
Genetics and Molecular Research 16 (2): gmr16026784

Genome sequence compression based on
optimized context weighting

M. Chen1,2, J.J. Shao3 and X.M. Jia2

1Department of Electronics, Yunnan University, Kunming, Yunnan, China
2Information Security College, Yunnan Police Officer Academy, Kunming,
Yunnan, China
3Science and Technology College, DianChi College of Yunnan University,
Kunming, Yunnan, China

Corresponding author: J.J. Shao
E-mail: minkeychen@163.com / xuemingjia@163.com

Genet. Mol. Res. 16 (2): gmr16026784
Received April 23, 2017
Accepted May 7, 2017
Published May 18, 2017
DOI http://dx.doi.org/10.4238/gmr16026784

Copyright © 2017 The Authors. This is an open-access article distributed under the terms of
the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License.

ABSTRACT. Context weighting is an important technology for
genome compression. In this study, we discuss the relationship between
the weighting of context models and the weighting of the description
lengths corresponding to their respective context models. It indicates
that weighting of context models is equivalent to the weighting of their
description lengths. With these discussions, we present the weights
optimization algorithm based on the minimum description length, and
suggest implementing the least-square algorithm for the optimization
of the weights. The proposed optimization algorithm is used in the
compression of bacterial genome sequences. The experiment results
indicate that by using the proposed weights optimization method, our
context weighting-based genome compression algorithm can achieve
better performance than context weighting-based algorithms reported
in the literature.

Key words: Genome sequence compression; Context modeling;
Context weighting; Least square

2M. Chen et al.

Genetics and Molecular Research 16 (2): gmr16026784

INTRODUCTION

The size of the genome data set has increased exponentially in the past decade owing
to the utilization of rapid DNA sequencing technology (Deorowicz and Grabowski 2011).
The required memory to store such amount of genome data becomes larger and larger. The
compression algorithms can enhance the storage efficiency of the genome data. Moreover,
the hereditary information of a species is hidden in its genome sequence, which is not always
understood sufficiently by researchers. Thus, in genome sequence compression, none of
the bases in a sequence can be ignored, suggesting that genome sequence compression is
advantageous.

There are two types of algorithms for DNA sequence compression: substitution
algorithms and algorithms based on the entropy coding technology. Grumbach and Tahi
(1993) proposed the LZ77-based algorithm BioCompress to compress early genome
sequences. In this algorithm, if a repetitive sequence is recorded in a dictionary then it
is detected, and Fibonacci coding is used to assign the codeword for the item index of
this repetitive sequence in the dictionary. In coding sequences that are not contained in
the dictionary, each base is encoded with a 2-bit codeword. The BioCompress algorithm
and other similar algorithms give the basic structure of the substitution algorithms. These
algorithms differ from each other in the way they encode the non-repetitive sequences or
those sequences that are not in the dictionary. Grumbach and Tahi (1994) implemented
a Markov model with order 2 to describe the statistic features of the bases in the non-
repetitive sequences and suggested the entropy coding to encode bases in these sequences.
Matsumoto et al. (2000) used the entropy coding technology based on context modeling is to
compress the non-repetitive sequences, although this technology is just the complement of
the substitution algorithm. Substitution algorithms cannot always ensure high compression
efficiency. The performance of substitution algorithms greatly rely on their dictionaries. The
size of a dictionary is directly associated with the cost for coding an item index, i.e., if the
size increases then the cost for coding an item index also increases, which in turn affects
the compression efficiency. Moreover, the dictionary can be configured to improve the
compression performance. However, in this case, the cost to encode the dictionary cannot be
ignored. Hence, the size of the dictionary should be considered to evaluate the performance
of such substitution algorithm. For example, although the algorithm in (Deorowicz et al.,
2013) could achieve the best compression results than any other existing algorithms, the
genome database used in this algorithm as the dictionary was too large to be encoded at a
reasonable cost.

