

Genetic analyses, phenotypic adaptability and stability in sugarcane genotypes for commercial cultivation in Pernambuco

J.A. Dutra Filho¹; T.C. Junior² and D.E. Simões Neto³

¹Unidade Acadêmica de Ciências Agrárias (Campus Pombal), Universidade Federal de Campina Grande, Pombal, PB, Brasil ²Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brasil ³Estação Experimental de Cana-de-açúcar do Carpina, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil

Corresponding author: J.A. Dutra Filho E-mail: filho-dutra@ig.com.br

Genet. Mol. Res. 14 (4): 12102-12110 (2015) Received February 6, 2015 Accepted July 10, 2015 Published October 5, 2015 DOI http://dx.doi.org/10.4238/2015.October.5.23

ABSTRACT. In the present study, we assessed the agro-industrial performance of 22 sugarcane genotypes adaptable to edaphoclimatic conditions in production microregions in the State of Pernambuco, Brazil, and we recommended the commercial cultivation of select genotypes. The variables analyzed were as follows: sucrose percentage in cane juice, tonnage of saccharose per hectare (TPH), sugarcane tonnage per hectare (TCH), fiber, solid soluble contents, total recoverable sugar tonnage (ATR), and total recoverable sugar tonnage per hectare (ATR t/ha). A randomized block design with 4 repeats was used. Combined variance of the experiments, genetic parameter estimates, and environment stratification were analyzed. Phenotypic adaptability and stability were analyzed using the Annicchiarico and Wricke methods and analysis of variance. Genetic gain was estimated using the classic index and sum of ranks. Genotype selection was efficient for TPH, TCH, and ATR t/ha. Genotypes presented

Genetics and Molecular Research 14 (4): 12102-12110 (2015) ©FUNPEC-RP www.funpecrp.com.br

Genetic analysis of sugarcane genotypes in Pernambuco, Brazil

a great potential for improvement and a similar response pattern in Litoral Norte and Mata Sul microregions for TPH and TCH and Litoral Norte and Litoral Sul microregions for ATR t/ha. Genotypes SP78-4764, RB813804, and SP79-101 showed better productivity and phenotypic adaptability and stability, according to the Wricke and Annicchiarico methods. These genotypes can be recommended for cultivation in the sugarcane belt in the State of Pernambuco.

Key words: Genetics parameters; Genetic gain; Plant improvement; *Saccharum* spp

INTRODUCTION

Sugarcane is a crop of great economic relevance, and it contributes to approximately 2% of the gross domestic product of Brazil (BIOSEV, 2013). Brazil is the largest sugarcane producer in the world, and it produced more than 653 million tons of sugarcane in 2013/2014. The country also ranks first in sugar production, with a 25% global share, and it is responsible for 50% of the world's sugar export (UNICA, 2013).

The State of Pernambuco, in the northeast region of Brazil, stands out in the Brazilian economic scenario, as it produces 15.07 million tons of sugarcane for the sugar and alcohol industries, and is the second-largest producer of sugarcane in Brazil (CONAB, 2013). However, mean productivity is relatively low, with roughly 45 tons of sugarcane per hectare. The main reason that hampers improvements in sugarcane productivity is the interaction between sugarcane genotype and the environment, expressed mainly as diversity in soil characteristics, sloped terrains and irregular rainfall patterns, as long periods of drought are common in the region.

Koffler et al. (1986) characterized the sugarcane belt in Pernambuco. They rated Mata Norte, Mata Sul (MS), Região Central, Litoral Norte (LN), and Litoral Sul (LS). For each microregion, the geology, geomorphology, climate, hydrology, natural vegetation, soil, and ecological zoning were characterized. They concluded that the agro-industrial performance of a given cultivar in one microregion could not be reproduced in another microregion. In addition, they reported that the environment may facilitate or obstruct the expression of particular characteristics of economic interest. According to Bressiani et al. (2002), when the genotype-environment interaction is too robust, selection of superior cultivars is difficult. Therefore, it is clear that the development of new cultivars with excellent potential that respond advantageously to environmental improvements (i.e., adaptability) and with only slight variations in overall behavior when exposed to a different environmental setting (stability) is essential for any strategy developed to increase sugarcane production in Pernambuco. According to Dutra Filho et al. (2013), several studies have addressed the genotype-environment interaction and phenotype adaptability and stability in sugarcane. These efforts, such as the relevant investigations conducted by Rea and Souza-Vieira (2002), Kumar et al. (2004), and Bastos et al. (2007), to mention a few, attempt to shed more light on productivity improvement based on the selection of superior sugarcane cultivars.

