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ABSTRACT. Many studies exist for reconstructing gene regulatory 
networks (GRNs). In this paper, we propose a method based on 
an advanced neuro-fuzzy system, for gene regulatory network 
reconstruction from microarray time-series data. This approach uses a 
neural network with a weighted fuzzy function to model the relationships 
between genes. Fuzzy rules, which determine the regulators of genes, 
are very simplified through this method. Additionally, a regulator 
selection procedure is proposed, which extracts the exact dynamic 
relationship between genes, using the information obtained from the 
weighted fuzzy function. Time-series related features are extracted 
from the original data to employ the characteristics of temporal data 
that are useful for accurate GRN reconstruction. The microarray dataset 
of the yeast cell cycle was used for our study. We measured the mean 
squared prediction error for the efficiency of the proposed approach and 
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evaluated the accuracy in terms of precision, sensitivity, and F-score. 
The proposed method outperformed the other existing approaches.

Key words: Gene regulatory network; Neuro-fuzzy network; 
Microarray; Gene selection

INTRODUCTION

Many studies have been undertaken to reconstruct a gene regulatory network (GRN), 
using time-series gene data, to discover the dynamic and uncertain functional relationships 
among genes. In particular, these studies have been further advanced with the progress in 
high-throughput technology. However, these biological experiments are either sensitive to the 
experimental conditions or difficult to accurately analyze low gene expression values (Cheng 
et al., 2013). As such, many studies have been conducted using machine learning or statistical 
methods. These studies have strived to reconstruct GRNs, using Boolean networks, Bayesian 
networks, and neuro-fuzzy algorithms, among other methods (Manshaei et al., 2012).

GRN reconstruction, using a Boolean network, is one of the most popular methods. 
It reconstructs GRN, using binary elements representing gene expression data. Consequently, 
it is limited in terms of the potential loss of information for gene interactions (Mehra et al., 
2004), even if GRN can be reconstructed simply.

The method that uses a Bayesian network reconstructs GRNs depending on the 
probability of interactions among genes. The limitation of this method is that it cannot reveal 
if a cycle is involved in the network; the cyclic interaction of genes happens frequently in 
biological systems (Kim et al., 2003).

The advantage of the neuro-fuzzy algorithms is that sufficient interactions can be 
extracted based on rules, even with a small number of samples. However, the rules increase 
exponentially with a slight increase in the number of samples or genes, which leads to high 
calculation costs (Manshaei et al., 2012).

This paper proposes a GRN reconstruction method using a neural network, with 
weighted membership functions (NEWFM), which was reported by Lee and Lim (2011). Our 
suggested approach has the following characteristics: i) It is not constrained by the number 
of rules, because we incorporate the weighted membership function (Son et al., 2015). ii) The 
original gene expression data are preprocessed to extract the features that can best find the 
time-series interactions. iii) A gene that will give the best effect and another that will give the 
worst effect to predict the target gene are selected among input genes at each learning iteration. 
The two selected genes are used to classify activators and repressors. The best or worst effect 
is calculated by the sum of the weighted membership functions.

The cost for calculation is independent of the number of samples because of the first 
characteristic. The second and third characteristics provide the advantage of constructing a 
highly accurate GRN.

Time-series gene data from the yeast cell were used for the GRN reconstruction. 
The mean square error (MSE) was measured with cdc15, cdc18, and alpha datasets after 
determining the GRN accuracy. The sensitivity, precision, and F-score were calculated after 
GRN reconstruction. The proposed algorithm showed better performance than the other 
algorithms, in terms of sensitivity and F-score. The remainder of this paper is as follows: We 
propose the GRN reconstruction algorithm in section 2. We present the experimental results to 
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demonstrate the reliability and improved contributions of our algorithm, in terms of mean square 
error (MSE), sensitivity, and F-score, in section 3. Our conclusions are presented in section 4.

MATERIAL AND METHODS

This section describes the method for modeling GRN. The proposed approach has 
four stages, which are illustrated in Figure 1.

Figure 1. Proposed GRN reconstruction method. In Gnt, n means the number of genes and t means time point. Stage 
(a) is the learning step using NEWFM. If G1t is the target gene, G2t to Gnt become input genes. Every gene becomes 
the target gene by turn. The learning is performed by the number of genes.

