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ABSTRACT. Buffalo milk has excellent physical and chemical 
qualities as a consequence of the high percentage of constituents. 
This milk property is desirable for the dairy industry because it fa-
cilitates manufacture of mozzarella cheese. We estimated genetic 
parameters for milk yield, milk fat and protein and their effects 
on mozzarella cheese production using Bayesian inference. Us-
ing information from 4907 lactation records of buffaloes, genetic 
and non-genetic parameters were estimated for accumulated 305-
day milk yield (MY), milk fat (%F) and protein (%P) percentages 
and mozzarella production per lactation (MP). The (co)variance 
components were obtained by Bayesian inference using a multiple 
trait model, which included as fixed effects contemporary group, 
milking number and buffalo age at calving as covariables (linear 
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and quadratic), along with the additive genetic, permanent envi-
ronmental and residual random effects. Mean a posteriori herita-
bility distributions for MY, %F, %P, and MP were 0.25, 0.30, 0.38, 
and 0.23, respectively. The genetic correlation estimates between 
MY with %P and %F were negative and moderate. Positive genetic 
correlation estimates varying from 0.19 (%P/MP) to 0.95 (MY/
MP) were obtained among the traits. Milk yield, milk components, 
and mozzarella production in Murrah buffaloes have enough ge-
netic variation for selection purposes. We conclude that selection 
to increase milk yield would be effective in improving mozzarella 
production.  
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INTRODUCTION

Buffalo milk accounts for over 50% of drinking milk in certain developing coun-
tries, such as India, Pakistan, Egypt, and Nepal, while in Italy and in Brazil, buffalo milk 
is almost exclusively used for mozzarella cheese production, an expensive semi-soft fresh 
cheese. During the process of mozzarella cheese making, fat and casein are the major milk 
solids incorporated into the final product, these milk components being routinely used in 
many countries as criteria to determine the milk price.

Compared with cow’s milk, buffalo milk has a higher percentage of all components, 
such as protein and fat. The mean protein and fat percentages reported for buffalo milk var-
ies from 4.13 to 4.55% (Macedo et al., 2001; Rosati and Van Vleck, 2002) and from 6.87 to 
8.59% (Tonhati et al., 2000; Rosati and Van Vleck, 2002), respectively. In spite of its higher 
fat percentage, milk and mozzarella cholesterol content is lower for buffalo than for cow’s 
milk (275 vs 330 mg and 1562 vs 2287 mg, respectively) (Zicarelli, 2004). This is of major 
interest, together with some studies that report a larger number of small fat globules in buffalo 
milk as compared to bovine and sheep milk. It is well known that small fat globules are rich in 
polyunsaturated fatty acids (Martini et al., 2003).

Improvement through the selection of traits associated with milk quality and milk 
yield for dairy buffaloes is dependent on the availability of reliable genetic parameter es-
timates for these traits. The estimates of genetic parameters are helpful in determining the 
method of selection to predict direct and correlated response to selection, choosing a breeding 
system to be adopted for future improvement as well as in the estimation of genetic response. 
Moreover, the accuracy of genetic parameter estimates is determined by many factors, such 
as the quantity and quality of information (records and pedigree), the statistical model applied 
and the method of covariance estimation. 

Several studies have reported genetic parameter estimates for buffalo milk yield 
(Khan et al., 2000; Bajwa et al., 2002; Rosati and Van Vleck, 2002; Hurtado-Lugo et al., 2006, 
Tonhati et al., 2008) and milk components such as protein and fat percentages (Tonhati et al., 
2000; Rosati and Van Vleck, 2002). However, to date, there are few studies reporting genetic 
parameter estimates for mozzarella production and their relationships with milk yield and 
milk components (Rosati and Van Vleck, 2002). Although selection to increase milk yield has 
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received primary emphasis in the selection goals of dairy buffalo herds in Brazil, substantial 
emphasis has been placed on other traits, such as milk components and mozzarella production. 
There is concern among breeders about how selection to increase milk yield would affect milk 
components and mozzarella production, and thus, precise and accurate genetic correlation es-
timates could support breeders in selection decisions. Moreover, genetic correlation estimates 
are necessary to develop selection indexes for dairy buffaloes. 

Compared to REML, Bayesian methods have the advantage of allowing the inclu-
sion of prior knowledge about unknown parameters in the analysis. Additionally, the Bayes 
theorem provides a solution for the finite sample size problem, since an exact a posteriori 
distribution exists for each large or small data set from which inferences can be drawn (Jara 
and Barria, 1999; Misztal, 2008). When a large data set is analyzed, a priori information tends 
to be overwhelmed by the likelihood function in the establishment of the a posteriori distribu-
tion. In this case, parameter estimates are close to those obtained by frequentist methods based 
on likelihood functions. However, this may not be true when the sample size is limited because 
the maximum likelihood procedure only possesses well-defined properties when the sample 
size is large enough (Gianola and Fernando, 1986). 