The aim of the present study was to evaluate the agro-industrial performance, genetic parameters, and genetic gain of new sugarcane genotypes and select the genotypes that were most adaptable to edaphoclimatic conditions in the sugarcane microregions of the State of Pernambuco, Brazil.

Genetics and Molecular Research 14 (4): 12102-12110 (2015)

MATERIAL AND METHODS

The experiments were performed in the cultivation areas of sugarcane processing plants taking part in the sugarcane genetic improvement program (Programa de Melhoramento Genético da Cana-de-açúcar) of Universidade Federal Rural de Pernambuco. The program is part of a university network established to promote the development of the sugar and alcohol sectors [Rede Interuniversitáriapara o Desenvolvimento do Setor Sucroenergético (PMGCA/UFRPE/RIDESA)]. The sugar mills used were Usina Santa Tereza, Usina Trapiche, and Usina Pumaty, and they represented the LN, LS, and MS microregions, respectively, in accordance with the classification proposed by Koffler et al. (1986). Experimental data were obtained using samples collected as of two moments in the sugarcane production cycle, adult plant, and sprout after the first harvest.

The following genotypes were analyzed: RB813804, RB863129, RB962545, RB962560, RB962659, RB962660, RB962977, RB962882, RB962943, RB962962, RB962975, RB972773, SP78-4764, SP79-1011, RB962602, RB962628, RB962790, RB962806, RB962812, RB962920, RB962965, and RB963240. A randomized block design with 4 repeats was used. Experimental parcels were defined as a set of five 8-m rows interspaced by 1-m passages. Plantations were grown according to the traditional method. Soil pH corrections and fertilization techniques were performed following the system adopted by each agro-industrial company.

The variables analyzed were as follows: sucrose percentage in cane juice (POL%), tonnage of saccharose per hectare (TPH), sugarcane tonnage per hectare (TCH), fiber, solid soluble contents, total recoverable sugar tonnage (ATR), and total recoverable sugar tonnage per hectare (ATR t/ha). For the estimation of TPH, TCH, and ATR t/ha, the methods described by Dutra Filho et al. (2013) were used. Fiber (FIB), corrected POL (PCC), and ATR were calculated according to the method reported by Fernandes (2003). Multiple-factor analysis of variance was used for the experiments and genetic parameter estimates (Cruz, 2006). Means were clustered using the Scott and Knott (1974) test at 5% probability. The environments were stratified according to the method reported by Wricke (1965) and Annichiarico (1992) were used to analyze phenotype adaptability and stability. All data were processed using the GENES program (Cruz, 2006).

RESULTS

On the basis of the variance analysis for the experiments, significant differences in TPH, TCH, and ATR t/ha were observed for all genotypes evaluated in the microregions LN, LS, and MS (Table 1). Significant differences were detected for all variables with respect to the harvest cycles considered. With respect to genotype x harvest cycles, significant differences were observed in the LN microregion for all the variables, except FIB. In the LS microregion, significant differences were detected for TPH, TCH, and ATR t/ha, and, in the MS microregion, significant differences were detected for FIB, PCC, solid soluble contents, and ATR.

Means clustering (Scott and Knott, 1974) (Table 2) allowed the placement of genotypes that performed better in superior groups. In the LN microregion, genotypes SP78-4764, SP79-1011, RB962962, RB863129, RB962560, RB962675, and RB962877 clustered and formed group "a" for variables TPH, TCH, and ATR t/ha. In the LS microregion, genotypes SP78-4764, RB813804, RB963043, RB962687, SP81-3250, RB963085, SP79-1011, RB962943, RB963193, RB963086, RB963094, RB963034, and RB962545 clustered and formed group "a" for TCH. In the MS microregion, genotypes SP78-4764, SP79-1011, RB962902, RB962965, RB813804, and RB963240 clustered and formed group "a" for ATR t/ha.

