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ABSTRACT. Cellular automata model identification is an important 
way of building simplified simulation models. In this study, we 
describe a generic architectural framework to ease the development 
process of new metaheuristic-based algorithms for cellular automata 
model identification in protein-folding trajectories. Our framework 
was developed by a methodology based on design patterns that 
allow an improved experience for new algorithms development. 
The usefulness of the proposed framework is demonstrated by the 
implementation of four algorithms, able to obtain extremely precise 
cellular automata models of the protein-folding process with a 
protein contact map representation. Dynamic rules obtained by the 
proposed approach are discussed, and future use for the new tool is 
outlined.
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INTRODUCTION

Protein folding is a highly complex process, understanding of which is useful in 
protein structure prediction. Simplified models are advantageous to shed light on complex 
phenomena that are difficult to understand and describe (Kolinski, 2004; Sharma et al., 2008). 
Furthermore, even with the use of simplified models, the modeling of a complex phenomenon 
such as protein folding is limited by lack of knowledge regarding the complicated dynamics 
of the protein-folding process.

Cellular automata (CA) models (Wolfram, 2002) are some of the most widely used 
simplified models in various fields, including bioinformatics (Xiao et al., 2011). CA models 
are characterized by a simple formalism that allows the representation of dynamic systems 
through a discrete space (lattice) and a set of rules that describes dynamic behavior in terms 
of local interactions. The utilization of CA models is wide, ranging from social phenomena to 
atomic processes in biochemical systems (Ganguly et al., 2001).

Complex phenomena modeling with CA can be done with existing knowledge (direct 
design) or by modeling based on data mining and machine learning techniques (CA mining 
or inverse design). In recent years, several algorithms for CA mining have been proposed 
(Rabino and Laghi, 2002), which can generally be divided into two categories: 1) data-driven 
(data mining approaches), and 2) those that explore a cellular automata search space (machine 
learning). The latter approach has undergone further development, because the only necessary 
elements are an initial configuration and the final desired configuration; the search process 
[usually metaheuristic-based (Luke et al., 2009)] attempts to identify an optimal cellular 
automata model capable of creating a simulation from the initial configuration, arriving at the 
desired final configuration through consecutive steps. The major disadvantage of this approach 
is that the success of the search rests on the selected search space; if the defined search space 
does not contain high quality models, the search process will fail.

Data-driven CA identification attempts to identify a fairly accurate model by a 
search process that includes the addition of knowledge derived from known trajectories. This 
approach is used when the intermediate global states are known, in additional to the initial 
and final configurations. The knowledge of dynamic transitions subjacent to the intermediate 
steps is translated into rules for the CA. A limitation of this approach is the rarity of known 
intermediate configurations. For protein folding, this kind of data is taken from other simulation 
techniques, such as molecular dynamics (Karplus and Kuriyan, 2005; Wang et al., 2014).

Contact map (CM) prediction has been acknowledged as a useful tool in protein 
structure prediction (Gupta et al., 2005). CMs represent the overall structure of the three-
dimensional (3D) conformation of a protein through a binary matrix indicating close 
positioning of each pair of amino acids.

In this paper, we propose that with discrete representation of the protein structure 
provided by contact maps, it is possible to establish dynamic rules of the conformational 
transitions in a molecular dynamic protein-folding simulation. A CM is similar to a global 
configuration of a CA; therefore, a simulated protein-folding trajectory in a CM representation 
will be similar to a CA simulation trajectory. With this in mind, the focus of this work was 
to obtain a CA simulation of the protein-folding process without the computational cost of 
molecular dynamics.

Our approach is innovative in two main aspects. First, the generality of the proposed 
framework allows experimentation with diverse metaheuristics and novel approaches, 
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uncommon in CA identification. Secondly, the devised use of CA models as a representation 
of CMs supports the possibility of a protein-folding simulation in a CM space.

The document is organized as follows: section 1 describes the architecture of the 
framework; section 2 displays the utilization of the framework in the design of a genetic 
algorithm (GA), a co-evolutive algorithm, a tabu search (TS), and a hybrid algorithm of 
genetic algorithm and tabu search; and details the CA obtained by applications developed by 
the framework. Finally, the results are reviewed and further work is proposed.

Description of the framework

The proposed framework was developed under the Unified Modeling Language 
(UML) profile, UML-F (Fontoura et al., 2000). UML-F includes stereotypes and tagged 
values that enhance the capabilities of UML with new notational elements, enhancing the 
expressiveness of the architectural diagrams.