The context modeling-based entropy coding algorithms, a family of lossless
compression algorithms with high compression efficiency, are proposed to compress
genome sequences. Tabus et al. (2003) proposed that context modeling can be used for
DNA sequence compression. However, the correlations among the bases were weak because
of the existence of the indels and the fracture subsequences. It means that the conditional
probability distributions constructed by directly using the neighboring bases of the current
base as the contexts are not suitable enough to obtain good compression efficiency. One
intuitive method to tackle this problem is context weighting. Some context models with
different orders are constructed, and the context model that was obtained by weighting these
models is used as the coding model with improved coding performance. Some algorithms
utilize this modeling strategy. Cao et al. (2007) presented a method in which the “expert

3Genome sequence compression based on optimized context weighting

Genetics and Molecular Research 16 (2): gmr16026784

models” (XM) were constructed to describe the correlation among bases in a sequence. Each
XM is actually one of the Markov models (with different orders). In the coding process,
the coding model is obtained by weighting all these XMs. Pinho et al. (2009) found that
the compression results by using the context models with some finite orders are better than
the results obtained by using the context models with high orders. The context models with
high orders are not necessary in the context modeling for genome sequence compression.
However, as many as possible correlations among neighboring bases are needed to obtain
a better coding model in context modeling. Context weighting can balance this conflict
since different neighboring bases are used to construct different context models, which
are weighted to obtain one coding model. In this way, the coding model can utilize the
correlations among more neighboring bases but maintain a limited order. Thus, context
weighting is one of the efficient modeling methods for genome sequence compression.
However, the performance of context weighting is closely related to the weight selection.
In all previous researches, the optimization of the weights was not discussed directly.
In the method proposed by Pinho et al. (2009), the weights are determined based on the
experience. As an improvement, in (Pinho et al., 2011), the weights are obtained with the
help of a filtering operation. There are two problems here. The first is that the impulse
responses of the filters are determined manually. The second is that the optimized filters
do not directly produce optimized weights. In Cao et al. (2007), although the weights are
related to the average code lengths of respective models, there is no method to optimize the
weights directly.

In context modeling, each conditional probability distribution in a context model is
estimated by using a count vector that is obtained through counting the number of various
bases in the training genome sequences with the same context event. Rissanen (2001) coded a
training sequence using an adaptive model, and the codelength was referred to as the description
length of the training sequence for the given model. For a given sequence and a given context
model, the coding performance of the model can be determined by the description length of
the sequence under this model. The conditional probability distribution that corresponds to
the count vector with smaller description length may lead to shorter code length in the coding
process. In this way, minimizing the description length can be used as the objective of the
weights optimization.

In this study, the relationship between the weighting of context models and the
weighting of the description lengths is discussed, which indicates that the weighting of context
models is equivalent to the weighting of the description lengths of these models. Then, the
least-square algorithm is used to implement the weights optimization. The proposed weights
optimization method is used to help the compression of bacterial genome sequences to improve
the coding efficiency.

It is worth to notice that only the compression algorithm is discussed in this study.
Our study here does not aim to develop the compression tool for genome sequence. Pinho and
Pratas (2014) present MFCompress that is used for compressing FASTA. The core algorithm
of MFCompress is based on the context modeling technology. For a tool, problems such
as the compression of the symbol “N” and the representation of the head of one genome
sequence file, should be considered. However, our work contains no such details. We pay more
attention to the compression algorithm for the bacterial genome sequence. We use the symbol
“A”, which is similar to the operation in the algorithms, instead of “N” that is present in the
sequence (Pinho et al., 2009, 2011).

4M. Chen et al.