Genetics and Molecular Research 14 (4): 12102-12110 (2015)

 Table 1. Summary of the variance analysis for experimental groups in sugarcane microregions in the State of Pernambuco, Brazil.

Environment	Variable		Mean Squares		Residuals	Mean	CV (%)	Н
		Genotype	Cuts	GxC				
LN	TPH	14.69**	128.30**	5.45**	0.86	5.59	16.56	1.37
	TCH	735.88**	7802.51**	178.59**	37.06	41.97	14.50	1.43
	FIB	1.99*	14.51**	0.89 ^{ns}	0.65	14.52	5.55	1.76
	PCC	2.44 ^{ns}	16.68**	2.72**	0.71	13.34	6.35	3.87
	BRIX	2.63 ^{ns}	51.62**	2.69**	0.75	18.98	4.55	3.29
	ATR	272.22 ^{ns}	1509.17**	287.83**	85.63	136.11	6.78	4.18
	ATR t/ha	14.27*	142.36**	5.28**	0.95	5.72	5.72	1.47
LS	TPH	25.65*	300.60**	10.70**	5.17	13.63	16.69	1.11
	TCH	1018.5**	64897.6**	353.96**	197.31	103.80	13.53	1.28
	FIB	2.42 ^{ns}	21.27**	3.14 ^{ns}	2.17	13.74	10.72	8.95
	PCC	2.60 ^{ns}	225.38**	2.44 ^{ns}	1.70	13.51	9.67	19.1
	BRIX	2.29 ^{ns}	301.20**	2.22 ^{ns}	1.50	19.33	6.33	7.10
	ATR	243.89 ^{ns}	19922.0**	158.95 ^{ns}	158.95	135.87	9.27	18.9
	ATR t/ha	25.23*	381.53**	10.23**	5.11	13.76	16.42	1.22
MS	TPH	32.35**	344.93**	7.31 ^{ns}	5.44	11.96	19.49	5.25
	TCH	1227.1**	19867.5**	250.68 ^{ns}	221.55	81.62	18.23	5.12
	FIB	4.54 ^{ns}	103.90**	3.68**	0.83	14.91	6.13	5.53
	PCC	1.11 ^{ns}	48.37**	3.68**	1.81	14.78	9.10	7.90
	BRIX	3.80 ^{ns}	69.05**	3.39**	2.48	20.07	7.85	7.48
	ATR	205.78 ^{ns}	4509.64**	256.60**	88.07	147.85	6.34	3.54
	ATR t/ha	34.24**	341.68**	7.22 ^{ns}	5.01	11.98	18.68	3.24

LN: Litoral Norte, LS: Litoral Sul, and MS: Mata Sul; G x C: Interaction between genotype and environment; H: Hartley F test; TPH = tonnage of sacchorose per hectare; TCH = sugarcane tonnage per hectare; FIB = fiber; adjusted POL% (PCC), BRIX = solid soluble contents; ATR = total recoverable sugar tonnage; and ATR t/ha = total recoverable sugar tonnage per hectare.

Regarding the estimated genetic parameters (Table 3), the heritability coefficient was of average magnitude for the variables TPH, TCH, and ATR t/ha in the LN and LS microregions. However, this coefficient was of a higher magnitude for these variables in the MS microregion.

Environment stratification (Table 4) revealed the similarity pattern in the genotypes' response to the LN and MS microregions for TPH and TCH and to the LN and LS microregions for ATR t/ha.

According to the methods for classical selection index and sum of ranks, the highest genetic gains will be obtained via selection based on TCH, which is used to estimate TPH and ATR t/ha (Table 5).

Table 6 presents phenotype adaptability and stability for TPH, TCH, and ATR t/ha by using the Wricke method. Genotypes RB813804 and SP79-1011 showed higher stability for TPH and TCH, and genotypes RB813804, RB962545, and SP78-4764 showed high stability for ATR t/ha, suggesting commercial cultivation for these genotypes in any of the considered environments.

The method used by Annichiarico (1992) showed that the LN microregion was unfavorable and the LS microregion was favorable to variables TPH, TCH, and ATR t/ha (Table 7).

