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ABSTRACT. Bladder cancer is a common cancer worldwide and its 
incidence continues to increase. There are approximately 261,000 cases 
of bladder cancer resulting in 115,000 deaths annually. This study aimed 
to integrate bladder cancer genome copy number variation information 
and bladder cancer gene transcription level expression data to construct 
a causal-target module network of the range of bladder cancer-related 
genomes. Here, we explored the control mechanism underlying bladder 
cancer phenotype expression regulation by the major bladder cancer 
genes. We selected 22 modules as the initial module network to expand 
the search to screen more networks. After bootstrapping 100 times, we 
obtained 16 key regulators. These 16 key candidate regulatory genes 
were further expanded to identify the expression changes of 11,676 
genes in 275 modules, which may all have the same regulation. In 
conclusion, a series of modules associated with the terms ‘cancer’ or 
‘bladder’ were considered to constitute a potential network.
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INTRODUCTION

Bladder cancer is the fifth most common cancer and it caused more than 115,000 deaths 
worldwide in 2008 (Jemal et al., 2010). Although the majority of patients present with super-
ficial bladder tumors, 20-40% either present with or develop invasive disease (Spruck et al., 
1994). Another 10% of patients are diagnosed with squamous cell carcinoma, adenocarcinoma, 
sarcoma, small cell carcinoma, and secondary deposits from cancers elsewhere in the body.

There is currently considerable information available on the genetic alterations that 
contribute to the development of bladder cancer; however, to date, the specific genes associ-
ated with bladder cancer remain unknown. Some of the alterations identified in bladder cancer 
have clear associations with outcome; for example, mutational inactivation of the cell cycle 
regulator proteins p53 and the retinoblastoma (RB) protein (Habuchi et al., 1993; Brennan et 
al., 1995). However, on their own, these single markers have insufficient predictive power to 
be applied in the management of individual patients (Brennan et al., 1995).

In general, the major cause of cancer is related to genome variations, and such variants 
can often affect the expression of regulatory genes, which will hereafter be referred to as modu-
lators. These modulators will cause cancer by further affecting the expression of downstream 
genes. Therefore, the spectrum of cancer samples and their ultimate phenotypic changes can 
be identified at the genome level. This study aimed to integrate bladder cancer genome copy 
number variation information and bladder cancer gene transcription level expression data to 
construct a causal-target module network of the range of bladder cancer-related genomes.

MATERIAL AND METHODS

Data resource

In order to identify the possible mechanism of bladder urothelial carcinoma (BLCA) 
and mutants of the genome, we collected data from The Cancer Genome Atlas (TCGA), which 
is a cancer research organization comprised of many institutions that publishes several types 
of cancer-related data, including genome, epigenetic modification, and expression profile data 
of mutations associated with more than 20 different types of cancers (Hede, 2008; Cancer Ge-
nome Atlas Research Network et al., 2008). The TCGA currently contains data of 59 genome 
copy variations and 56 gene expression profiles from bladder cancer samples. Since the ex-
perimental method required identifying data from corresponding samples for reliable results, 
we therefore selected 55 of the 59 genomic copy number variations that corresponded to 55 
samples in the spectral expression database; these matched 55 samples served as the primary 
dataset for analysis.

Finally, we filtered copy variation information and gene expression information of 
the 55 samples, and integrated the read per kilobase of exon per million fragments Mapped 
(RPKM) value of every RNA sequence (RNA-seq) to a gene as the expressed array of samples.

Analysis methods

The JISTIS tool (Sanchez-Garcia et al., 2010) was used to statistically analyze ge-
nome copy number variation regions to find potentially affected genes. JISTIC is a software 
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tool based on the GISTIC algorithm (Beroukhim et al., 2007), which determines by calculat-
ing a G-Score to statistically identify variant regions of the genome that are associated with 
cancer more often than would be expected by chance. For all samples, each copy number 
variation was assigned a G-Score using Equation 1:

( ) ( , ) ( ( , ) )AMP AMP

i
G m CN m i I CN m i= × > Θ∑ (Equation 1)

Wherein I (x) represents the indicator function and CN (m, i) represents the mth number of 
copies in the variant of sample i. The GISTIC algorithm compares the G-Score of each copy 
number variation in each sample with the expected copy number variation value obtained by 
perturbation and applies the false discovery rate (FDR) correction for multiple comparisons to 
obtain a q value; q values less than 0.25 were considered as potential genomic copy number 
variation regions.

