 -	 0.7316
Bayes B	 0.4126	 0.3204	 -	 -	 -	 0.7330
Bayes C	 0.4145	 0.2937	 -	 -	 -	 0.7082
Bayes LASSO	 0.4148	 0.2827	 -	 -	 -	 0.6975
BRR	 0.4085	 0.2912	 -	 -	 -	 0.6997
G-BLUP AD	 0.4116	 0.2913	 -	 -	 -	 0.7029
G-BLUP EP	 0.3796	 0.2473	 0.0731	 0.0062	 0.0058	 0.7121

*Additive-additive epistasis (AA), additive-dominant epistasis (AD), and dominant-dominant epistasis (DD).

Table 7. Estimates of heritability for models considering non-additive effects for heritability simulated at 0.7.
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study was low, which may have contributed to the small difference inferred by the inclusion of this 
effect in the models.

The smallest epistasis values were observed, because in the hybrids, this was generated 
by a multiplicative effect of the genes obtained from the lines. The justification for using multiplicative 
epistasis of genes was discussed by Schnell and Cockerham (1992).

In accordance with the findings of Crossa et al. (2014) and Technow et al. (2014), the size 
of the studied population affects such estimates. Even using a genomic construction of the hybrids 
based on the effects of genes obtained from the genomic analysis of the lines, this simulation 
process was found to be efficient for the construction of phenotypic values preserving the trait’s 
architecture under analysis.

In one of the few studies comparing prediction of maize hybrids among G-BLUP and 
Bayesian models with dominance effects, Technow et al. (2012) found differences in the predictive 
ability of G-BLUP and Bayes B, when considering the effects of dominance on models, which did 
not occur in this study.

Bernardo (2014) simulated a maize breeding program and found no difference in predictive 
ability for the first selection cycle, both for equality or differences of variance among markers, using 
a mixed model methodology for prediction. This scenario showed that the incorrect, but convenient, 
hypothesis of equal variances among markers does not seem to significantly affect the responses 
to selection, as was also found by Bernardo and Yu (2007). Those authors found an average loss 
in response to selection, taking into account different numbers of QTLs and heritability of only 2% 
when comparing markers with equal or specific variances per locus. They highlight that, even for 
genomic selection, schemes using Bayesian procedures for modeling loci with specific variances 
would have little advantage. This was consistent with the results of the present study, since no 
Bayesian model was found to have better  predictive ability in any of the situations.

Technow et al. (2014) stated that Bayesian models require large populations to estimate 
marker effects so that they can express any potential advantage; this condition was met in this 
study, since 3.215 lines were used to find the parameter values. With these estimates, 400 hybrids 
were simulated to be predicted by all models.

When referring to results already found in maize and wheat breeding programs by the 
International Maize and Wheat Improvement Center (CIMMYT) research center, Crossa et al. 
(2014) stated that none of the prediction models used fit all situations. However, empirical evidence 
has shown the inclusion of non-linear functions of markers tend to increase the predictive ability of 
the model when used in complex traits and when compared with linear models, a fact that was also 
noted by Pérez-Rodríguez et al. (2012).

Confirming the results reported by Crossa et al. (2014), Howard et al. (2014) found that 
the parametric methods studied (e.g., Bayes A, Bayes B, Bayes C, Bayes LASSO, BRR, G-BLUP, 
Least Squares) performed slightly better in terms of predictive ability when only additive effects 
were present. In the presence of epistasis, nonparametric methods (e.g., RKHS, neural networks) 
exceeded the parametric methods. The authors noted that the genetic architecture of a given trait 
was the main factor responsible for the differences in predictive ability among the 14 methods of 
genomic selection evaluated; this opinion was shared by Crossa et al. (2010).