On the basis of these considerations, it was concluded that genotype SP78-4764 exhibited a higher general adaptability for TPH and can be recommended for cultivation in the 3 surveyed environments (Table 8). Genotypes RB813804 and SP78-4764 presented specific adaptability to favorable environments LS and MS (Table 8). Genotype SP78-4764 exhibited a higher general adaptability for TCH. Genotypes SP78-4764 and SP79-1011 presented specific adaptability to unfavorable environments LN and MS (Table 7). Genotypes SP78-4764 and SP79-1011 exhibited a higher general adaptability for ATR t/ha. Genotypes SP78-4764 and SP79-1011 presented a specific adaptability to favorable environments LS and MS (Table 7).

Genetics and Molecular Research 14 (4): 12102-12110 (2015)

					Variables			
	Genotype	TPH t/ha	TCH t/ha	FIB%	PCC%	BRIX%	ATR kg/t	ATR t/ha
7	SP78-4764	7.37 ^a	54.02 ^a	14.88 ^a	13.62ª	19.57ª	138.89ª	7.47 ^a
	SP79-1011	6.89 ^a	50.08ª	14.02ª	13.66ª	19.17ª	139.89ª	7.07ª
	RB962962	6.79ª	52.91ª	14.18 ^a	12.71 ^a	18.40 ^a	129.22ª	6.95ª
	RB863129	6.33ª	47.33ª	13.09ª	13.37ª	18.93ª	136.34ª	6.43ª
	RB962560	6.13 ^a	43.75ª	14.43 ^a	14.08ª	19.82ª	143.92ª	6.25 ^a
	RB962675	6.05ª	47.33ª	14.78ª	12.76ª	18.71ª	129.73ª	6.09ª
	RB962877	5.87 ^a	43.50 ^a	14.38ª	13.43ª	19.10 ^a	136.08ª	5.93ª
	RB813804	5.39 ^b	38.58 ^b	14.63ª	14.11 ^a	19.65 ^a	144.99ª	5.52 ^b
	RB972773	5.29 ^b	39.66 ^b	14.64ª	13.23ª	19.79ª	135.45 ^a	5.40 ^b
	RB962659	5.22 ^b	39.66 ^b	14.24ª	12.94ª	18.38ª	132.48ª	5.42 ^b
	RB962943	4.84 ^b	36.08 ^b	14.82 ^a	13.19ª	19.14ª	134.13ª	4.91 ^b
	RB962660	4.51°	33.75	14.97ª	13.66ª	19.02ª	138.55 ^a	4.65 ^b
	RB962882	4.22°	33.08	14.46 ^a	13.05ª	18.50 ^a	133.59ª	4.35 ^b
	RB962545	3.43°	27.83 ^b	15.21ª	12.90ª	18.48ª	132.25ª	3.68 ^b
(0	SP78-4764	15.96ª	114.50ª	13.30ª	14.22 ^a	19.96ª	142.95ª	16.08 ^a
	RB813804	15.12ª	116.66 ^a	13.84ª	13.46ª	19.62ª	135.51 ^a	15.27 ^a
	RB963043	15.00 ^a	109.66ª	12.60ª	13.87ª	19.41ª	138.99ª	15.07 ^a
	RB962687	14.84ª	112.16 ^a	13.91ª	13.72ª	19.56 ^a	137.78ª	14.98 ^a
	SP81-3250	14.37ª	108.08ª	13.77ª	13.58ª	19.27ª	136.39ª	14.52 ^a
	RB963085	14.18^{a}	104.83ª	13.29ª	13.93ª	19.57ª	139.70ª	14.29ª
	SP79-1011	14.12ª	107.66ª	13.41 ^a	13.52ª	19.16ª	136.42ª	14.30ª
	RB962943	13.99ª	102.00ª	13.99ª	14.14 ^a	20.02ª	142.01ª	14.09ª
	RB963193	13.94ª	107.66ª	13.77ª	13.26ª	19.04ª	132.95ª	14.01 ^a
	RB963086	13.50ª	101.50 ^a	13.97ª	13.75 ^a	19.60ª	138.43ª	13.65ª
	RB963094	13.48ª	106.50 ^a	13.95ª	13.04ª	18.82ª	131.08ª	13.62ª
	RB963034	12.94ª	105.66 ^a	14.49ª	12.71ª	18.74ª	128.49ª	13.16ª
	RB962545	12.63ª	100.66ª	13.86ª	13.06ª	18.99ª	131.64ª	12.81 ^a
	RB963030	12.42ª	90.33 ⁶	14.35 ^a	13.86ª	19.80 ^a	139.36ª	12.53ª
	RB962963	10.75ª	90.16 ^b	13.49ª	12.69ª	18.52ª	127.91ª	10.90 ^a
	RB963124	10.72ª	82.75	13.86ª	13.35ª	19.28ª	134.35ª	10.87 ^a
Z	SP78-4764	14.03ª	94.25ª	15.61 ^a	14.98ª	20.04ª	150.68ª	14.18ª
	SP79-1011	13.82ª	91.87 ^a	15.17 ^a	15.24ª	20.34ª	155.75 ^a	14.07ª
	RB962902	13.61 ^a	93.31ª	14.24ª	14.70 ^a	20.05ª	148.32ª	13.73ª
	RB962965	13.58ª	92.62ª	14.40 ^a	14.80 ^a	20.08ª	145.30ª	13.39ª
	RB813804	12.95ª	86.25ª	14.91ª	15.07ª	21.12ª	151.24ª	13.07ª
	RB963240	12.37ª	83.37ª	14.65 ^a	14.98ª	20.09ª	148.55 ^a	12.33ª
	RB962960	11.74ª	79.43ª	14.29ª	14.79ª	19.14ª	142.51 ^a	11.35 ^b
	RB962790	11.48ª	79.43ª	14.22ª	14.58ª	19.37ª	146.25ª	11.48 ^b
	RB962920	11.27ª	78.62ª	14.88ª	14.63ª	19.66ª	146.00ª	11.26 ^b
	RB962806	11.20ª	77.18ª	14.79ª	14.72ª	19.82ª	149.01ª	11.31 ^b
	RB962812	10.64ª	73.87ª	15.89ª	14.54ª	20.32ª	144.46 ^a	10.46 ^b
	RB962660	10.53ª	71.81ª	15.46ª	14.92ª	20.57ª	150.85 ^a	10.72 ^b
	RB962628	10.35ª	70.25ª	14.83ª	14.78ª	20.22ª	147.73ª	10.29 ^b