The TCGA database provides identification of the variation region of each bladder 
cancer sample based on Affymetrix 6.0 chip array results. We input the segment files of each 
sample into JISTIC to obtain the deletion region of the candidate variants, and then identified 
the closest non-overlapping gene from the regions as a candidate regulator gene set, including 
the occurrence of copy number amplifications and reductions of the gene set.

Construction of causal-target module network with the Copy Number and 
Expression In Cancer (CONEXIC) algorithm

CONEXIC (Akavia et al., 2010) was used to integrate the genome variation data with 
the gene expression data in order to find the dominant variant gene and its dominant down-
stream regulatory network based on Bayesian analysis. The variation in regulatory modules 
of gene expression from multiple samples can be largely explained by using a combination of 
score-based search methods to identify a group of regulators. This method was used to build 
a network of causal-target modules through single modulator and network searches, applying 
bootstrapping to determine confidence levels of the analysis. First, CONEXIC was used to 
find a set of co-expressed genes, and then the most likely regulator of these co-expressed genes 
were identified. The procedure mainly involved the following two steps: 1) Single Modula-
tor: We obtained a module formed by preliminarily identified co-expressed genes, and then 
the differentially expressed target genes and the most likely affected regulators were tested to 
identify the regulators with the highest confidence level based on bootstrapping. 2) Module 
Networks: We identified networks based on the Module Networks algorithm (Segal et al., 
2003). This step takes a long time, and identifies the optimal regulation network by improving 
those already generated in step (1) through the cycle network integration module.

Functional analysis of the causal-target module network with Literature Vector 
Analysis (LitVAn)

LitVAn is a method used to detect gene modules based on a literature search. LitVan 
operates on the same main principle as gene set enrichment analysis, which is to find the bio-
logical function term with the highest degree of enrichment. This method is mainly based on 
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the TF-IDF value, wherein TF is the term frequency in the target document, while the inverse 
document frequency (IDF; Equation 2) identifies the term that is the most common in the litera-
ture based on a word or rare keyword search. Higher TF-IDF values indicate that the associated 
group of keywords tends to appear together (Salton et al., 1988). We calculated the functional 
TFs among a wide range of studies related to these genes to obtain the TF-IDF value.

| |( , ) log
|{ : } |

DIDF t D
d D t d

=
∈ ∈

(Equation 2)

wherein D represents the data from the literature and t represents the number of occurrences 
of the word or keyword.

The overall experimental procedure is shown in Figure 1.

Figure 1. Overall experimental procedure. The white modules represents the methods and the gray modules 
represent the results.
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RESULTS

JISTIC analysis of genome copy number variation regions

We input the copy variation data files and the location profile from the Affymetrix SNP-
6.0 array into JISTIC and obtained 919 variation regions, including 709 affected candidate genes. 
After FDR correction, 205 candidate genes showed increased copy numbers and 214 candidate 
genes showed copy number deletions.

Signal modulators

The candidate copy number variation genes selected as candidate regulators, as well as the 
55 samples of copy number variations in the expression profiling matrix were input to the CONEXIC 
Single Modulator module for analysis. After bootstrapping 100 times (each bootstrapping was 
carried out 10,000 times per mutation), the potential candidate regulators in different samples were 
further screened. Preliminary analysis revealed 22 modules whose candidate gene copy number 
variation could explain expression changes in 12,611 genes with high confidence (>90%).

Module network

The 22 modules selected for the initial module network were used to expand the search 
to screen for more networks. After bootstrapping 100 times, we obtained 16 key regulators, which 
are shown in Table 1.

CNV-AMP genes CNV-DEL genes

  81607   23682
169166     1806
256435 653316
    9319 219972
      286   58480
        34       781
    5468       189
       304
       834

Table 1. 16 CNV genes.

These 16 key genes identified as candidate regulatory genes were further expanded us-
ing the 22 modules identified in the first step (Single Modulator), and then screened (Module 
Network). The final results showed that the 16 key regulatory genes controlled the expression 
changes of 11,676 genes in 275 modules, indicating that all of these modules may have the same 
regulation mechanism. Although various regulatory mechanisms were identified, determining the 
specific function of these modules as well as their regulation mechanisms requires controlled 
biological experiments in organisms.

LitVAn functional analysis

The 11,676 genes identified in the 275 modules were subjected to functional analysis 
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by using the LitVAn literature search based on keyword co-occurrence frequency in publica-
tions related to these genes to calculate the TF-IDF value. A series of modules associated with 
the words ‘cancer’ or ‘bladder’ were considered to represent a potential network (Figure 2, 
Tables 2, 3, 4).