Genetics and Molecular Research 16 (2): gmr16026784

MATERIAL AND METHODS

Context weighting

Genome sequences consist of four types of bases: adenine (A), thymine (T), guanine
(G), and cytosine (C). Let x0, …, xt, …, xn represent a genome sequence, and xt ∈ {A, T, G, C}
denote the current base to be coded. Context-based entropy coding is employed to compress
the genome sequence. During context modeling, conditional probability distributions P(xt|xt-1,
…, xt-K) are constructed using the past bases xt-1, …, xt-K of xt as contexts. Each combination
of xt-l, …, xt-K is a context event and K is the order of the context model. These conditional
probability distributions are referred to as context model. Meanwhile, different choice of
xt-1, …, xt-K or different order of K leads to different context models (different conditional
probability distributions). However, when one base is being encoded, only one of these
distributions in the context model is used to drive the arithmetic encoder. The conditional
probability distribution which is chosen to be used is determined by the combination of Sc =
xt-1, …, xt-K for the current base xt (actually, by its current context event Sc). Many distributions
are considered for coding xt when different context models are constructed. During this period,
context weighting is suggested to utilize these distributions to form one coding distribution
by weighting.

Let P(xt | sc
i) denote the conditional probability distribution corresponding to the

context event sc
i in the ith context model, and wi denote the value of its weight for context

weighting. N denotes the number of context models participated in weighting. Then, context
weighting, which aims to obtain the coding model with better coding efficiency, can be
represented as Equation 1:

1
(|) * (|)N c

t ti ii
P x S w P x s

=
=∑ (Equation 1)

where P(xt|S) is the conditional probability distribution used to drive the arithmetic encoder to
assign the codeword for the current base xt|. However, in practice, these conditional probability
distributions, including P(xt | sc

i) and P(xt|S), are known in advance. They should be estimated
by using their corresponding count vectors to calculate probabilities in these distributions. In
this estimation procedure, the count vector v, which consists of counting number ni, is obtained
by counting the past bases encoded, and ni represents the number of symbols which holds
value i. Then probability can be estimated by calculating ni / sum(ni).

Meanwhile, in practice, the weighting of context models is actually implemented by
weighting count vectors that corresponds to the conditional probability distributions P(xt | sc

i)
respectively. An example below is employed to explain this procedure.

Consider a context-weighting scheme with two models. Let sC
1 and sC

2 denote the
current context events in their respective models. The corresponding conditional probability
distributions are P(xt | sc

1) and P(xt | sc
2). Let w1 and w2 denote the weights of P(xt | sc

1) and
P(xt | sc

2), with the weights satisfying w1 + w2 = 1. Two count vectors CV1 and CV2, which
correspond P(xt | sc

1) and P(xt | sc
2), respectively, are listed on the left side of Equation 2.

Multiplied by weights, cv1 and cv2 become the vectors listed on the right side of Equation 2.

5Genome sequence compression based on optimized context weighting

Genetics and Molecular Research 16 (2): gmr16026784

After weighting, the count vector cv corresponding to P(xt|S) has the form given in
Equation 3.

(Equation 2)0 1 2 3 1 1 0 1 1 1 2 1 3

0 1 2 3 2 2 0 2 1 2 2 2 3

0() 1() 2() 3() 0 1 2 3
: :
: :

A T G C
n n n n w w n w n w n w n
m m m m w w m w m w m w m

1 1

2 2

CV CV
CV CV

1 0 2 0 1 1 2 1 1 2 2 2 1 3 2 3

0 1 2 3
: w n w m w n w m w n w m w n w m+ + + +CV (Equation 3)

Then P(xt|S) can be estimated by Equation 4:

1 0 2 0 1 3 2 31 1 2 1 1 2 2 2

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

0 1 2 3

(|):t
w n w m w n w mw n w m w n w mP x S wV w V wV w V wV w V wV w V

+ ++ +
+ + + + (Equation 4)

where V1 = n0 + n1 + n2 + n3 denotes the total number of training bases in CV1 and V2 = m0 +
m1 + m2 + m3 denotes the total number of training bases in CV2.