12106

Genetics and Molecular Research 14 (4): 12102-12110 (2015)

©FUNPEC-RP www.funpecrp.com.br

Table 3. Estimated genetic parameters for the characters evaluated in sugarcane microregions in the State of Pernambuco, Brazil.

Environment	Variable			Genetic parameters		
		$arphi_{ m g}^2$	$\hat{\sigma}_{ ext{gc}}^{2}$	H ²	CVg	CVg/CVe
LN	TPH	0.76	1.06	63	15.67	0.95
	TCH	46.44	32.85	76	16.23	1.11
	FIB	0.09	0.05	55	2.08	0.38
	PCC	0.00	0.46	00	0.00	0.00
	BRIX	0.00	0.45	00	0.00	0.00
	ATR	0.00	0.46	00	0.00	0.00
	ATR t/ha	0.75	1.00	63	15.10	0.89
LS	TPH	1.24	1.29	58	8.19	0.49
	TCH	55.38	36.71	65	7.16	0.52
	FIB	0.00	0.22	0	0.00	0.00
	PCC	0.01	0.17	6	0.86	0.08
	BRIX	0.00	0.16	3	0.37	0.00
	ATR	1.24	16.40	6	0.82	0.08
	ATR t/ha	1.24	1.20	59	0.49	0.49
MS	TPH	1.56	0.43	77	10.45	0.53
	TCH	61.02	6.76	80	9.57	0.52
	FIB	0.05	0.66	18	1.55	0.25
	PCC	0.00	0.43	0	0.00	0.00
	BRIX	0.02	0.21	11	0.79	0.10
	ATR	0.00	39.12	0	0.00	0.00
	ATR t/ha	1.68	0.51	79	10.84	0.58

 $\varphi_{e}^{2^*}$ Genetic variance component: $\hat{\sigma}_{ge}^{2}$ genotype-environment interaction variance component H²: genotypical determination as mean CVg: Genetic coefficient variation CVg/CVe: b index.

