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ABSTRACT. Microarrays are a new technology that allows biologists
to better understand the interactions between diverse pathologic state at
the gene level. However, the amount of data generated by these tools
becomes problematic, even though data are supposed to be automati-
cally analyzed (e.g., for diagnostic purposes). The issue becomes more
complex when the expression data involve multiple states. We present a
novel approach to the gene selection problem in multi-class gene ex-
pression-based cancer classification, which combines support vector
machines and genetic algorithms. This new method is able to select small
subsets and still improve the classification accuracy.
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INTRODUCTION

Microarrays use hybridization-based methodology, which allows monitoring of the ex-
pression levels of thousands of genes simultaneously (Schena and Knudsen, 2004). This enables
the measurement of the levels of mRNA molecules inside a cell and, consequently, the proteins
being produced. Therefore, the role of the genes of a cell at a given moment can be better
understood by assessing their expression levels. In this context, the comparison between gene
expression patterns through the measurement of the levels of mRNA in healthy versus un-
healthy cells can supply important information about pathological states, as well as information
that can lead to earlier diagnosis and more efficient treatment.

In order to make this feasible, it is desirable to deal with the genes involved in the
development of the particular health condition. However, in most cases, which genes are in-
volved in the process is still an open issue. Thus, monitoring of the largest possible number of
genes is necessary. In this sense, microarrays are valuable medical tools.

Amongst the most trivial applications of microarrays, the classification of tissue samples
is an essential step for the assessment of severe diseases. This classification can be carried out
by machine learning algorithms, such as support vector machines (SVMs) (Cristianini and Shawe-
Taylor, 2000). SVMs have exhibited good performance in a wide range of applications, espe-
cially in bioinformatics. Their principal advantage is their good generalization capability. How-
ever, when dealing with gene expression data, there is usually a disproportionate ratio between
the high number of features (genes) and the low number of analyzed samples (tissues), which
can make the analysis of the results difficult and damage classification.

The dimensionality problem is expected to become more serious when dealing with
multi-class domains, since these are intrinsically more difficult than the binary ones, because the
classification algorithm has to learn to construct a greater number of separation boundaries or
relations (Rifkin et al., 2003). In a comparative study on feature selection and multi-class clas-
sification problems, Li et al. (2004) suggested that working with small subsets of genes could
ameliorate the difficulties of multi-class problems.

We present a novel way to perform gene selection using SVMs and genetic algorithms
(GA) (Goldberg, 1989) for multi-class problems. It is called the multi GA-SVM method. Fröhlich
et al. (2003) have already used the GA-SVM combination for this purpose. However, it was
employed as just a single example of their general framework. We propose specific solutions,
such as optimization of the SVM hyperparameters C independently for all classifiers, normaliza-
tion of the samples to unit length, allowing the use of a correlation-based similarity measure,
together with the SVM and the use of the generalized approximate cross-validation (Wahba,
1999) as a generalization estimator for SVM.

MATERIAL AND METHODS

Support vector machines

Binary support vector machines
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 is an m-dimensional input vector, and each y
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to the class associated to x
i
. In the microarray domain, x

i
 is the ith tissue sample, represented by

a set of m genes, and y
i
 can be different types of cancer, for example.

The task of a classification algorithm is to learn a mapping of x
i
→y

i
 using data from S.

SVMs (Cristianini and Shawe-Taylor, 2000) handle this by constructing a hyperplane <w·x> + b = 0,
where w∈Rm represents the normal vector associated with the hyperplane and b is the bias, that
maximally separates positive and negative training samples. The margin corresponds to the
distance from the separating hyperplane to the closest samples of each class. It is obviously
inversely proportional to ||w||. Thus, to have the maximal margin hyperplane one needs to mini-
mize the Euclidean norm of vector w.

Formally, this goal can be translated into the following quadratic programming problem:

where C is a term that controls the compromise between training error and classifier complexity
and ξ

i
 are slack variables that permit to deal with non-linearly separable data.