The objective of this study was to determine estimates of genetic parameters for milk 
yield, and fat and protein percentages and their relationship with mozzarella cheese production 
using Bayesian inference.

MATERIAL AND METHODS

A total of 4907 lactation records from 1986 Murrah buffaloes (Bubalus bubalis), be-
longing to 12 herds in São Paulo State, Brazil, and calving from 1985 to 2008, were analyzed. 
The data belong to the Dairy Bubaline Test Program developed by the Animal Science Depart-
ment of São Paulo State University, FCAV, Jaboticabal, SP, Brazil. The traits studied were: 
accumulated 305-day milk yield (MY), milk fat (%F) and protein (%P) percentages, and ac-
cumulated 305-day mozzarella production (MP). 

For all traits, the lactation records were unadjusted for days in milk and records with 
a length above 305 days were truncated at this point, as suggested by Tonhati et al. (2008). 
The %F and %P values were obtained averaging the monthly test-day records per lactation 
(Tonhati et al., 2000). As proposed by Altiero et al. (1989), MP was based on MY, %F and %P, 
using the formula adopted in genetic evaluation programs in Italy. In the present study, MP is 
accumulated at 305 days, because it is based on MY at 305 days.

MP (kg) = MY *{[(3.5*%P) + (1.23*%F) - 0.88] / 100}

Lactation records shorter than 90 days of lactation were deleted. It was considered 
that the first test-day milk record was measured from the 5th to the 75th day after calving. 
Cow’s age varied from 2 to 8 years. The contemporary groups (CG) were defined as animals 
that calved in the same herd, year and season (season = 1 from April to September and season 
= 2 from October to March). The CG with less than 5 lactations (animals), and animals with 
records for each trait above or below 3.0 standard deviations from CG average were deleted 
from the analyses. There were 11,632 animals in the relationship matrix with 140 sires, and all 
generations back were utilized. The structure of the data is presented in Table 1.
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The (co)variance components were estimated by Bayesian inference in multi-trait 
analyses, with a repeatability animal model, using the GIBBS2F90 software (Misztal, 2007). 
The analysis model included fixed effects of CG, number of milkings (two levels) and the 
covariable buffalo cow’s age at calving (linear and quadratic effects). The additive genetic 
and permanent environmental effects were included as random effects. The model adopted, 
represented in the matrix notation, was:

Description       MY        %F       %P       MP

Number of records 4907 1216 1216 1216
Sires   140   103   103   103
Cows 1986   572   572   572
Mean 1614            6.84            4.27        382.30
SD        595.43            0.99            0.30        130.27
CV(%)          38.68          14.53            7.04          34.07
No. GC   197     49     49     49

Table 1. Summary of data structure and descriptive statistics for milk yield (MY), mozzarella production (MP) 
and milk fat (%F) and protein (%P) percentages.

SD = standard deviation; CV = coefficient of variation; CG = contemporary groups.

y = Xβ + Za + Wc + e (Model 1)

where, y is a vector of observed traits; X is the incidence matrix of fixed effects; β is a vector of 
fixed effects; Z is the incidence matrix of additive genetic random effects; a is a vector of additive 
genetic random effects; W is the incidence matrix of permanent environmental random effect; c 
is a vector of permanent environmental random effects, and e is a vector of random error effects. 

Uniform a priori distribution was defined for fixed effects (β). Gaussian and inverted 
Wishart distributions were defined as a priori distributions for random effects and (co)vari-
ance components (Van Tassel and Van Vleck, 1996), respectively. 

(Model 2)

where A, G, P, R, and In are the matrices of relationship, (co)variances of additive genetic 
effects, permanent environmental effects, residual, and identity, respectively; ⊗ is the Kro-
necker product and Sg and vg, Sp and vp, Sr and vr are the a priori values and degrees of freedom 
for additive genetic, permanent environmental and residual (co)variances, respectively. 

To verify the impact of selection to MY, %F and %P on MP, the genetic gain for MP 
was calculated applying MY, %F and %P as selection criteria. Different scenarios were estab-
lished, as follows: the selection sire intensity (1, 5 and 10% of the sires were selected) and also 
the number of daughters/sires used (20, 50, 100, and 200 daughters/sire). It was assumed that 
the selection intensity for females was equal to zero. 
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A total of 2.0 million samples were generated in the analyses and, a burn-in period of 
100,000 samples, with samples taken every 50 cycles. The convergence was verified through 
graphical inspection (trace plots) and also using the Gibanal program (Van Kaam, 1997). The 
descriptive statistics (mean, median, mode, and standard deviation) of a posteriori distribution 
for each parameter were obtained from effective samples. The highest posterior density (HPD) 
region or confidence interval provides the interval that includes 95% of samples and is a measure 
of reliability. Also, the HPD can be applied to non-symmetric distributions (Hyndman, 1996). 