Table 4. Stratification of sugarcane microregions in the state of Pernambuco, Brazil, on the basis of the similarity pattern of the response of genotypes to each environment.

Variable	QMI/r	F calculated	F tabulated (5%)	Environment
TPH	0.97	1.47	2.94	1 and 3
TCH	32.77	1.38	2.94	1 and 3
ATRt/ha	0.85	1.18	2.94	1 and 2

1: Litoral Norte; 2: Litoral Sul; and 3: Mata Sul.

 Table 5. Estimated selection gain for variable TCH in sugarcane genotypes evaluated in sugarcane microregions in the State of Pernambuco, Brazil.

Selection gain	TCH (LN)	TCH (LS)	TCH (MS)
Classical	12.24	5.63	9.79
Sum of ranks	13.08	5.28	9.80

LN: Litoral Norte, LS: Litoral Sul; and MS: Mata Sul.

 Table 6. General adaptability (Wi) estimates by using the Wircke method (1965) for the variables TPH, TCH, and

 ATR t/ha in sugarcane microregions the State of Pernambuco, Brazil.

Genotype		Variables/Adaptability	
	TPH/Wi (%)	TCH/Wi (%)	ATR t/ha Wi (%)
	30.14	26.71	30.83
RB962545	25.59	23.46	30.82
SP78-4764	13.35	8.43	10.74
SP79-1011	30.90	40.98	27.59

Genetics and Molecular Research 14 (4): 12102-12110 (2015)

©FUNPEC-RP www.funpecrp.com.br

Table 7. Classification of sugarcane microregions in the State of Pernambuco, Brazil, according to Annichiarico (1992).

Microregions	Variable	Mean	Index	Class
Litoral Norte	TPH	7.26	-4.57	Unfavorable
	TCH	55.43	-40.60	Unfavorable
	ATRt/ha	7.53	-4.65	Unfavorable
LitoralSul	TPH	15.49	3.65	Favorable
	TCH	141.43	45.39	Favorable
	ATRt/ha	15.86	3.68	Favorable
Mata Sul	TPH	12.76	0.92	Favorable
	TCH	91.25	-4.79	Unfavorable
	ATRt/ha	13.15	0.97	Favorable

Table 8. General adaptability Wi estimates (g) for favorable Wi(+) and unfavorable Wi(-) environments, according to Annichiarico (1992), for the variables TPH, TCH, and ATR t/ha in sugarcane genotypes evaluated in sugarcane microregions in the State of Pernambuco, Brazil.

Genotype						
	TPH/Wi(g)	TPH/Wi(+)	TCH/Wi(g)	TCH/Wi(-)	ATR t/ha/Wi(+)	ATR t/ha/Wi(-)
RB813804	91.93	97.77	93.75	90.26	92.12	98.16
RB962545	66.15	72.55	74.28	68.11	68.19	72.49
SP78-4764	129.84	125.69	119.67	125.91	128.66	125.23
SP79-1011	98.82	94.21	99.10	103.64	98.78	94.48

DISCUSSION

Results of the variance analysis show the occurrence of genetic variability across the evaluated genotypes on the basis of variables that, according to Bastos et al. (2003), are among the most important elements in sugarcane production. For the source of variation in harvest cycle, Rosse et al. (2002), pointed out that these differences as a consequence of adverse climatic factors exert an influence on the expression of the considered variables. According to Silva (2008), the significant interaction between genotype and harvest cycle is the result of the distinctive manner in which genotypes react in different environments. This provides breeders an opportunity to select superior genetic materials that have only a few variations in productivity with respect to sugarcane and sugarcane ratoon (Neto et al., 2012). Souza et al. (2012) obtained similar results when they evaluated the agro-industrial performance of commercial sugarcane cultivars in the Mata Centro microregion of Pernambuco, and they identified genotypes with the highest productivity in three harvest cycles.