The genes were learned for the target gene prediction in stage (a). Regulators were 
selected in stage (b) after the learning was finished for all target genes. The activators and 
repressors were classified in stage (c), using the proposed procedure. Finally, GRN was 
reconstructed. Figure 1 is described as follows:

(a) Learning stage

The genes were learned for the target gene prediction in stage (a). Gene data from 
Saccharomyces cerevisiae (yeast) were used to reconstruct GRN. The yeast cell cycle data 
had four types of datasets: alpha, cdc28, cdc15, and elu. The dataset used for learning 
in this experiment was cdc15, which comprised 12 genes and 24 time points for each 
gene. Alpha and cdc28 were used for the test datasets comprising 18 and 17 time points, 
respectively.

Figure 2 provides details of stage (a). It shows the learning of target gene G1, where 
n denotes the number of genes and t indicates time point. Each n gene is respectively used 
as the target gene in turn. Thus, the learning stage is performed n times. It proceeds in 
two steps.
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Figure 2. Learning stage. Input genes are learned for target gene prediction.

The original gene expression data were preprocessed in step 1 of stage (a), to extract 
the features that could best find the time-series interactions. Two kinds of features were 
extracted from the original data, using the following formulae.

Gi is ith gene. Feature a uses the result of the first-level Haar wavelet to reflect the gene 
state of the prior time point in the current time point; whereas, the feature cp uses the values 
from 2 prior time points to reflect the impact of the past on the present (Son et al., 2015). We 
could find more accurate gene-to-gene interactions through these features, because the past 
and current states of the gene were reflected in order to predict the target gene.

The learning in step 2 was performed using NEWFM, which is a neuro-fuzzy system 
with a weighted fuzzy membership function (Lee and Lim 2011; Son et al., 2015). Three fuzzy 
functions per input feature were created in two classes in NEWFM. The heights and widths of 
three fuzzy functions were adjusted by weight during the learning.

The class was determined by the target gene expression value obtained from Equation 3, 
where Git denotes target gene i of time point t; t was from 1-24 in this experiment (Soinov et 
al., 2003). If Git was smaller than the average of all time point values of Gi, then the class was 
1. This indicated a lower than average expression. If it was the same as the overall average or 
higher, then the class was 2; this indicated a higher expression than the average.
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A fuzzy function, which is the sum of the three weighted fuzzy functions, was 
determined as the result of learning; it was referred to as the bounded sum fuzzy function. Red 
and blue line functions in step 2 were the bounded sum fuzzy functions of two classes. Three 
weighted fuzzy functions were simplified as the bounded sum fuzzy function. That meant that 
rules were simplified. The fuzzy values of the bounded sum fuzzy function were defuzzified, 
using the Takagi-Sugeno method (Takagi and Sugeno, 1985).

(b) Regulator selection

The two features, which gave the best effect and the worst effect for predicting the 
target gene, were selected by two bounded sum fuzzy functions at each iteration of learning. 
The information about the number selected, as the feature giving the best effect or the worst 
effect, was stored in the two variables. We assigned the names H and L to the variables, 
respectively. H and L were used for finding regulators.

Input features were ranked by Equation 4 in Stage (b). The number of learning 
iterations was represented by r, H(IFi) was H value of input feature i, and L(IFi) was L value 
of input feature i. ED was the extent of the effect that the input feature gave to the target gene. 
A greater ED value was indicative of a better effect.

Figure 3 shows the procedure for selection of regulators. Input feature ranking for a target 
gene was dependent upon ED. The calculated ED ranking resulted in removal of half of the 
features to a small ED order, because they were regarded as noise. The remaining features for 
all target genes were merged, and then a second rank was determined, depending on ED. The 
second ranked features were divided into 3 parts. The first part meant that a regulator and a 
target gene moved with the same pattern over the course of time. In other words, the input 
gene changed in a pattern similar to the change in the target gene expression value at each 
time point. The last part meant that the regulator gene expression decreased, but the target 
gene expression increased. The middle part meant that a regulator and target gene moved in an 
irregular pattern over the course of time.

(Equation 4)
( ) ( )i iH IF L IFED

r
−

=

Figure 3. Regulator selection process, where k is the number of input features, n is the number of genes, and m 
means remaining features for each target gene, after deleting noise features.
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A change in the same direction or in reverse meant that there was high predictability. 
Meanwhile, the change of the input gene, in accordance with the change in the target gene, 
lacked regularity in the irregular pattern section. The prediction capability was low; therefore, 
we removed the middle part features. The remaining regulators were final.

