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ABSTRACT. The central task of this study was to mine the gene-to-medium 
relationship. Adequate knowledge of this relationship could potentially 
improve the accuracy of differentially expressed gene mining. One of the 
approaches to differentially expressed gene mining uses conventional 
clustering algorithms to identify the gene-to-medium relationship. 
Compared to conventional clustering algorithms, self-organization maps 
(SOMs) identify the nonlinear aspects of the gene-to-medium relationships 
by mapping the input space into another higher dimensional feature 
space. However, SOMs are not suitable for huge datasets consisting of 
millions of samples. Therefore, a new computational model, the Function 
Clustering Self-Organization Maps (FCSOMs), was developed. FCSOMs 
take advantage of the theory of granular computing as well as advanced 
statistical learning methodologies, and are built specifically for each 
information granule (a function cluster of genes), which are intelligently 
partitioned by the clustering algorithm provided by the DAVID_6.7 software 
platform. However, only the gene functions, and not their expression values, 
are considered in the fuzzy clustering algorithm of DAVID. Compared 
to the clustering algorithm of DAVID, these experimental results show a 
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marked improvement in the accuracy of classification with the application 
of FCSOMs. FCSOMs can handle huge datasets and their complex 
classification problems, as each FCSOM (modeled for each function 
cluster) can be easily parallelized.
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INTRODUCTION

It is axiomatic in functional genomics that genes with similar mRNA expression profiles are 
likely to be regulated via the same mechanisms (Altman and Raychaudhari, 2001; Schulze and 
Downward, 2001). This hypothesis has formed the basis for almost all attempts at using microarray 
mRNA expression data in the discovery of regulatory networks (Wolfsberg et al., 1999; Wu et al., 
2002; Mozhayskiy and Tagkopoulos, 2011; Patnala et al., 2013). Mining of differentially expressed 
genes corresponding to different functions, and the discovery of functional changes is a highly 
desirable objective with potential applications in biological projects. This paper aims to analyze the 
expression of Drosophila genes in different larval growth media, in order to determine the possible 
relations between the differentially expressed gene cluster and similar functions. The Database for 
Annotation Visualization and Integrated Discovery (DAVID) platform and artificial neural networks 
provides an opportunity to study these gene clusters in biological networks.

DAVID_6.7 is based on the functional annotation of each gene (and not the gene name), and 
uses a fuzzy clustering algorithm to group functionally related genes together, as the self-organization 
map (SOMs) learning subspace. SOM handles nonlinear classification by implicitly mapping input 
samples from the input feature space into another high dimensional feature space with a nonlinear 
driving function (Ghouila et al., 2009; Abe et al., 2014). Therefore, SOM may be more effective in 
revealing the nonlinear gene-to-medium relationship when compared to fuzzy clustering. Since SOM 
is not suitable for a large dataset (Gu et al., 2012), modeling the whole sample space containing 
almost one million data samples with one SOM would be impractical. Furthermore, each subspace of 
the whole sample space corresponds to a different function in this study. This disadvantage of SOM 
was the major trigger to considering the use of the theory of granular computing.

MATERIAL AND METHODS

This section, introduces the principles of granular computing and SOM; in addition, it 
explains the motivation for combining granular computing and SOM to create a new computational 
model offering significant advantages. In addition, the procedures used to train Function Clustering 
Self-Organization Maps (FCSOMs) modeled for different cluster groups are introduced. Finally, this 
section introduces a detailed mechanism for the mining of key gene function clusters of Drosophila 
melanogaster, corresponding to different growth media, by FCSOMs.