According to Chen et al. (2013), L1, which is the description length of the count vector
CV1, can be calculated by Equation 5:

3

0
11)!14log()!1log()!1log(

i
inVL

(Equation 5)

L2, which is the description length of the count vector CV2, can be calculated similarly.
To calculate the description length by Equation 5, the term log (V1–1)! or log (ni–1)!

can be represented as log V1! - log V1 or log ni! - log ni. When Stirling’s formula

is used to approximately calculate factorials and when log is the natural logarithm, L1 and L2
can be calculated using Equations 7 and 8, respectively:

σ−−−−−−=
3210

1
33221100111 log

2
1logloglogloglog

nnnn
VnnnnnnnnVVL (Equation 7)

and

σ−−−−−−=
3210

2
33221100222 log

2
1logloglogloglog

mmmm
VmmmmmmmmVVL (Equation 8)

where πσ 2log3!3log += is a constant. The description length L of the count vector CV
(Equation 3) can also be calculated as Equation 5. To simplify our representation, let Ci denote

1()2! 2n nn n e π
+ −≈ (Equation 6)

6M. Chen et al.

Genetics and Molecular Research 16 (2): gmr16026784

the ratio of the weighted total number of training bases in the count vector CVi [corresponding
to P(xt | sc

i)] to the total number of bases in the weighted count vector CV. Let t(i)
j denote

the ratio of the weighted total number of training bases with value j in the count vector CVi
[corresponding to P(xt | sc

i)] to the total number of bases with value j in the weighted count
vector CV. For instance, parameters c1, t(1)

2, and t(1)
2 are calculated as follows:

(1) (2)1 1 1 2 2 2
1 2 2

1 1 2 2 1 2 2 2 1 2 2 2

wV w n w mc t t
wV w V w n w m w n w m

= = =
+ + +

when all weights wi are given, all parameters ci and t(i)
j are determined. The description length

L, which corresponds to the count vector CV (Equation 3), can also be calculated as in Equation
9, in which, the first line actually equals to w1L1 + w2L2.

2
22

3

0

)2(

2
3

0
)2(

2
2

2

2
222

11

3

0

)1(

1
3

0
)1(
1

1
1

1
11

3

0

2
3

0
2223

0

1
3

0
111

log
2

logloglog
2

loglog

)log
2
1loglog()log

2
1loglog(

wc

t
w

t
wmw

c
wVw

wc

t
w

t
wnw

c
wVw

m

VmmVVw
n

VnnVVwL

j
j

j j
j

j
j

j j
j

j
j

j
jj

j
j

j
jj

∏
∑

∏
∑

∏
∑

∏
∑

=

=

=

=

=

=

=

=

−−+−−+

−−−+−−−= σσ

(Equation 9)

Let Q denote the last line in Equation 9, then

2
22

3

0

)2(

2
3

0
)2(

2
2

2

2
222

11

3

0

)1(

1
3

0
)1(
1

1
1

1
11 log

2
logloglog

2
loglog

wc

t
w

t
wmw

c
wVw

wc

t
w

t
wnw

c
wVwQ j

j

j j
j

j
j

j j
j

∏
∑

∏
∑ =

=

=

=
−−+−−= (Equation 10)

and L can be represented as

1 1 2 2L w L w L Q= + + (Equation 11)

Q can be viewed as some kind of weighting cost. If the value of Q is much smaller
than the value of w1L1 + w2L2, then the weighting cost Q can be ignored in the optimizing
procedure. In this study, many experiments are executed to test whether this cost could be
omitted. For coding every base, the current weighting cost is calculated first and is compared
with the value of w1L1 + w2L2. Fortunately, the experiment results indicate that the value
of weighting cost is smaller than w1L1 + w2L2. With increasing number of bases coded, the
value of w1L1 + w2L2 becomes larger, but the value of weighting cost remains in a reasonable
area. In these experiments, the maximum value of Q equals to 48.95 compared to the value
of w1L1 + w2L2, which is 112,465.34. The minimum value of Q equals to 0.0876, and the
value of w1L1 + w2L2 equals to 1,024,584.28. Consequently, the weighting cost provides little
influence for context weighting. These experiments and representation (Equation 11) imply
that context weighting is equivalent to the weighting of description lengths of count vectors,
which corresponds to distributions participated in weighting. Moreover, optimization of the

7Genome sequence compression based on optimized context weighting

Genetics and Molecular Research 16 (2): gmr16026784

weights can be achieved by minimizing the description length L of the weighted count vector
CV. Based on this observation, the method for the optimization of the weights can be described
as follows: for the given count vectors CV1 and CV2, which are obtained from the past bases
in a sequence, find the weights that can minimize the description length L for the count vector
CV. In the next section, we discuss the implementation of our weights optimization method
employing the least square algorithm to help achieving the optimization of the weights.