UML-F is complemented by detailed guidelines that describe the steps a developer 
will follow to implement an application based on a generic framework. This documentation 
includes a “cookbook” with step-by-step recipes for the design and definition of the specific 
variation points.

UML-F guides describe the framework’s version of most common design patterns 
(Gamma et al., 1995). The use of design patterns allows developers to identify a standardized 
method to express a reusable design in a well-known design artifact.

Architecture

For design of the framework, we took into account the commonalities of the search 
process for metaheuristics. A metaheuristic approach implements a strategy of iterative search 
that explores the search space by tweaking best solutions (i.e., CA models). The best CA 
models were selected by a metric-based evaluation process, which depends on the results of 
CA simulation versus the evidences in a folding trajectory. To evaluate the behavior of the 
search process, a report was required to record scores for each iteration of the search process. 
Some metaheuristics optimize a single solution, while others diversify a set of solutions 
(population); it is also possible to accomplish both with the same algorithm.

Figure 1 schematizes the general generic architecture for the proposed framework 
in a high-level UML class diagram. The <<Application>> stereotype denotes the parts 
that are not provided by the framework and therefore must be defined by the developer. 
The <<Framework>> stereotype identifies the functionality considered in the framework. 
Additionally, the classes are annotated by stereotypes that indicate the selected design pattern 
for each framework component.

The Strategy Run class was not included in the framework; this class specifies the 
conditions for a run of the algorithm, therefore the developer must define several aspects that 
specify the details of the algorithms to be built. However, we provide some indications about 
how the components of the framework will be integrated.

Variation points

In the guided process for the development of the new algorithm, variation points were 
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determined in relation to the structural components. Logical steps were then defined to ease 
the implementation of classes. The variation points are defined below.

Figure 1. General architecture of the proposed framework. All classes are needed to successfully implement 
metaheuristics. <<Framework>> stereotype identify classes that are provided in the framework; <<Application>> 
stereotype identifies classes that will be defined in the new algorithm.

Strategy

Strategy was implemented with the design pattern strategy. Figure 2A illustrates the 
structure of the variation points. The classes at this variation point were as follows:

Strategy Run: The context of the pattern strategy.
Strategy: An abstract class that meets the strategy specifications, and hence defines the 

interface methods (start and stop criteria) to be implemented in the new algorithm (Please refer 
to the Concrete Strategy demonstrated in Figure 2A).

Strategy Iteration: Part of the Strategy class, based on the pattern design template; the 
template method is stepwise and was intended to perform adjustments in the solutions (CAs) 
of the population.

Tweaks

The design pattern template method was used to create this variation point; Figure 2B 
illustrates the structure. The classes at this variation point were as follows:

Tweaks: The abstract class for the pattern; the doTweaks method, a template method, 
was followed in the Strategy Iteration container class to invoke the primitive methods, selection 
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and search. In these methods, a selection process must be implemented to determine the best 
CAs for the diversification or intensification in the algorithm search space. The search method 
uses the selected population (by method selection) and performs variations and combinations, 
obtaining the new population to be utilized in the next iteration of the algorithm.

Strategy Iteration: Contains an instance of the Tweaks class; it calls the doTweaks 
template method (class Tweaks) in its step method.

Figure 2. Specific variation points for the new algorithm. A. Strategy variation point. B. Tweaks variation point.

Solution

The solution construction process was defined at this variation point, i.e., the 
representation to be used for the CA at each solution and its respective evaluation scores were 
determined, taking into account the responsibilities of the selected pattern design (Figure 3A). 
The classes at this variation point were as follows:

Solution: The role director of the pattern; the construct method calls the methods that 
build the elements that compose the solution in the class with builder role.

Solution Builder: The builder role of the design pattern; its build Score and build 
Representation methods must be overridden in a concrete class of the algorithm under 
development.

CA Model: Part of the solution; the goal of the algorithm was to find a CA model.

Evaluator

The decorator design pattern allows the creation of single or composed evaluators. In 
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some algorithms, a score based on the number of hits or mathematical expressions was based 
on the results of the previous evaluations. Figure 3B illustrates the structure of this variation 
point. The classes at this variation point were as follows:

Evaluator: The base class for building of the evaluators; the evaluate method performs 
the mathematics behind the evaluation; it was overridden in the derived classes.

Concrete Evaluator: A class defined in the algorithm under development; the evaluate 
method performs evaluation of the simulation trajectory versus the evidences used for the data 
mining process of the CA rules.

Component Evaluator: The class structure to be utilized when the evaluation is 
dependent on the evaluation implemented in an existing evaluator, possible through class 
composition.

Figure 3. Solution-related variation points in the new algorithm. A. Solution variation point. B. Evaluator variation 
point. C. Report variation point.