Granular computing

The basic principles of granular computing have been applied to many fields, including 
programming, artificial intelligence, interval computing, rough set theory, machine learning, 
and databases (Tang et al., 2005; Yao, 2005). Granular computing provides true and natural 
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representations of natural, social, and artificial systems (Zhong et al., 2007).
Granular computing decomposes information to aggregates, such as subsets, classes, 

and clusters of universal sets, and subsequently solves the targeted problems in each granule 
(Yao, 2004). Granular construction and computing are the two major tasks of granular computing 
(Yao, 2005). Granular computing conceptualizes the whole feature space at different granularities 
and has the ability to switch between these granularities (Yao, 2004). Granular computing uses 
the divide-and-conquer principle to divide a complex data-mining problem into a series of smaller 
problems that are simpler to compute. It focuses on each small problem by omitting unnecessary 
and irrelevant information. Consequently, granular computing increases the intelligence and 
flexibility of data mining algorithms.

This study, utilized a SOM to determine the relationship between the key genes 
(differentially expressed genes) and their media. Since different regions of the sample space may 
correspond to different functions, the building of one SOM in the whole sample space may not 
be practical. Therefore, the whole sample space was divided into multiple subspaces using an 
effective granulation method to model a SOM for each function. The fuzzy clustering algorithm 
of DAVID_6.7 for gene functions was used as the granulation method. The genes in the same 
subspace are closely related; therefore, SOM can be used (more efficiently) to capture inherent 
functional distributions for these samples.

Granulation method: Fuzzy clustering algorithm based on gene functions

Fuzzy clustering is a widely used machine learning technique in many real world 
applications, especially in exploratory gene functional classification (Liu and Xu, 2008; Avogadri 
and Valentini, 2009; Mukhopadhyay and Maulik, 2009; Maraziotis, 2012; Yan et al., 2013). Fuzzy 
sets, probabilistic sets, decision trees, clusters, and association rules are some of the granulation 
methods that come under the framework of granular computing (Yao, 2005). Since a hard partition 
mechanism may be not suitable for the overlapping datasets, fuzzy clustering is efficient for gene 
function annotation in the DAVID_6.7 database. Therefore, this study utilized fuzzy clustering as 
the preferred method of granulation. Genes with similar functional annotations can be grouped 
together when using the fuzzy clustering algorithm. Therefore, the whole sample space is 
partitioned intelligently into subspaces, and the complex data mining work is mapped into a series 
of simpler tasks that are computationally tractable. The fuzzy clustering of DAVID for gene function 
provides 79, 75, and 92 clusters, corresponding to the different media used. The first 25 clusters 
were relatively suitable for the SOM developed in this study.

SOMs

SOMs were first proposed by Kohonen, and were described as unsupervised, self-
organizing, self-learning networks, widely used in a variety of clustering analyses. Compared to 
other clustering methods, SOM networks possess self-stability, can perform clustering processes 
without evaluations, demonstrate real-time learning, and can identify the most meaningful features 
of the vector space. This makes them especially suitable for unsupervised clustering of high 
dimensional data sets.

An SOM network is composed of an input layer and an output layer. The number of nodes 
in the input layer is equal to the dimension of the input vector; each node accepts one component 
of the input vector. Generally, the output layer is an array of one- or two-dimensional layers. The 
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topology (structure) of the two-dimensional output layer can be rectangular, hexagonal or a random 
connection. Each node in the input layer is connected to each node in the output layer by weight. 
Figure 1 shows the topology of the SOM networks.

Figure 1. Topology of the SOM networks.

SOM is (essentially) a nonlinear map from a free-dimension discrete or continuous space 
“V” to a free-dimension discrete space “A”. The application of the vector map helps determine the 
best matching unit “S” in the output space “A” for a specified vector belonging to “V”. The weight 
vector “W” of “S” can be regarded as the coordinate of “S” projected onto the input space. The 
driving function of neurons is generally a linear function; therefore, the output depends on the 
Euclidean distance between input vectors “X”:

And the weight vector “W”

the value is given as

When the neuron “C” is the winner, it meets the conditions:
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Here, ||□||presents the Euclidean distance. The output space “A” represents the input 
space “V”, by approximately adjusting the weight vector “W”.