Weights optimization

From Equation 11, we found that the description length L can be represented
approximately as L ≈ w1L1 + w2L2.

On the basis of this approximation, the least-square algorithm can be used to optimize
weights w1 and w2. Let L = (L1, L2)

T denote the observing vector consisting of description lengths
from count vectors that participated in weighting. Let W = (w1, w2)

T denote the corresponding
weights vector. Then L̂, which is considered as the estimated value of the description length L,
be represented in the vector form as

ˆ TL =L W (Equation 12)

The objective of our optimization is to minimize L̂. However, in order to minimize
L̂ by using the least-square algorithm, its corresponding ideal value L* should be given in
advance.

Moreover, according to Wu et al. (2011), the description length L̂ can also be
represented as:

1 1 2 2
ˆ () (|)tL wV w V H x S= + +D (Equation 13)

where H(xt|S) is the entropy of the conditional probability distribution P(xt|S) and D represents
the model cost. The value of (w1V1+w2V2)H(xt|S) represents the ideal code length for coding
these w1V1+w2V2 bases. However, this code length cannot be achieved in practice. Thus, we
choose L* = (w1V1+w2V2)H(xt|S) as the ideal value of the description length L̂ in our weights
optimization process. Apparently, LL ˆ* < . It is impossible to obtain shorter description length
than L*. Therefore, L* can be the objective of the minimization of L̂. Let

*ˆ| |e L L= − (Equation 14)

denote the error between L̂ and L*. Minimizing the squared error e2 is equivalent to minimizing
L̂, which can be described as

2 * 2ˆmin{ () | | }f e L L= = −W (Equation 15)

where f(W) is the cost function that is related to W. The minimization of f(W) can be obtained
by solving the following equations.

8M. Chen et al.

Genetics and Molecular Research 16 (2): gmr16026784

The solution of Equation 16 can directly be represented as:

2

1

() 0 1,2

1

i

i
i

f iw

w

 =

∂ = =∂

=∑

W

(Equation 16)

dRW ×= −1 (Equation 17)

where, R is the correlation matrix of the observing vector L, and d is the correlation vector
between L and L*. They can be written as

*, LT ×=×= LdLLR (Equation 18)

After solving these equations, the optimized weights can be obtained. The coding
distribution can also be obtained by using Equation 4.

Since the entropy H(xt|S) is not known, L* cannot be calculated directly. In practice, a
positive value as small as possible can be used instead. The optimization of weights for coding
xt is based on count vectors that are obtained by counting the past bases x0, …, xt-1 under
the same context events as the current context events in different context models. When xt is
coded, these count vectors are actually updated by adding one to the corresponding counts.
It implies that the corresponding weights could also be updated after coding xt. However,
such frequent updating leads to high computational complexity. To simplify our algorithm,
the weights in this study are not updated after coding every base but are updated until a given
number of bases are coded.

Steps of the proposed genome sequence compression algorithm are listed as follows:
Step 1: Construct context models to be weighted by using training sequences (which

can be viewed as the past bases).
Step 2: The weights are initialized to equal weights.
Step 3: Use these weights to obtain the weighted distribution for the coding of the

current base. If all bases are coded, the algorithm ends; otherwise, go to step 4.
Step 4: Check whether weights should be updated. If updating is required, go to step

5; otherwise, go back to step 3 to code the next base.
Step 5: Use Equation 7 to calculate Li, use Equations 16 and 17 to update weights, and

go back to step 3.