Report

Based on the design pattern decorator, the report variation point allows recording of 
the statistics collected during running of the algorithm. The structure was intended to allow the 
utilization and design of reports that utilize previous or new reports. Figure 3C illustrates the 
structure of report in the framework. The classes that comprise this variation point were as follows:

Report: Definition of the method to be overridden in the derived classes; the generate 
method allows flexible implementation of reports according to the needs of the algorithm.

Component Report: Allows the composition of reports in order to develop more 
complex reports based on existing reports.
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Report Best Solutions: The basic report, which records the scores for the best solutions 
of each iteration, fulfilling the basic needs of many algorithms.

Simulator

The simulator variation point had a broad implementation in the framework; a full CA 
simulator was implemented, which can be used with a graphical interface (visual simulation) 
or simply for the generation of a simulation trajectory for evaluation and analysis. Figure 4 
demonstrates the structure based on the design pattern bridge and adapter. The classes at this 
variation point were as follows:

Bridge Simulator: Defines the method and increases adaptability of the different 
simulators to be used (start method). Every simulator must determine the bridge operation 
method to be either a bridge simulator implementation or an adapter implementation.

Simulator: Provides the interface to be implemented in the simulators (bridged or adapted).
CA Simulator: implements a bridged simulator that simulates a CA and records the 

trajectory.
CA Graphic Simulator: Implements a bridged simulator that performs the simulation 

in graphical view and records the trajectory.
External Simulator: Allows the utilization of external simulation tools through an 

adapter implementation.

Figure 4. Simulator variation point.
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Evidences

The evidences variation point allows data input after preprocessing. This variation 
point was designed with the design pattern composite, taking into account the capability of the 
complex structure definitions to manipulate data. The behavior of this framework component 
was dependent on the parser functionality. Figure 5A demonstrates the architecture of the 
structure. The classes at this variation point were as follows:

Evidences: Defines the methods that are mandatory in the composition; the get 
Evidences method processes the input trajectory simulation and formats the data in a lattice 
(matrix) representation. The load Evidences method obtains the previously processed and 
formatted evidence files.

Leaf Evidences: The minimal structure at the composite pattern, it implements a list 
of files wherein each file is a consecutive global configuration in a lattice format (e.g., a 2D 
matrix for a 2D CA).

Composite Evidences: Allows the implementation of complex structures by 
composition of previously defined composites or leafs.

Figure 5. Evidences - Parser variation points. A. Evidences variation point. B. Parser variation point.

Parser

The parser variation point was designed with the pattern strategy and algorithm 
interface; the parse Trajectory method was implemented in each derived class. The main script 
of the application must provide the context of the strategy; the structure is illustrated in Figure 
5B. The classes at this variation point were as follows:
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Parser: Defines the interface for the design pattern strategy; the parse Trajectory 
method processes the input trajectory and must be implemented in derived classes, creating a 
set of formatted evidence files.

PDB Parser: An implementation provided by the framework, it processes an input 
trajectory simulation in PDB format (Berman et al., 2007), a common format for protein-
folding simulation tools.

Examples of framework instantiation

The proposed framework was tested during the development of several algorithms. 
The application selected involved the identification of CA models in the CM space. A CM 
(Vendruscolo and Domany, 1998) is a suitable representation of a 3D protein structure, because 
it eliminates the effects of rotations and alignments of the structure, making it possible to 
reconstruct the 3D structure from the CM (Vassura et al., 2008). The CM of a protein structure 
is a binary 2D matrix, in which 0 represents non-adjacency between a pair of amino acids (AA) 
and 1 represents adjacency. The adjacency is defined in a threshold (e.g., [4Å, 7 Å] or <8Å). If 
the distance between an AA pair is out of range, it is a non-contact, otherwise, a contact.

The goal of the developed instances of the framework (algorithms) was to explore 
the search space of 2D binary CAs for a model that represents a dynamic behavior similar to 
that of the input protein-folding trajectory. The algorithms developed were two evolutionary 
metaheuristics, a GA (Goldberg, 1999) and a co-evolutive algorithm (Yoo et al., 2006), a 
tabu search algorithm (Glover and Laguna, 1999) (metaheuristic non-population-based), and 
a hybrid metaheuristic (GA plus tabu search). Evolutionary metaheuristics are commonly used 
in CA identification, GAs being used for this task, and therefore, we selected it in our study. 
Single model metaheuristics (e.g., TS) are not popular in CA identification, although we chose 
it as a test case for framework generality.

Below, we describe the design of each algorithm as well as the classes that were 
required in their implementation.