RESULTS AND DISCUSSION

For all parameters estimated, the convergence was confirmed by the inspection of trace 
plots. The auto-correlation among samples showed different values for each parameter esti-
mated, since the numbers of effective samples varied from 63 to 9999. In general, the estimates 
of correlation between traits showed the lowest numbers of effective samples and the widest 
HPD, since there are few animals with records at least for two traits at the same time. Therefore, 
caution is needed in order to draw conclusions about correlation estimates between traits. 

The mean a posteriori distribution for heritability estimates was moderate for all 
traits, varying from 0.23 to 0.38 (Table 2). These results pointed out that a great part of total 
phenotypic variation is due to the additive genetic action of the genes. Therefore, considerable 
genetic gain is expected if selection is applied for any trait.

Parameter MY %F %P MP

 46,669.5 0.23 0.03 2,094.9
 [28,800-63,400] [0.15-0.35] [0.02-0.04] [1,172-3,005]

 33,926.64 0.24 0.02 1,637.5
 [21,210-48,050] [0.15-0.32] [0.01-0.03]   [880.6-2,476.0]

 103,258.4 0.30 0.03 5,483.71
 [95,210.0-111,300] [0.26-0.33] [0.03-0.03] [5,026.0-5,945.0]
 183,572.8 0.77 0.08 9,230.6

 [170,260-197,070] [0.69-0.86] [0.07-0.09] [8,505-9,944]
h2 0.25 0.30 0.38 0.23
 [0.17-0.34] [0.18-0.42] [0.23-0.50] [0.14-0.32]
c2 0.18 0.32 0.26 0.18
 [0.11-0.26] [0.21-0.42] [0.14-0.38] [0.09-0.26]

 = additive genetic variance;
  

= permanent environmental variance; 
 
= temporary environmental 

variance; 
 
= phenotypic variance; h2

 
= heritability; c2 = permanent environmental estimates as proportion 

of phenotypic variance.

Table 2. A posteriori means and highest a posteriori density region of variance components and genetic parameter 
estimates for milk yield (MY), milk fat percent (%F), milk protein percent (%P), and mozzarella production (MP).

The MY heritability estimate was close to those obtained by Tonhati et al. (2000, 
2008), who also worked with Murrah buffaloes but utilized REML, which resulted in values 
of 0.24 and 0.28, respectively. However, lower MY heritability estimates (0.17 and 0.14) than 
that obtained in the present study, were reported by Thevamanoharan et al. (2000) and Rosati 
and Van Vleck (2002), with Nili-Ravi buffaloes in Pakistan and Mediterranean buffaloes in 
Italy, respectively. Differences in genetic variability of breed, in methodology applied to esti-
mate the (co)variance components, and also in the production system (management and envi-
ronment), probably explain the divergence between the results obtained in the present study 
and those reported in the literature. 
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The %F and %P heritability estimates were higher than those reported in previous 
studies. Tonhati et al. (2000) and Rosati and Van Vleck (2002) working with dairy buffa-
loes and applying REML, reported lower heritability estimates for %F and %P than those 
obtained in this study, the values being 0.21 and 0.26, 0.14 and 0.17, respectively. For all 
traits, the permanent environmental estimates as a proportion of phenotypic variance (c2 
estimates) were moderate (Table 2). With the exception of %P, all c2 estimates were similar 
to those reported by Rosati and Van Vleck (2002), being 0.24, 0.29, 0.12, and 0.22 for MY, 
%F, %P, and MP, respectively.

The genetic correlation estimates between MY and %F and %P were low and 
negative (Table 3). These results agree with those reported by Tonhati et al. (2000) and 
Rosati and Van Vleck (2002), who reported genetic correlation estimates between MY 
and %F and %P, which were -0.18/-0.23 and -0.08/-0.12, respectively. These results 
showed that the genes that affect MY have an antagonistic effect on %F and %P traits. It 
suggests that selection to increase MY, would in the long term probably cause a reduc-
tion in milk constituents (%F and %P). In dairy cattle, De Paula et al. (2008) reported 
the same trend for the genetic correlations between milk yield and milk components. The 
genetic correlation estimates between %F and %P were high and positive. Similar results 
were obtained by Tonhati et al. (2000) (0.50) and Rosati and Van Vleck (2002) (0.31). 
Therefore, selection for higher %F in milk would also increase %P. 