The algorithm is summarized as follows: 1) Initialization: Random values were chosen 
for the initial weight vector Wi(0). 2) Sampling: Sample X was drawn from the input space with a 
certain probability; the vector X represents the activation pattern that is applied to the lattice. The 
dimension of vector X is equal to N. 3) Similarity matching: The best-matching (winning) neuron 
was found.

4) Updating: The weight vector of the neighborhood neurons of j(X) was adjusted using 
the following update formula:

where, ƞ(n) is the learning-rate parameter, and hij(x) is the neighborhood function centered on the 
winning neuron j(X); both ƞ(n) and hij(x) are dynamically varied during learning, for best results.

5) Continuation: Step 2 was continued with until no noticeable changes in the feature map 
were observed.

FCSOMs

In this experiment, a new computational model, called FCSOMs, was introduced. FCSOMs 
creatively take advantage of granule computing and the statistical learning theory to provide a new 
model for solving complex classification problems.

Advantages of FCSOMs

FCSOMs are built from information granules, which are intelligently partitioned using 
clustering algorithms. The inherent function distribution of the genes can be performed by 
intelligent partitioning of the fuzzy clustering algorithms. A complex classification problem can 
be converted to multiple smaller problems via function partitioning, in order to increase the 
specificity and efficiency of the learning tasks for each FCSOM. Each FCSOM concentrates 
on highly correlated samples in each function subspace, without being distracted by noise from 
other function clusters. Therefore, the key genes in each function cluster can be potentially 
mined by the FCSOMs.

Since granulation by fuzzy clustering may introduce irreverent information into each 
granule without considering the expressional values of the gene, machine learning techniques are 
required to identify the strength of correspondence between key genes and the medium for each 
function belonging to the same function. FCSOM can filter out potentially unreliable genes and 
can select potentially reliable differentially expressed genes for each function after learning the 
relationship between key genes and a specific function.
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Modeling of FCSOMs for each function cluster

The distribution patterns for the expression data of the genes in each cluster are quite 
different. This requires customization of the functionality and modeling of FCSOMs to identify the 
differentially expressed genes in each cluster. (Please refer to the section explaining the setup for 
the definition of differentially expressed genes). The FCSOM for each function cluster was designed 
to identify differentially expressed genes than could be reliably predicted to be highly correlated with 
the media. The most effective classification principle is to select the simplest model; therefore, a two-
neuron (each neuron represents one cluster center) SOM network structure was adopted.

The procedure is summarized as follows:
1) Sampling: Calculate the Euclidean distances of data vectors of each gene between the 

standard group and tomato group, between the standard group and ethanol group and between 
the tomato and ethanol groups.

Here, Xi and Yi separately represent the vector of the gene “i” in two different groups. The 
former 3000 genes with larger Euclidean distances were considered to be the important genes in 
each contrastive group.

2) Clustering: The important genes in each contrastive group were clustered according to 
their functions using DAVID_6.7. Following this, the first 25 significant gene clusters were reserved.

3) Classification: If one cluster consists of n genes, there would be n elements in 32 
sample vectors. The data samples of one functional cluster were divided into two classes (based 
on the type media) by SOM.

4) Calculating for accuracy: If the calculated accuracy was 90% upon completion of the 
classification, the data was directed towards step 6 (all genes in the function clusters were regarded 
as differentially expressed genes); otherwise, step 5 was performed.

5) The accuracy (p) was calculated according to the following formula; here, the numberF 

denotes the number of correctly classified genes in cluster F by SOM, while total numberF indicates 
the total number of genes in cluster F.

6) Gene knock-out algorithm: The gene knock-out algorithm is summarized in Figure 2.
7) Continuation: Step 3 was continued with until the former 25 function clusters of each 

contrastive group were completed.
Assuming n genes to be in one cluster and i goes from 1 to n, the algorithm terminates 

when the accuracy stops rising. In case of more than one classification with the highest accuracy 
in the algorithm, the distance score was used to evaluate the quality of the classifications with the 
highest accuracy; in addition, the gene with the highest distance score was retained.