Genetic algorithm

The GA fit the structure proposed by the framework. Roughly, a GA had a population 
that evolved in each successive iteration of the search strategy; evolution was conducted by 
the tweaks selection, mutation, and crossover (in the search for new CA models). The input 
was a molecular-dynamics simulation trajectory in PDB format, which was transformed to 
CMs (evidences). A solution in the GA is a binary string of length 49, each bit denoting a cell 
in a matrix of 7 x 7. The matrix codifies the topological configuration of the neighborhood of 
the CA. The rules for each possible CA solution were extracted from the evidences as part of 
the evaluation process. The high-level diagram of classes is shown in Figure 6.

Some parts of the algorithm are not shown, because the framework implementation 
had full functionality, i.e., the simulator of CA models and trajectory processing.

The best CAs obtained demonstrated rules that capture conserved structural characteristics 
of protein structure, such as alpha helix stability. Although CAs are known for their expressiveness, 
the rules of the identified CAs were not easy to understand, necessitating the use of a representative 
decision tree (Polaka and Tom, 2010) to aid comprehension. More extensive description of this 
work has been discussed in previous research (Diaz and Tischer, 2011a,b).
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Co-evolutive strategy

A co-evolutive strategy algorithm (COES) is similar to a GA in that it shares the 
same parameters, adding extra complexity to the data management, solution evaluation, and 
population design. One version of COES is the n-populations competitive co-evolution space 
embedded (Luke et al., 2009). This approach consists of nine populations that are restricted 
to a lattice of 3 x 3; each cell of the lattice contains a population, and each one contests the 
nearest solutions of the other populations in a Von Neumann neighborhood (Ganguly et al., 
2001). The advantage of COES versus GA is its more intensive exploration of the search 
space with multiple populations, converging in fewer iterations. The disadvantages are the 
computational cost and a more complex algorithm design. Implementation of the designed 
COES utilizes the same parameters as that of the GA.

Notwithstanding the complexity of this approach, the implementation from an 
architectural standpoint was nearly identical to the that of the GA. This structural similarity 
demonstrates the impact of the framework in their designs and reveals some additional 
components that could be included in the framework, such as reports implementation and the 
evaluators. The extra effort in the implementation of the COES is apparent in this architectural 
view, but it is clear in the code implementation. A more detailed description of the COES is 
discussed in previous research (Gómez et al., 2012). Figure 7 illustrates the general architecture 
of the algorithm; only five classes are needed to implement it.

Figure 6. High-level class diagram for genetic algorithm application. <<Application>> stereotype identifies classes 
defined by the developer.
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Tabu search

Unlike the previous algorithms, the TS algorithm is based on a local search rather 
than a population-based exploration of the search space. The iterative process was carried 
out around one specific CA, and other possible solutions were defined through a concept of 
locality (e.g., CAs that differ in one cell of the neighborhood). A specific characteristic of TS 
is the use of a tabu list, which contains the CAs under consideration, in order to avoid the 
exploration of a recently evaluated CA.

Once again, the architecture was very similar to the previous applications (Figure 8), 
exhibiting the capability of the framework to aid the design of several metaheuristics. The 
extended description of this approach can be found in previous research (Gallego et al., 2012).

Hybrid algorithm

The proposed hybrid algorithm aimed to enhance the exploration of the GA search 
space using the advantages of TS searching to accommodate the best solution. The hybrid 
algorithm uses the previous GA and in the GA Iteration class, notes a lack of progress in 
the search. When this occurs, the GA searches in the vicinity of the best CA at that iteration, 
generating a populational shift and a consequential shift in the landscape exploration.

The GA architecture was changed only by the composition of the TSS trategy Run 
class in the GA Contact Map Strategy class, given that the concrete Strategy class contained 
all the data and configuration parameters necessary for the TS algorithm. Therefore, the 
architecture was almost identical to that shown in Figure 6.

Figure 7. High-level class diagram for co-evolutive strategy algorithm instantiation.
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RESULTS AND DISCUSSION

The applications developed with the support of the framework were used in the 
identification of CA using molecular-dynamics simulation of the villin headpiece protein 
(HP35-NleNle) as a sample trajectory (Ensign et al., 2007). Statistics for an execution of the 
GA are shown in Figure 9. Typically, the central measure used to evaluate performance of 
evolutionary algorithms is the score of the best individual on each iteration. Our approach 
doesn’t allow a typical assessment because of the changing data subset of the vast quantity of 
protein structures in the folding trajectory. Which is implemented by Iterative Learning with 
Alternating Strata management. In our sample trajectory, the average score/moving average 
overcomes this issue. The statistics in Figure 9 correspond to a convergent behavior of the GA 
in the example execution.