According to Dutra Filho et al. (2011), when the values of genetic variance are high in relation to the interaction between genotype and harvest cycle variance or the interaction between genotype and environment variance, along with a high heritability coefficient, a very favorable situation is indicated for breeding, i.e., expression of the characters used in the selection process is mostly due to genetic effects, and not the environment. This shows the greater reliability of phenotypic values as indicators for genetic values that favor the selection process. In the present study, this fact has not been completely verified (Table 3). For example, genetic variance was superior for genotype x harvest cycle variance in the three microregions for TCH. Genotype x harvest cycle variance in the LN and LS microregions for TPH, and the heritability coefficients showed an average magnitude. Indeed, with the heritability of average magnitude and discrimination of the genotypes by the average testing used, the breeder

Genetics and Molecular Research 14 (4): 12102-12110 (2015)

can identify, with a certain safety margin, the genotypes to be grown in the evaluated environments. However, as the interaction between genotype and harvest circle variance was significant and the genotypes presented in a distinctive manner in different environments, it is important to observe that there are common genotypes in the environments considered to realize statistical analysis more elaborate to verify the nature of interactions and identify genotypes adapted to the climatic conditions in question. In the present study, the genotypes RB813804, RB962545, SP78-4764, and SP79-1011 were used in the environment stratification and adaptability and stability analyses.

As a general rule, commercial planting of the evaluated genotypes is performed in the 2 most homogeneous microregions (Table 4). According to Oliveira et al. (2004), environments should be chosen on the basis of the specific needs defined in cultivation programs. They state that criteria such as availability of research centers, easy access, and relevance of production centers (microregions) should be adopted. This also reveals the need for phenotype adaptability and stability analyses so as to identify genotypes adaptable to other microregions.

It is important to emphasize that the phenotypic adaptability and stability analyses should be performed on the basis of TPH, TCH, and ATR t/ha because, according to the methods for classical selection index and sum of ranks, the highest genetic gain will be obtained via selection based on TCH, which is used to estimate the abovementioned variables (Table 5).

However, one of the limitations of the adaptability and stability analysis by using the Wricke method, according Cruz et al. (2012), is the vagueness of the stability parameter due to the lack of information of the considered environments with no direction of response of the genotypes to specifics environmental (Cruz et al., 2012).

Although it can be applied to a limited number of environments, the Wricke method (1965) quantifies only the relative contribution of each genotype to the interaction between genotype and environment and identifies the most stable genotype; thus, it is important to use other methods to collate information on the magnitude of the interactions.

According to Amorim et al. (2006), the method proposed by Annicchiarico (1992) considers that an ideal genotype has the highest mean percentage and the highest recommendation index. By using this method, it is possible to classify sugarcane microregions on the basis of favorable and unfavorable environments (Table 7).

Silva et al. (2004) concluded that the method developed by Annicchiarico (1992) is among the best, since it includes, under one parameter, the concepts of adaptability and stability, which makes result interpretation easier.

The Annichiarico method was more efficient than ANOVA and the Wricke method (1965) for the adaptability and stability analyses in order to establish a recommendation index of genotypes for favorable and unfavorable environments. Even after considering the small number of evaluated environments, we recommend the genotypes SP78-4764, RB813804, and SP79-1011 for the LN, LS, and MS microregions, respectively.

Conflicts of interest

The authors declare no conflict of interest

ACKNOWLEDGMENTS

We gratefully acknowledge the scholarship support to João de Andrade Dutra Filho from the Brazilian institution Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Genetics and Molecular Research 14 (4): 12102-12110 (2015)