Estimates obtained using RKHS methodology should be interpreted with caution, because 
this model does not estimate an isolated genetic effect, rather it estimates a set of effects with 
bias tending to be high, as already emphasized. This model is exalted by the “capacity” to better 
estimate nonlinear effects as epistatic effects, but it does not allow conclusions at this level, i.e., 
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conclusions of the exact genetic nature of what is being estimated. This does not mean that it has 
no value in the predictive context since de ranking of the genotypes were equivalent, but careful 
should be taken about genetic interpretation related to effects of this model.

Riedelsheimer et al. (2012) concluded that a small gain in predictive ability can be 
obtained if a genomic prediction model is chosen in accordance with the genetic architecture of the 
trait. However, Heffner et al. (2009) noted that the basic genetic architecture of complex traits is 
unknown and, therefore, there is no knowledge a priori for this.

In contrast to the present results, Riedelsheimer et al. (2012) used real data from maize 
lines (289) to evaluate the predictive ability of genomic selection models for two classes of traits 
classified as agronomic or metabolic, and each class was controlled by large number of QTLs 
with little effect or few QTLs with great effect, respectively. They found that the RKHS model was 
equivalent to the G-BLUP model when considering additive effects for the agronomic traits. For the 
metabolic traits, Bayes LASSO was highlighted.

Simulation studies allow a greater variety of situations to be explored regarding the genetic 
architecture of traits and the population under study, whereas the actual data reflect the complexity 
involved. However, the simulation of genomes, and their genetic mechanisms, is complex. There 
are different forms of genomic variability and a variety of populations with different backgrounds, 
as well as considerable uncertainty about the distribution of gene action (Daetwyler et al., 2013).

The inclusion of non-additive effects in the models was found to improve the predictive 
ability of untested maize hybrids. In general, there was an increase in the predictive ability of the 
models with increased heritability.

For the population and traits considered in this study, epistasis did not affect the estimates 
of predictive ability, but they were a determining factor in improving the estimates of variance 
components and heritability.

Conflicts of interest

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

Research supported by the Coordination for the Improvement of Higher Education 
Personnel (CAPES) and the National Council for Scientific and Technological Development (CNPq).

REFERENCES

Bernardo R (1994). Prediction of maize single-cross performance using RFLPs and information from related hybrids. Crop Sci. 
34: 20-25.

Bernardo R (2014). Genome wide selection when major genes are known. Crop Sci. 54: 68-75.
Bernardo R and Yu J (2007). Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 47: 1082-1090.
Cockerham CC (1954). An extension of the concept of partitioning hereditary variance for analysis of covariances among 

relatives when epistasis is present. Genetics 39: 859-882.
Cockerham CC (1967). Prediction of double crosses from single crosses. Theor. Appl. Genet. 37: 160-169.
Crossa J, Campos G de L, Pérez P, Gianola D, et al. (2010). Prediction of genetic values of quantitative traits in plant breeding 

using pedigree and molecular markers. Genetics 186: 713-724.
Crossa J, Pérez P, Hickey J, Burguenõ J, et al. (2014). Genomic prediction in CIMMYT maize and wheat breeding prograns. 

Heredity 112: 48-60.



18484J.P.R. Santos et al.

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (4): 18471-18484 (2015)

Daetwyler HD, Calus MPL, Pong-Wong R, de los Campos G, et al. (2013). Genomic prediction in animals and plants: simulation 
of data, validation, reporting, and benchmarking. Genetics 193: 347-365.

de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, et al. (2013). whole-genome regression and prediction methods 
applied to plant and animal breeding. Genetics 193: 327-345.

Dempster AP (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39: 1-38.
Eberhart SA (1964). Theoretical relations among single, three-way, and doubled cross hybrids. Biometrics 20: 522-539.
Falconer DS and Mackay TF (1996). Introduction to quantitative genetics. 4th edn. Longman Group Ltd., London.
Gianola D (2013). Priors in whole-genome regression: the Bayesian alphabet returns. Genetics 194: 573-596.
Gianola D, Fernando RL and Stella A (2006). Genomic-assisted prediction of genetic value with semiparametric procedures. 