 MY %F %P MP

MY - -0.19  -0.20   0.89
  [(-0.50)-(0.13)] [(-0.49)-(0.13)]  [(0.83)-(0.94)]
%F  -0.09  -   0.48   0.22
  [(-0.16)-(-0.02)]   [(0.14)-(0.84)] [(-0.13)-(0.51)]
%P  -0.14  0.32  -   0.19
  [(-0.22)-(-0.08)]  [(0.24)-(0.38)]  [(-0.10)-(0.49)]
MP   0.95   0.15   0.11  -
 [(0.94)-(0.5)]  [(0.09)-(0.22)]  [(0.04)-(0.17)]

Table 3. A posteriori means and highest a posteriori density region of genetic (above the diagonal) and phenotypic 
correlation estimates (below the diagonal) among MY, %F, %P, and MP.

MY = milk yield; %F = percent of milk fat; %P = percent of milk protein; MP = mozzarella production.

The genetic correlation estimates between MY and MP were high and positive, and 
close to those reported by Rosati and Van Vleck (2002) (0.95). In agreement with Rosati and 
Van Vleck (2002), high genetic correlation estimate between MP with MY was obtained since 
MY is the main component of the formula applied to calculate MP. However, the genetic 
correlations between MP and %F and %P were positive and moderate. Rosati and Van Vleck 
(2002) obtained higher genetic correlations between MP and %F (0.62) and %P (0.87) than 
those reported in the present study. 

The permanent environmental correlation estimates were low between milk con-
stituents and MP and high between MY and MP (Table 4). A similar permanent envi-
ronmental correlation estimate between %P and MP (-0.03) was observed by Rosati and 
Van Vleck (2002), but lower permanent environmental correlation estimates than those 
obtained in the present study were reported between %F and MP (0.04) and between MY 
and MP (0.54).
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The genetic gain estimates for MP applying MY, %F, %P, and MP as selection crite-
ria are presented in Figure 1. Applying MY or MP as selection criteria, the genetic response 
obtained for mozzarella production was similar. These results were expected, since the heri-
tability estimates for both traits were similar and the genetic correlation estimates was high 
between MY and MP. However, applying milk constituents (%F and %P) as selection criteria 
to improve mozzarella production, the genetic gain obtained for this trait was low. Although 
these traits have a large additive genetic influence, the genetic correlation estimates between 
MP and %F and %P were low and, thus, the correlated response obtained for MP was also low.

 MY %F %P MP

MY  -  -0.10  -0.27   0.95
  [(-0.43)-(0.19)] [(-0.60)-(0.05)]  [(0.92)-(0.99)]
%F  -0.05  -   0.22   0.16
 [(-0.13)-(0.03)]  [(-0.02)-(0.62)] [(-0.18)-(0.46)]
%P  -0.06   0.21  -  -0.04
 [(-0.14)-(0.02)]  [(0.13)-(0.29)]  [(-0.40)-(0.32)]
MP   0.96   0.12   0.12 -
  [(0.95)-(0.97)]  [(0.04)-(0.19)]  [(0.05)-(0.20)]

Table 4. A posteriori means and highest a posteriori density region of permanent environmental (above the 
diagonal) and temporary environmental correlation estimates (below the diagonal) among MY, %F, %P, and MP.

MY = milk yield; %F = percent of milk fat; %P = percent of milk protein; MP = mozzarella production.

Figure 1. Expected direct response to selection for mozzarella production (MP) and correlated response for MP with direct 
selection for total milk yield (MY), milk fat (%F) and protein percentage (%P) varying the intensity of sire selection (1, 
5 and 10% of the sires were selected) and also the number of daughters/sires used (20, 50, 100, and 200 daughters/sire).
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For dairy buffalo herds in which the aim is mozzarella production, MY could be an 
effective selection criterion to increase the mozzarella production. The milk constituents were 
not useful criteria to increase mozzarella production. However, Seno et al. (2007) found that 
the economic values of milk constituents were high, and for a long-term selection, a selection 
index combining MY, %F and %P was a suitable alternative for the dairy industry.

In the simulated selection intensity scenarios, the number of daughters/sire influenced 
the genetic response. As expected, for all traits, as selection intensity increased the genetic 
response was higher. For %F and %P, the genetic response stabilized at 100 daughters/sire. 
However, for MP and MY, considerable genetic responses were obtained for over 100 daugh-
ters/sire, since heritability estimates for these traits were lower than those obtained for milk 
constituents (%F and %P). 

CONCLUSION

Milk yield, milk components and mozzarella production in Murrah buffaloes have 
enough genetic variation for selection purposes. The results obtained in the present study sug-
gest that selection to increase milk yield would be effective to improve mozzarella production. 
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