Considering its dual formulation can more easily solve the problem presented in Equa-
tion 1:

(Equation 1)

where α
i
 are named Lagrange Multipliers.
With the optimal values b* and w* (indirectly) obtained by solving Equation 2, the dis-

criminant function can be expressed as:

where n
sv
 is the number of samples associated with non-zero α

i
 in Equation 3, the so-called

support vectors.
Due to the nature of the data (a few samples with very high dimensionality), the authors

considered only linear discriminant functions, such as that expressed by Equation 3. However,
other decision surfaces could be used in SVMs thanks to the concept of a kernel (Cristianini and
Shawe-Taylor, 2000), which plays the role of dot product in a higher-dimensional space. As dot

(Equation 2)

(Equation 3)
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products, kernels can also be considered a type of similarity measure between the samples.
Recent studies (Alon et al., 1999) have shown that correlation-like similarity measures

are better suited for gene expression data, as they focus on the relative shape of the sample
profile and not on its magnitude. One such measure is the cosine of the angle between two
tissue samples. Incorporating that domain knowledge into the SVM is straightforward. Assum-
ing that the samples x and z are normalized to Euclidean length 1 (this normalization is used in
the Results and Discussion section), the linear kernel used here is:

Generalization error of support vector machines

Several research projects have been conducted to estimate the generalization error of
SVMs. The most common studies involve the radius/margin ratio (Vapnik, 1995), the concept of
span of support vectors (Vapnik and Chapelle, 2000), the VC dimension (Vapnik, 1995), the ξα-
estimator (Joachims, 2000) and the generalized approximate cross-validation (GACV) (Wahba,
1999), besides the ordinary k-fold cross-validation.

Based on a recent comparison between these measures in the problem of choosing
optimal SVM hyperparameters (Duan et al., 2002), we chose to use the GACV, because of its
smoother variation with respect to different subsets of genes when compared with the ξα-
estimator and the k-fold cross-validation (the other measures performed poorly when employed
with the type of SVM used here).

The GACV is a computable proxy for the generalized Kullback-Liebler distance for
SVMs (Wahba, 1999), which is considered to be an upper bound on misclassification rate. The
GACV for a given set of tunable SVM parameters (in this study, it is a subset of genes) λ is
defined as:

(Equation 4)

(Equation 5)

where n is the number of training samples, ξ
i
 are the slack variables, y

i
 are the class labels, fλi

= f(x
i
) and K

ii 
= k(x

i
,x

i
).

In order to understand this estimate, it is important to examine each of the three terms
of Equation 5. The first one penalizes training errors, assuring that at least the training set could
be learnt. The second one penalizes severe errors, i.e., samples for which the classifier is pretty
sure that its prediction is correct (|fλi

 |>1), while it is indeed not. This type of error is the most
critical, so it gets a factor 2 penalization. The third one penalizes weak predictions, i.e, those that
can be as right as wrong, but with little confidence.

Multi-class support vector machines

SVMs are methods originally designed to work only with binary problems. A standard
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way to solve multi-class problems is to consider them as a collection of binary subproblems, and
then combine their solutions. In this context, two approaches are most commonly employed: the
one-versus-all (OVA) and the one-versus-one (OVO) (Rifkin et al., 2003).

The OVA method constructs N (the number of classes) SVMs. The ith SVM is trained
with all the samples in the ith class that have a positive class label and with all the other samples
with negative class labels. The final output is the class that corresponds to the SVM with the
highest output (Equation 3).

The OVO method constructs N(N-1)/2 SVMs, taking into consideration all binary com-
binations of classes. Then, test samples are used on all the SVMs, and their outputs are com-
bined (usually using a MaxWins scheme or the DDAG algorithm (Platt et al., 1999)).