The distance score was calculated using the following formula. Upon the completion of 
classification of data samples in each cluster by SOM, n-dimension weight vectors of the two winning 
neurons can be thought of as characteristics data representing different media. The classification 
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levels for the two neurons of the weight vector were measured from the Euclidean distance. 
Differences can arise as the clusters have different numbers of genes and the dimensions of the 
weight vectors of the two winning neurons are different, when data samples from different clusters 
are classified. This problem was avoided by dividing the Euclidean distance by the dimensions of 
the weight vectors to measure the classification level (or the distance score):

Here, w1 and w2 separately represent the weight vector of neuron 1 and 2, respectively; n 
indicates the dimension of weight vectors.

Figure 2. Flow diagram of gene knock-out algorithm.
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RESULTS AND DISCUSSION

The purpose of this study was to explore the effects of different larval growth medium on the 
expression of adult D. melanogaster genes, and to mine the differentially expressed genes.

First, the former 3000 genes with the greatest differences in expression were selected from among 
the standard-tomato, standard-ethanol, and tomato-ethanol contrastive groups for data preprocessing by 
DAVID_6.7; subsequently, three working databases were obtained for use in the next section.

The NCBI database provided the probe names and gene expression data for D. 
melanogaster in the GPL1322 platform. The first group was maintained in standard medium 
(standard), the second group was maintained in tomato medium (tomato), and the third group was 
maintained in ethanol-supplemented medium (ethanol). Each gene had a 16-dimensional vector

This was composed of the specific gene expression data in 16 samples (corresponding 
to a specific gene probe). The 16-dimensional vectors of all genes in the standard, tomato, and 
ethanol groups were used to populate the three original databases.

The effect of the differences in the original gene records to model were removed by 
normalization of each gene record to [0, 1].

Comparison of accuracy and gene number between clustering algorithm and 
FCSOM model in standard-ethanol group

The samples containing the former 3000 genes with larger Euclidean distances in the 
standard-ethanol group were clustered into 79 function clusters. The algorithm given in the FCSOM 
modeling section for each function cluster was used for the former 25 clusters, the results of which 
are detailed as Figures 3 and 4.

Figure 3. Comparison of classifications accuracy between the clustering algorithms and the FCSOM models in 
standard-ethanol group.
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The data presented in Figure 3 compares the accuracy of the classification between 
the clustering algorithms in DAVID_6.7 and the FCSOM models in standard-ethanol group. The 
horizontal axis displays the functional clusters arranged left to right as given by the DAVID_6.7. The 
vertical axis denotes the accuracy. The accuracy for the 23 function clusters improved significantly, 
with the average accuracy increasing from 59 to 72.25%. The cluster absent MD neurons and 
olfactory sensilla (5 genes) and new glue 3 (6 genes) had too few genes; therefore, the gene-
knockout algorithm was not effective in these cases, and the accuracy did not increase. Despite 
this, the FCSOM method worked well overall.

Figure 4 displays the number of genes between the clustering algorithm and the FCSOM 
model. As in Figure 3, the function clusters were presented along the horizontal axis and the 
vertical axis displayed the number of genes. Some clusters showed obvious change, while some 
did not. A total of 130 genes were knocked out; the number of differentially expresses genes altered 
from 868 to 738. The odorant receptor cluster showed 63 genes and 79 knocked out differentially 
expressed genes, respectively. This indicated that the ethanol-based larval medium affects the 
gustatory development of D. melanogaster (Inoshita and Tanimura, 2006; Bai et al., 2009; Adachi 
et al., 2012).

Comparison of accuracy and gene number between clustering algorithms and 
FCSOM models in the standard-tomato group

The samples containing the former 3000 genes with larger Euclidean distances in the 
standard-tomato group were clustered into 75 function clusters. The algorithm presented in the 

Figure 4. Comparison of numbers of genes between the clustering algorithms and the FCSOM models instandard-
ethanol group.
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FCSOM modeling section (for each function cluster) was used for the former 25 clusters and the 
results are detailed in Figures 5 and 6.