RESULTS

In this study, the proposed optimization algorithm is applied to compress bacterial
genome sequences. Context models with different orders are constructed. The genome

9Genome sequence compression based on optimized context weighting

Genetics and Molecular Research 16 (2): gmr16026784

sequence NC_020409 (size 334,969,024 bases) is used as the training sequence to initialize
these context models. Four genome sequences NC_013131, NC_014318, NC_004691, and
NC_004532 are used as test sequences.

In algorithm (Cao et al., 2007), the weights for context weighting are determined by
the average code lengths of their respective context models. The past 20 bases are encoded
respectively by using each context model participated in weighting; the average code length of
each model is used as a model parameter reflecting the characteristics of that model. The weight
of the corresponding model is calculated on the basis of this model parameter. In experiment
1, we implemented the algorithm used by Cao et al. (2007), and the same method was used to
calculate weights. However, in our implementation, the description lengths of respective count
vectors are used as the model parameters to calculate the weights instead using the average
code lengths. To test the coding efficiency of this substitution, four context models with order
2, 4, 10, and 16 are constructed and their corresponding weights are calculated using the
description lengths as the model parameters. Genome sequences NC_013131 and NC_014318
are used as test sequences. After coding, the compression results, represented by the term bpb
(bits per base), are listed in Table 1. For comparison, the compression results by using the
average code lengths as the model parameters are also listed in Table 1.

From Table 1, it can be found that the compression results obtained using the
description lengths as the model parameters are similar or slightly better than the results
obtained using the average code lengths as the model parameters. It implies that the description
length also reflects the characteristics of its corresponding model and can be used to determine
the weight in context weighting. However, the weights obtained using both type of model
parameters in experiment 1 are not optimized. In the following experiments, the proposed
weights optimization algorithm will be used to improve the compression performance of the
genome sequences.

In experiment 2, we test compression efficiency with different updating periods.
Three context models with orders 2, 4, and 8 are constructed and the compression results
with different updating periods (50 and 100 bases) are listed in Table 2. Genome sequences
NC_004691 and NC_004532 are used as test sequences.

bpb, bits per base (bits/base).

Table 1. Comparison of coding efficiency with two types of model parameters.

 Size (bases) bpb results by using the algorithm in (Cao et al., 2007) with different types of model parameters.
Average code length (bpb) Description length (bpb)

NC_013131 10,467,782 1.7922 1.7904
NC_014318 10,236,715 1.7695 1.7663

Table 2. Compression results with different updating periods.

Sequences Size (bases) Bits per base (bpb) under different updating periods
40 bases 50 bases 100 bases

NC_004691 9,267,221 1.7349 1.7363 1.7422
NC_004532 20,063 1.6374 1.6417 1.6658

From Table 2 it can be derived that the compression results with the updating period
50 are better than the results with the updating period 100 for both long and short sequences.

10M. Chen et al.

Genetics and Molecular Research 16 (2): gmr16026784

However, the compression results with updating period 40 and 50 are close, indicating that
decrease in the updating period does not always provide significant compression efficiency
improvement. However, short updating period leads to higher computational burden.
Therefore, in our experiments, updating period is set to 50.

The proposed algorithm in experiment 3 is used for weight optimization, and the
weighted context model is applied to compress bacterial genome sequences. The same four
context models as in experiment 1 are constructed, which were also used by Pinho et al. (2011).
Bacterial genome sequences NC_013131 and NC_014318 are used as test sequences. Our
compression results are listed in Table 3. For comparison, the compression results obtained
by using the algorithm XM (Cao et al., 2007) and the algorithm FCM (Pinho et al., 2011) are
also listed in Table 3.

Table 3. Compression results by different algorithms.

Sequences Size (bases) Bits per base (bpb) by different algorithms
XM by Cao FCM by Pinho Proposed

NC_013131 10,467,782 1.7922 1.779 1.7216
NC_014318 10,236,715 1.7695 1.739 1.7013

Our algorithm can produce better compression results than either XM or FCM, since
the optimization of the weights can lead to higher compression efficiency, as given in Table
3. It also implies that context weighting based on minimizing the description length of past
observations can reduce the final code length in the coding of a genome sequence.