Genetics 173: 1761-1776.
Gianola D, de Los Campos G, Hill WG, Manfredi E, et al. (2009). Additive genetic variability and the Bayesian alphabet. 

Genetics 183: 347-363.
Goddard ME and Hayes BJ (2007). Genomic selection. J. Anim. Breed. Genet. 124: 323-330.
Hallauer AR, Carena MJ and Miranda Filho JB (2010). Quantitative genetics in maize breeding. 2nd edn. Iowa State University, 

Ames.
Heffner EL, Sorrells ME and Jannink JL (2009). Genomic selection for crop improvement. Crop Sci. 49: 1-12. 
Henderson CR (1985a). Best linear unbiased prediction of nonadditive genetic merits in non inbreds populations. J. Anim. Sci. 

60: 111-117.
Henderson CR (1985b). MIVQUE and REML estimation of additive and nonadditive genetic variances. J. Anim. Sci. 61: 113-

121.
Howard R, Carriquiry AL and Beavis WD (2014). Parametric and nonparametric statistical methods for genomic selection of 

traits with additive and epistatic genetic architectures. G3 4: 1027-1246.
Jenkins MT (1934). Methods of estimating the performance of double crosses in corn. J. Am. Soc. Agron. 26: 199-204.
Jia Y and Jannink J-L (2012). Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 

192: 513-1522.
Lee M, Godshalk EB, Lamkey KR and Woodman WW (1989). Association of restriction length polymorphism among maize 

inbreds with agronomic performance of their crosses. Crop Sci. 29: 1067-1071.
Mackay TF, Stone EA and Ayroles JF (2009). The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 

10: 565-577.
Meuwissen THE, Hayes BJ and Goddard ME (2001). Prediction of total genetic value using genome-wide dense marker maps. 

Genetics 157: 1819-1829.
PANZEA (2014) Data sets for download. [http://www.panzea.org/lit/data_sets.html#NAM_map]. Accessed August 22, 2014.
Patterson HD and Thompson R (1971). Recovery of inter-block information when block sizes are unequal. Biometrika 58: 

545-554.
Pérez P and de los Campos G (2014). Genome-wide regression and prediction with the BGLR statistical package. Genetics 

198: 483-495.
Pérez-Rodríguez P, Gianola D, Gonzalez-Camacho JM, Crossa J, et al. (2012). Comparison between linear and non-parametric 

regression models for genome-enabled prediction in Wheat. G3 2: 1595-1605.
R Core Team (2014). R: A language and environment for statistical computing. Available at [http://www.Rproject]. Accessed 

June 2, 2014.
Reif JC, Hallauer AR and Melchinger AE (2005). Heterosis and heterotic patterns in maize. Maydica 50: 215-223.
Riedelsheimer C, Technow F and Melchinger AE (2012). Comparison of whole-genome prediction models for traits with 

contrasting genetic architecture in a diversity panel of maize inbred lines. BMC Genomics 13: 452.
Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, et al. (2013). Comprehensive genotyping of the USA national maize inbred 

seed bank. Genome Biol. 14: R55.
Schnell FW and Cockerham CC (1992). Multiplicative vs. arbitrary gene action in heterosis. Genetics 131: 461-469.
Technow F, Riedelsheimer C, Schrag TA and Melchinger AE (2012). Genomic prediction of hybrid performance in maize with 

models incorporating dominance and population specific marker effects. Theor. Appl. Genet. 125: 1181-1194.
Technow F, Schrag TA, Schipprack W, Bauer E, et al. (2014). Genome properties and prospects of genomic prediction of 

hybrid performance in a breeding program of maize. Genetics 197: 1343-1355.
VanRaden PM (2008). Efficient methods to compute genomic predictions. J. Dairy Sci. 91: 4414-4423.
Zeng ZB, Wang T and Zou W (2005). Modeling quantitative trait loci and interpretation of models. Genetics 169: 1711-1725.