Figure 5. Comparison of classifications accuracy between the clustering algorithms and the FCSOM models in the 
standard-tomato group.

Figure 6. Comparison of numbers of genes between the clustering algorithm and the FCSOMs model in the standard-
tomato group.
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The data presented in Figure 5 compares the accuracy of the classification between the 
clustering algorithms in DAVID_6.7 and the FCSOM models in the standard-tomato group. The 
horizontal axis denotes the function clusters arranged left to right, as given by DAVID_6.7. The 
vertical axis indicates the accuracy. The accuracy for the 20 function clusters improved significantly, 
with the average accuracy increasing from 59.5 to 71.3%. The accuracy of the Odorant-binding 
protein 56g and Odorant receptor 65c proteins showed significant improvements. This showed the 
effectiveness of the FCSOM modeling.

Figure 6 shows the number of genes between the clustering algorithm and FCSOM model 
in the standard-tomato group. Some clusters showed obvious changes, while the others did not. 
A total of 511 genes were knocked out, while the number of differentially expressed genes altered 
from 778 to 267. Eighty genes were knocked out in the Odorant receptor 65c cluster, while 3 were 
knocked out in the Odorant-binding protein 56g cluster. The remaining genes were regarded as 
being differentially expressed. This also affects indicated that the tomato-based larval medium also 
affects the gustatory development of D. melanogaster.

Comparison of accuracy and gene number between clustering algorithms and 
the FCSOM models in the tomato-ethanol group

The samples containing the former 3000 genes with larger Euclidean distances in the 
tomato-ethanol group were clustered into 92 function clusters. The algorithm presented in the 
FCSOM modeling section (for each function cluster) was used for the former 25 clusters and the 
results are presented in Figures 7 and 8.

Figure 7. Comparison of classifications accuracy between the clustering algorithm and FCSOMs model in the tomato-
ethanol group.
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The data present in Figure 7 compares the accuracy of the classification between the 
clustering algorithms in DAVID_6.7 and the FCSOM models in the tomato-ethanol group. The 
horizontal axis denotes the function clusters arranged left to right, as given by DAVID_6.7. The 
vertical axis denotes the accuracy. The accuracy improved significantly for 20 function clusters; while 
the average accuracy increasing from 61.5 to 70.25%. This indicated the effectiveness of FCSOM.

Figure 8 shows the number of genes between the clustering algorithm and the FCSOM 
model. A total of 468 genes were knocked out, and differentially expressed genes altered from 
888 to 420. The former 25 groups did not contain the olfactory and gustatory function clusters. 
This implied that the use of both the tomato and ethanol media for larval affects the gustatory 
development of D. melanogaster (Inoshita and Tanimura, 2006; Bai et al., 2009; Miller and Carlson, 
2010; Adachi et al., 2012; Martin et al., 2013), and the differences between these did not appear 
to be significant.

These numerical experiments show that the differentially expressed genes were mined 
successfully using FCSOM. The most important 25 function clusters with differentially expressed genes 
in each contrasting group were accepted. The analyses revealed the advantages of the new model.

Previous studies utilized conventional clustering algorithms to capture the gene-to-medium 
relationship. However, the nonlinear complex relationship may not be effectively explored by the 
clustering membership functions. A new model called FCSOMs was proposed to solve this problem. 
Each FCSOM was customized to map the data samples to two groups in each functional cluster. 

Figure 8. Comparison of numbers of genes between the clustering algorithm and FCSOMs model in the tomato- 
ethanol group.
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This strategy has increased the generalization capability of FCSOM. The superior performance 
of FCSOM provides a new approach to combine granular computing and advanced statistical 
learning algorithms.

SOM is not suitable for use in large datasets because of the large training time 
complexity. This could be overcome by FCSOM, which had special characteristics, such as use 
the parallelization of the training tasks for each FCSOM, which could allow data mining in large 
datasets. The satisfactory experimental results revealed the utility of this new computational model 
in solving complex classification problems in huge datasets.
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