Term      TF*IDF

Smoker 83.5857214407
Macrophage 82.3193406866
tnf 80.918584375
Pressure 76.5369441426
Bladder 67.6205431966
Category 62.5586649346
Discovery 62.3398500029
Caucasian 62.0480050393
Tumorigenesis 59.8631371386
Covariates 59.5879644243

Table 2. Module 140 (21 genes).

Term      TF*IDF

Prostate 53.9674123853
Invasion 41.8961155994
Microenvironment 37.2441435758
Administration 35.8849004726
Apc 35.7519550316
Metastasis 32.8811633203
Codes 31.712412
Bladder 30.6717930645
Cd11c 30.0737204026
Committe 29.897352

Table 3. Module 217 (16 genes).

Figure 2. Gene regulation of key modules.

TF = target document frequency; IDF = inverse document frequency; tnf = tumor necrosis factor.

Apc = adenomatous polyposis coil; Cd11c = complement component 3 receptor 4 subunit. For other abbreviations, 
see legend to Table 2.
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DISCUSSION

Bladder cancer is a common cancer worldwide whose incidence continues to increase. 
It is estimated that there are 261,000 cases of bladder cancer resulting in 115,000 deaths an-
nually worldwide. Although the majority of patients present with superficial bladder tumors, 
20 to 40% either present with or develop invasive disease (Lerner et al., 1993). Therefore, the 
pathological stage is an important survival determinant for patients undergoing cystectomies 
for bladder cancer.

In this study, we employed a new analysis method to directly determine the relation-
ship between the copy number variation status and abnormal downstream gene expression. To 
accomplish this, we took advantage of the one-to-one relationship of gene copy numbers and 
the expression spectrum from samples in the TCGA database, and the stability of the results 
were verified with repeated sampling inspection. The ultimate goal of this approach was to 
identify the major genes and regulatory genes contributing to the development of bladder 
cancer. Further progress in the Human Genome Project, together with the development of new 
technologies, such as microarray techniques to analyze global changes in gene expression 
(Kallioniemi et al., 1995; DeRisi et al., 1996) or gene copy number (Bignell et al., 2004), will 
undoubtedly lead to the identification of the genes targeted by these deletions and amplifica-
tions relatively soon.

Currently, predictive power is limited in clinical tests. Multiple genetic and epigenetic 
events contribute to tumor development, and few tumors are genetically identical. To improve 
predictive power at the molecular level, the tumor-genotype interaction can be examined in 
different ways. One example is the potential escape from G1 checkpoint control by mutational 
activation or inactivation of a gene or a group of genes involved in this control mechanism 
(Grossman et al., 1998). Through the present analysis, we were able to identify more than 
one variation region in the bladder cancer genome and the genes affected. By combining 
this information with the expression profiles of these genes, we identified the affected genes 
and the regulatory network. The module network results revealed 16 key regulators that con-
trolled 275 modules, and these genes were found to be involved in several different regulatory 
mechanisms. Although these genes were identified as candidate molecular markers after boot-
strapping cancer samples several times, determining the specific functions of these regulators 
requires further biological experimental verification.

To date, genetic studies have generally attempted to identify the spectrum of genetic 
changes associated with bladder cancer. Several known oncogenes and genes have been found 
to be mutated in cancers, including the genes encoding the G1 checkpoint proteins, p53 and 

Term      TF*IDF

Invasion 247.269095614
Bladder 197.451154675
Smoke 167.239032731
Egf 152.783070364
Skin 149.664463831
Collagen 143.725896548
Head 141.58796797
Neck 138.239332667

Table 4. Module 60 (13 genes).

Egf = epidermal growth factor. For other abbreviations, see legend to Table 2.
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D1 (Sidransky et al., 1991; Spruck et al., 1993; Habuchi et al., 1993; Shibata et al., 1994). 
Predictions from the model for G1 checkpoint control are that complete dysregulation re-
quires inactivation of RB or INK4A and p14/ARF or TP53, and that the phenotype generated 
by alterations to either TP53 or RB alone will be less aggressive than when both pathways 
are altered. The ideal situation would be to use a single marker, possibly a final effector in a 
pathway, to identify a specific phenotype (Cordon-Cardo et al., 1997). A larger study will be 
needed to confirm the apparent predictive power of this single marker.

In addition, there is currently no clear understanding of the molecular basis of the 
differentiation process involved in bladder cancer. Although identifying the mechanism in-
volved in bladder cancer-related cell phenotypes, such as mutants and variation of cell cycle 
checkpoints, would yield a potentially powerful suite of markers, in the long term, it would be 
simpler to identify single protein surrogates for these phenotypes that are easily measurable 
by using immunohistochemistry.
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