The choice of the OVA or the OVO approach is domain specific. In the case of gene
expression data, for which the number of training samples is usually very reduced, the OVA
approach seems to work better, as it uses all the available data to construct the N SVMs.
In an empirical study of multi-class methods and algorithms applied to microarray data,
Rifkin et al. (2003) showed that the OVA approach, in combination with SVM, gave the
most accurate method by a significant margin. Consequently, we employed the OVA ap-
proach.

In order to measure the generalization performance of the multi-class classifier, the
GACV estimator of the individual SVMs was calculated and summed. The error of the multi-
class classifier with respect to the subset of genes λ is given by:

(Equation 6)

where N is the number of classes and GACV
i
 (λ) is the measure related to the ith SVM.

Genetic algorithms for gene selection

GAs are search and optimization techniques inspired by the process of evolution of
biological organisms (Goldberg, 1989). A simple GA uses a population of individuals to solve a
given problem. Each individual, or chromosome, of the population corresponds to an encoded
possible solution for the problem. A reproduction-based mechanism is applied to the population,
generating a new population. The population usually evolves through several generations, until a
suitable solution is reached. A GA starts generating an initial population formed by a random
group of individuals, which can be seen as first guesses to solve the problem. The initial popula-
tion is evaluated and a score (named fitness) is given for each chromosome, reflecting the
quality of the solution associated with it.

The main features of the GA were:

Representation

Chromosomes are encoded by a binary representation. They consist of two parts. The
first one encodes the set of genes. It has length m, where m is the total number of genes in the
domain. A 1 or 0 at the ith position of the chromosome indicates the presence or absence of the
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ith gene in the sample. The second part encodes the values of the SVM hyperparameters C.
The C for each SVM in the domain is codified by two bits. So, four different values can be
expressed for each SVM. These are 0.1, 1, 10, and 100. We tried other values, but they did not
give better performance. In fact, they unnecessarily enlarged the search space for selection
parameters.

Initialization

Only a few positions of the first part of the chromosomes were initialized. We believe
that only a few genes are relevant for tissue classification. The second part was uniformly
initialized.

Mutation

Mutation is the genetic operator responsible for maintaining diversity in the population.
Mutation operates by randomly “flipping” bits of the chromosome, based on some probability. A
usual mutation probability is 1/p, where p is the length of each of the two parts of the chromo-
somes.

Crossover

This genetic operator is used to guide the evolutionary process through potentially bet-
ter solutions. This is performed by interchanging genetic material of chromosomes in order to
create individuals that can benefit from their parents’ fitness. We used a uniform crossover with
an empirically defined probability rate.

Replacement

Replacement schemes determine how a new population is generated. We used the
concept of overlapping populations, where parents and offspring are merged, and the best indi-
viduals from this union will form the next population.

Selection

This is the process of choosing parents for reproduction. Usually, it emphasizes the best
solutions in the population, but since the replacement scheme employed here already offers
enough evolutionary pressure, a random selection approach was chosen.

Random immigrant

This is a method that helps to keep diversity in the population, minimizing the risk of
premature convergence (Congdon, 1995). It works by replacing the individuals whose fitness is
under the mean by recently initialized individuals. Random immigrant is invoked when the
best individual does not change for a certain number of generations (here named re-start fre-
quency).
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Fitness

A good function for gene selection should focus on subsets of genes that minimize an
estimate of generalization error of the classifier, while punishing subsets with many genes. The
fitness function associated with a gene subset λ is expressed by:

(Equation 7)

where error
multi

(λ) is defined in Equation 6, dim(λ) is the dimensionality of the subset λ and
max_dim is the original dimension of the full set of genes.

Although this function satisfies both requirements for a fitness function in the gene
selection problem, it was defined in an ad hoc manner. Thus, readers are encouraged to try out
their own fitness functions in their domains.

RESULTS AND DISCUSSION

The implementation of the multi GA-SVM method was based on the LIBSVM pack-
age (available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/) and on the GALIB library (avail-
able at http://lancet.mit.edu/ga/). The principal aims of the experiments were two-fold: first, we
compared the performance of the classifiers trained with the set of genes selected by the
proposed method and trained with the whole set of genes. Second, we compared the results
obtained with the multi GA-SVM method with other results found in the literature, regarding
both accuracy rate and dimensionality reduction.