Apparently, the proposed algorithm can produce promising results in compressing
genome sequences, and the optimization algorithm also ensures that optimized weights are
obtained. The designed objective of optimized context weighting is achieved. Moreover,
because of the execution of the weight optimization, the execution time for our algorithm
is higher than the previous algorithms (Pinho et al., 2009, 2011). Here, the time needed for
compressing NC_013131 is 56.7 s at the platform Intel Core i3 2.0G and 2 GB RAM.

DISCUSSION

In this study, weight optimization algorithm based on the minimum description length
is proposed. Context weighting can be implemented by weighting the description lengths of
past observations under their respective models. The least-square algorithm is employed to
optimize the weights for context weighting. The optimized weights are then used to improve
the compression efficiency of genome sequences. Experimental results indicate that the
proposed algorithm can lead to better results than the previous reported algorithms.

Conflicts of interest

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

Research supported by the Natural Science Foundation of Yunnan Province under
Grant (#2013FD042 and #2015YC003).

11Genome sequence compression based on optimized context weighting

Genetics and Molecular Research 16 (2): gmr16026784

REFERENCES

Cao MD, Dix TI, Allison L and Mears C (2007). A simple statistical algorithm for biological sequence compression.
Proceedings of the 2007 Data Compression Conference (DCC 2007). Snowbird.

Chen M, Chen J and Guo M (2013). Affinity propagation for the context quantization. Adv. Mat. Res. 791: 1533-1536.
http://dx.doi.org/10.4028/www.scientific.net/AMR.791-793.1533

Deorowicz S and Grabowski S (2011). Robust relative compression of genomes with random access. Bioinformatics 27:
2979-2986. http://dx.doi.org/10.1093/bioinformatics/btr505

Deorowicz S, Danek A and Grabowski S (2013). Genome compression: a novel approach for large collections.
Bioinformatics 29: 2572-2578. http://dx.doi.org/10.1093/bioinformatics/btt460

Grumbach S and Tahi F (1993). Compression of DNA sequences. Proceedings of the Data Compression Conference,
(DCC-93). Snowbird, 340-350.

Grumbach S and Tahi F (1994). A new challenge for compression algorithms: genetic sequences. Inf. Process. Manage.
30: 875-866. http://dx.doi.org/10.1016/0306-4573(94)90014-0

Matsumoto T, Sadakane K and Imai H (2000). Biological sequence compression algorithms. Genome Inform. Ser.
Workshop Genome Inform. 11: 43-52.

Pinho AJ and Pratas D (2014). MFCompress: a compression tool for FASTA and multi-FASTA data. Bioinformatics 30:
117-118. http://dx.doi.org/10.1093/bioinformatics/btt594

Pinho AJ, Neves AJR, Bastos CAC and Ferreira PJSG (2009). DNA coding using finite-context models and arithmetic
coding. Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei,
1280-1284.

Pinho AJ, Pratas D and Ferreira PJSG (2011). Bacteria DNA sequence compression using a mixture of finite-context
models. 2011 IEEE Statistical Signal Processing Workshop. IEEE, Nice.

Rissanen J (2001). Strong optimality of the normalized ML models as universal codes and information in data. IEEE
Trans. Inf. Theory 47: 1712-1717. http://dx.doi.org/10.1109/18.930912

Tabus I, Korodi G and Rissanen J (2003). DNA sequence compression using the normalized maxi-mum likelihood model
for discrete regression. Proceedings of the Data Compression Conference (DCC-2003). Snowbird, 253-263.

Wu X, Zhai G, Yang X and Zhang W (2011). Adaptive sequential prediction of multidimensional signals with applications
to lossless image coding. IEEE Trans. Image Process. 20: 36-42. http://dx.doi.org/10.1109/TIP.2010.2061860