(c) Classification between activator and repressor

In Stage (c), the following process was undertaken to identify the activator and 
repressor genes in the discovered regulators.

Process: Identification of activator or repressor genes
// RG[]: regulator
// TG[]: target gene
// VRG[]: variable to save increasing or decreasing state of next time point value, 

compared with prior time point value of the regulator gene
// VTG[]: variable to save increasing or decreasing state of next time point value, 

compared with prior time point value of the target gene
// STP: the number of identical values in VRG[] and VTG[]
// tp: the number of time points
// t: current time point
// TS: threshold to classify activators and repressors
01: t = 2
02: VRG[t-1] = 2
03: VTG[t-1] = 2
04: While t <= tp
05: {
06: If RG[t] >= RG[t-1]
07: VRG[t] = 2
08: Else
09: VRG[t] = 1
10:
11: If TG[t] >= TG[t-1]
12: VTG[t] = 2
13: Else
14: VTG[t] = 1
15: }
16:
17: t =1
18: While t <= tp
19: {
20: If VRG[t] == VTG[t]
21: STP = STP + 1
22: }
23: If STP >= TS
24: RG is activator of TG
25: Else
26: RG is repressor of TG
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Variables, from lines 1-15 of the process, memorized the increase or decrease state in 
each time interval for the regulator gene and target gene. The variable, that denoted the state 
of increase or decrease, was marked as 1 when the expression value decreased in the next time 
interval. If the expression value increased, then the value was marked as 2. The variable that 
stored the state of increase or decrease for the regulator was VRG; the variable that stored the 
state of increase or decrease for the target gene was VTG.

The number of occurrences, from line 17-22, when VRG and VTG were the same for 
a time point, was counted and stored in variable STP. This variable represented the number of 
intervals in which the changes in the regulator gene and target gene were the same. If STP was 
the same as or greater than TS, as determined from lines 23-26, then gene RG was determined 
to be an activator; otherwise, it was a repressor. The activator and repressor classes were 
distinguished, based on the number of intervals with the same changes.

RESULTS

The results of the reconstruction and prediction are now presented, and the proposed 
method is compared with other approaches. The results are then discussed.

Prediction

The next step, after completing learning for all target genes, was to define error criterion to 
test for the prediction accuracy of the data set of the remaining genes. We measured the prediction 
error using the method presented in Equation (5), which was also used by Manshaei et al. (2012).

where N is the number of time points, Gip is the predicted value, and Gir is the real value of the gene.
Cdc15 was used for learning. Equation 5 was applied to calculate the mean square 

error (MSE), in which the Takagi-Sugeno value (Takagi and Sugeno, 1985) acquired from 
learning was used as a prediction value. Cdc28 and alpha datasets were used for the test.

Table 1 shows MSE for the three datasets. The alpha dataset shows the smallest 
average MSE for all genes. This meant that this dataset was the one that was best predicted 
using the proposed method.
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Table 1. MSE of three datasets.

Genes Datasets 
cdc15 cdc28 alpha 

SIC01 0.55 0.1614 0.2682 
CLB05 0.1182 0.2546 0.0917 
CDC20 0.3646 0.4475 0.2129 
CLN03 0.1437 0.1336 0.0990 
SWI06 0.1740 0.0396 0.0311 
CLN01 0.5547 0.2696 0.3782 
CLN02 0.3290 0.2711 0.1869 
CLB06 0.6360 0.6632 0.4390 
CDC28 0.0538 0.0629 0.0643 
MBP01 0.5168 0.0715 0.06 
CDC06 0.1815 0.1786 0.1192 
SWI04 0.0461 0.1421 0.4271 
Average 0.3057 0.2246 0.1981 
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GRN Reconstruction

The activators and repressors were discovered by the GRN reconstruction method, as 
proposed. Figure 4 shows the reconstructed GRN. We evaluated the present GRN, by comparing 
it to the GRN established in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database 
(Manshaei et al., 2012; HTML). The KEGG database has a tremendous amount of information 
for S. cerevisiae cell cycle regulatory protein-DNA interactions (Kanehisa et al., 2010).

Black arrow lines in Figure 4 represent activators, while red circle lines represent 
repressors. Thick solid lines denote correct interactions, while dashed lines mean incorrectly 
extracted interactions. Thin lines represent interactions that exist in the KEGG database, but 
were not found during reconstruction. The grey, solid, thin lines refer to interactions that were 
found in this approach, but do not exist in KEGG.

Figure 4. Reconstructed GRN.