The parameters used by the GA were all empirically defined: population: 100, genera-
tions: 1000, crossover prob.: 0.8, and re-start frequency: 20. Since GAs are stochastic methods,
there are no guarantees that the same subset of genes will be encountered in different runs.
Actually, this is very unlikely. Thus, mean (µ) and standard deviation (σ) were used in 10 runs of
the multi GA-SVM method.

Small round blue cell tumor dataset

The small round blue cell tumors of childhood (SRBCT) dataset was first analyzed by
Khan et al. (2001). It consists of the expression of 6,567 genes measured for 88 samples. The
technology employed was cDNA microarrays. After an initial filtering, 2,308 genes were in-
cluded. The tumors were classified as Burkitt lymphoma (BL), Ewing sarcoma (EWS), neuro-
blastoma (NB), or rhabdomyosarcoma (RMS). The dataset was split into a training set of 63
samples (23 EWS, 8 BL, 12 NB, and 20 RMS) and a testing set of 25 samples (6 EWS, 3 BL,
6 NB, 5 RMS, and 5 non-SRBCT).

With 2,308 genes, the SVM-OVA approach made five errors, yielding an accuracy of
80%. The optimal values of C for the SVMs trained for each class were determined by the
minimizers of the GACV estimator over the four values of C. The values found were: 0.1, 0.1,
0.1, and 0.1.

Li et al. (2004) studied the interaction between various feature selection techniques and
classification methods (including SVM) for gene expression data. With 150 genes, they achieved
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an accuracy greater than 93%. Using a complex neural network approach, Khan et al. (2001)
achieved a test error of 0 and identified 96 genes for the classification. With their nearest
shrunken centroid method, Tibshirani et al. (2002) reduced the required number to make a
perfect classification to 43 genes. The best performance found in the literature was with Lee
and Lee’s (2003) method, which achieved an accuracy of 100% using only 20 genes.

Using 28.6 genes, on average, the multi GA-SVM method made perfect scores in 6 of
10 runs, yielding an accuracy of 98.00%/2.58% (µ/σ). In four runs, two samples were
misclassified: sample TEST-2 (one time) and sample TEST-20 (three times). In Khan et al.’s
(2001) work, the latter was correctly classified but, due to its very low confidence level, it was
not diagnosed. The optimal values of C varied over the GA runs, influenced by (and influencing)
the selected subset of genes.

CONCLUSIONS

We have presented a novel gene selection method for multi-class problems based on
GAs and SVM. Besides selecting an optimal subset of genes, it also jointly optimizes the SVM
hyperparameter C for each SVM in the multi-class framework, which seems ideal, since the
subset of genes influences the parameters C, and vice versa.

Due to space constraints, the selected genes are not shown here. They can be down-
loaded from http://www.icmc.usp.br/~bferes/wob2004/. Most of the top selected genes are
very likely to be biologically relevant for the investigated phenomena. By comparing these genes
with those selected by other gene selection methods, one can see that there is a strong overlap
between the sets.

In the first experimental tests using the SRBCT dataset, small subsets of genes were
selected and a significant improvement was reported (applying a two-tailed t-test) when com-
pared with the accuracies using the subsets of genes selected by the multi GA-SVM method
and the whole set of genes. A similar performance was achieved with another gene expression
dataset (MLL); the results of the analysis of this dataset can be retrieved from the above-
mentioned website. Comparing the results with the best report found in the literature (see the
Results and Discussion section) for the SRBCT dataset, no significant difference was found,
although the Lee and Lee (2003) method selected a slightly smaller subset of genes than the
average selected by the multi GA-SVM method.

We plan to test this new method with other gene expression datasets and to deeply
investigate the biological interpretation of the selected genes. A systematic comparison with
other feature selection techniques is also in progress.
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