REFERENCES

- Amorim EP, Oliveira Camargo CE, Penteado Ferreira Filho AW, Pettinelli Junior A, et al. (2006). Adaptabilidade e estabilidade de linhagens de trigo no estado de São Paulo. *Bragantia* 65: 575-582.
- Annicchiarico P (1992). Cultivar adaptation and recommendation from alfalfa trials in northern Italy. J. Genet. Breed. 46: 269-278. Bastos IT, Barbosa MHP, Cruz CD, Burniquist WL, et al. (2003). Análise dialélica em clones de cana-de-açúcar. Bragantia 62: 199-206.
- Bastos IT, Pereira Barbosa MH, Vilela de Resende MD, Peternelli LA, et al. (2007). Avaliação da interação genótipo x ambiente em cana-de-açúcar via modelos mistos. *Pesq. Agropec. Trop.* 37: 195-203.
- BIOSEV (2013). A Louis Dreyfus Commodities Company. Available at [http://www.biosev.com]. Accessed April 4, 2013.
- Bressiani JA, Vencovsky R and Burnquist WL (2002). Interação entre famílias de cana-de-açúcar e locais: efeito na resposta esperada com a seleção. Bragantia 61: 1-10.
- CONAB (2013). Companhia Nacional de Abastecimento. Available at [http://www.conab.gov.br]. Accessed April 4, 2013.
- Cruz CD (2006). Programa Genes: Biometria. Editora UFV, Viçosa.
- Cruz CD, Regazzi AJ e and Carneiro PCS (2012). Modelos Biométricos Aplicados ao Melhoramento Genético. Editora UFV, 514.
- Dutra Filho JA, Melo LJOT, Resende LV, Anunciação Filho CJ, et al. (2011). Aplicação de técnicas multivariadas no estudo da divergência genética em cana-de-açúcar. *Rev. Cienc. Agron.* 42: 185-192.
- Dutra Filho JA, Vilela Resende L, Bastos GQ, Simões Neto DE, et al. (2013). Utilização de marcadores moleculares RAPD e EST's SSR para estudo da variabilidade genética em cana-de-açúcar. *Rev. Cienc. Agron.* 44: 141-149.

Fernandes AC (2003). Cálculos na agroindústria da cana-de-açúcar. EME, 240.

- Koffler NF, Lima JFWF, Lacerda MF, Santana JF, et al. (1986). Caracterização edafo-climática das regiões canavieiras do Brasil: PERNAMBUCO. Editora IAA, 78.
- Kumar S, Singh PK, Singh J and Swapna M. (2004). Genotypes x environment interaction analysis for quantitative traits in sugarcane. *Indian Sugar* 53: 813-818.

Neto JFL, Dutra Filho JA, Neto DES, Silva AEP, et al. (2012). Avaliação agroindustrial e parâmetros genéticos de clones UFRPE de cana-de-açúcar no litoral norte de Pernambuco. *Pesq. Agroc. Pernamb.* 17: 1-6.

Oliveira JS, Sobrinho FS, Fernandes SBV, Wunsch JA, et al. (2004). Estratificação de ambientes, adaptabilidade e estabilidade de híbridos comerciais de milho para silagem no sul do Brasil. *Cienc. Rural.* 34: 997-1003.

- Rea R and Sousa-Vieira O (2002). Genotype x environment interactions in sugarcane yield trials in the Central-western region of Venezuela. *Interciencia* 27: 620-624.
- Rosse LN, Vencovsky R and Ferreira DF (2002). Comparação de métodos de regressão para avaliar a estabilidade fenotípica em cana-de-açúcar. *Pesq. Agropec. Bras.* 37: 25-32.

Scott A J and Knott M (1974). A cluster analysis method for grouping means in the analysis of variance. *Biometrics* 30: 507-512. Silva e Oliveira J, de Souza Sobrinho F, Vicenci Fernandes SB, Wünsch JA, et al. (2004). Estratificação de ambientes,

adaptabilidade e estabilidade de híbridos comerciais de milho para silagem no sul do Brasil. *Cienc. Rural.* 34: 997-1003. Silva MA (2008). Interação genótipo x ambiente e estabilidade fenotípica de cana-de-açúcar em ciclo de cana de ano. *Bragantia* 67: 109-117.

Souza PHN, Bastos GQ, Anunciação Filho CJ, Dutra Filho JA, et al. (2012). Avaliação de genótipos de cana-de-açúcar para início de safra na Microrregião Centro de Pernambuco. *Rev. Ceres* 59: 427-432.

UNICA (2013). União da Indústria da Cana-de-Açúcar. Available at [http://www.unica.com.br]. Accessed April 4, 2013. Wricke G (1965). Zurberechnung der ökovalenzbeisommerweizenundhafer. *Pflanzenzuchtung* 52: 127-138.

Genetics and Molecular Research 14 (4): 12102-12110 (2015)