DISCUSSION

We evaluated the proposed approach by comparing HRBNF (Manshaei et al., 2012) 
and Time-delay ARACNE (I et al., 2007). HRBNF is the hybrid rule-based neuro-fuzzy 
network proposed by Manshaei et al. (2012); it is used for extracting GRN information 
from gene expression data. Time-delay ARACNE uses a three step algorithm, based on 
the statistical way of time course gene interaction, for reconstructing GRN (Zoppoli et al., 
2010). HRBNF and Time-delay ARACNE showed the best performances in Manshaei et 
al. (2012), when they extracted activators and repressors from genes. Thus, we selected 
these two algorithms as comparison targets. We compared three factors of sensitivity, 
precision, and F-score, which were computed from the following formulas (Manshaei et 
al., 2012):
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The true-positives (TPs) in Equations 6 and 7 represent the accurately discovered 
activators or repressors, whereas the false-positives (FPs) represent the inaccurately discovered 
activators or repressors. A false negative (FN) represents an undiscovered regulator. We 
assume  to be 0.5 in Equation  8, which indicates that precision and sensitivity are given equal 
weights (Manshaei, et al., 2012).

Table 2 shows a comparison of the sensitivity, precision, and F-score measures, 
according to the threshold. We used the number of time intervals, in which a regulator and 
the target gene had the same status, as the threshold that determined whether the selected 
gene was the activator or repressor for the target gene. If the number of time intervals, that 
have the same status of the two genes, were greater than threshold or equal to threshold, 
then the selected gene is an activator; however, if the selected gene did not fall in this 
range, then it was a repressor. We calculated the sensitivity, precision, and F-score when 
the threshold ranges were from 8-12. As a result, if it had a median value of 10, then the 
three values were the highest.

(Equation 6)Sensitivity TP
TP FN

=
+

(Equation 7)Precision TP
TP FP

=
+

(Equation 8)

1F-Score
1 1(1 )

Precision Sensitivity
α α

=
   + −   

   

Table 2. Result comparison according to threshold classifying activators and repressors.

Criteria Threshold: The number of identical statuses among 23 time intervals of regulator and target gene 
8 9 10 11 12 

TP 16 17 17 16 15 
FP 5 4 4 5 6 
FN 17 16 16 17 18 
Sensitivity 48.4% 51.5% 51.5% 48.4% 45.5% 
Precision 76.2% 81% 81% 76.2% 71.4% 
F-score 59.3% 63% 63% 59.3% 55.6% 
 

Table 3 shows a comparison of the results obtained with the proposed algorithm and 
the two other algorithms. The number of false positives, for the proposed algorithm, was larger 
than that of the other algorithms. Nevertheless, several true positives existed, which indicated 
that the FN decreased. This suggested that the proposed algorithm improved the discovery of 
correct regulators. Consequently, the sensitivity and F-score were higher than for the other 
algorithms. This result can be explained by the fact that the NEWFM, used in the proposed 
algorithm, determined the most optimal and simple rules through the weighted fuzzy functions 
on its own. It extracted the features that best reflected the dynamic features of the time series 
for learning.
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Table 3. Comparison of proposed algorithm and other algorithms.

Algorithms Criteria 
TP FP FN Sensitivity Precision F-score 

Time delay-ARACNE 10 2 23 30.3% 83.3% 44.4% 
HRBNF 13 3 20 39.4% 81.3% 53.1% 
The proposed approach 17 4 16 51.5% 81% 63% 
 

CONCLUSIONS

These data show that we learned yeast cell time-series gene data using NEWFM, 
based on the weighted neuro-fuzzy function for GRN reconstruction. Two kinds of features 
were extracted from the original dataset through gene preprocessing; this information was 
used for learning. Next, genes with the best or worst effects on the target genes were selected, 
depending on the degree of effect. The activators and repressors were distinguished according 
to the number of time points, in which the finally discovered regulator and target gene showed 
the same state. The GRN was then constructed. We used the Takagi-Sugeno value to predict 
the target gene expression value, once we identified the repressors and activators.

The proposed method was compared with two existing algorithms, based on precision, 
sensitivity, and F-score. The results showed that sensitivity increased by approximately 25%. 
The F-score increased by approximately 20%, compared to those of HRBNF in the proposed 
method. The discovery rate for the repressors was low in the reconstruction of GRN, despite 
this improved performance. This indicates a need for further studies on algorithms that can 
improve the discovery rate of repressors.
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