The best CAs achieve approximately 97% accuracy in replicating the folding 
simulation based solely on the identified rules. For experimental analysis, we restricted one 
of the established rules. The selected rule covers a wide range of native contacts, involving 
the contacts at positions i,j and i+2,j+2 in the time step T, which determines the contact state 
of AAs at i,j in T+1. Figure 10 illustrates the native contact map for the villin headpiece 
protein used in the experiments; the coloring of contacts is consistent with the diagonals. 
Each diagonal of the CM represents a specific separation between the AAs; therefore, the rule 
represents a dissimilar behavior. The left-bottom inset in Figure 10 illustrates a scheme for the 
3D structure of the protein, displaying three recognizable alpha helices on the CM (helix 1, AA 
2 a 10; helix 2, AA 13 a 20; and helix 3, AA 21 a 33).

Figure 8. High-level class diagram for tabu search instantiation.
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Figure 9. Statistics for genetic algorithm execution on the sample data set.

Figure 10. Native contact map of villin headpiece protein at 7Å. Inset: Villin headpiece native structure.
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For brevity of analysis, Figure 11 considers only helix 2, displaying the pairs of cells 
in the CM to which the rule applies. Figure 11A displays the pairs of cells with a separation 
of two AAs in the protein sequence; for this section of the CM, the rule application leads to 
conservation of contacts in the next simulation, which is concordant with known stability 
characteristics of the alpha helix (i.e., AA i and i+4 are in contact). Figure 11B displays the 
pairs of cells with a separation of three AAs in the protein sequence; the contacts of this 
zone involve more distant AAs, thus these diagonals denote stable interactions between AAs. 
Figure 11C displays another set of more distant contacts; the AAs involved display 4 AAs of 
sequence separation.

Figure 11. Rule application for contacts in helix 2 of villin headpiece protein (HP35-NleNle). A. Contacts between 
AA i-i+2. B. Contacts between AA i-i+3. C. Contacts between AA i-i+4.

An interesting behavior that can be observed in Figure 11A is the transitivity of the 
native contacts inside the helix, i.e., if AAs 14 and 16 are in contact and equivalent to the 
contact distance between AAs 16 and 18, then the contact of AAs 14 and 16 will be conserved 
from its occurrence, in the same way that the contact between AAs 16 and 18, 13 and 15, 12 
and 14, 15 and 17, 17 and 19, and 18 and 20 will be conserved.

The overall process of the framework design was guided by UML-F. UML-F is a 
UML profile accompanied by a full guide with recommendations for the framework architect 
(Fontoura et al., 2002), lessening the difficulty of the complex task of designing a framework. 
The documentation that complements the design artifact is very useful for the application 
developer, because it is oriented to serve as a step-by-step guide to indicate the instantiation 
of each aspect of the framework.

The framework prototype was implemented in Python 2.7, and is publicly available at 
http://caif.googlecode.com. The use of a high-level language offers additional characteristics 
such as higher-order programming (e.g., the use of parameters that are definitions of objects or 
classes). Some aspects of the application set were repeated, indicating that the reports, parsers, 
and evaluators would be present in the next version of the framework.

For an extended description of the overall CA model results of the running of the 
algorithms, refer to previous research (Diaz and Tischer, 2011b). In spite of the expected ease 
of use of CA models, the results were very difficult to analyze in conjunction with the complex 
rules. The complexity of the rules was due, in part, to the size of the neighborhood in the best 
models. Moreover, the kind of knowledge subjacent to the CM was highly dependent on the 
cell position (in AA pairs nearer to the protein sequence a rule represents a behavior, while 
for distant AA pairs the same rule represents something completely different). Furthermore, a 
rule that represents interactions of nearer AAs inside a secondary structure can simultaneously 
express interactions between distant AAs in different secondary structures. To address this, 
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we plan to conduct a study of the conserved structures in the CM space of known protein 
structures and their representations in the CA rules.

The successful utilization of the framework in the running example verifies an ongoing 
proposal based on the simplified molecular-dynamics rules of the obtained CAs in the field 
of CM prediction. This kind of approach has not been previously used, making it novel in the 
field of CM prediction.

The proposed framework has proven its usefulness in the development of algorithms 
to mine CA models from protein-folding trajectories. The diversity of the algorithms 
implemented allows consideration of a significant quantity of other metaheuristic algorithms 
such as genetic programming, ant colonies, cuckoo search, harmonic search, multiobjective 
optimization, learning classifier systems, local guided search, and particle swarm optimization.
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