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ABSTRACT. The evolutionary tree reconstruction algorithm called SEM-
PHY using structural expectation maximization (SEM) is an efficient ap-
proach but has local optimality problem. To improve SEMPHY, a new al-
gorithm named HSEMPHY based on the homotopy continuation principle 
is proposed in the present study for reconstructing evolutionary trees. The 
HSEMPHY algorithm computes the condition probability of hidden vari-
ables in the structural through maximum entropy principle. It can reduce the 
influence of the initial value of the final resolution by simulating the process 
of the homotopy principle and by introducing the homotopy parameter β. 
HSEMPHY is tested on real datasets and simulated dataset to compare with 
SEMPHY and the two most popular reconstruction approaches PHYML 
and RAXML. Experimental results show that HSEMPHY is at least as good 
as PHYML and RAXML and is very robust to poor starting trees. 
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InTRoduCTIon

The inference of phylogenies with computational methods has many important ap-
plications in medical and biological research, such as drug discovery and conservation biol-
ogy. Well-known techniques for phylogeny analysis include distance-based methods such as 
neighbor-joining, maximum parsimony, and maximum likelihood (ML). A number of studies 
(Rosenberg and Kumar, 2001; Ranwez and Gascuel, 2002) have shown that ML programs 
can recover the correct tree from simulated data sets more frequently than other methods can, 
which supported numerous observations from real data and explains their popularity.

However, the disadvantage of ML methods is that they require considerable computa-
tional effort. The fundamental algorithmic problems involve an immense amount of potential 
tree topologies. This number grows exponentially with the number of sequences n, e.g., for 
n = 50 organisms there exist already 2.84 × 1076 alternative topologies; a number almost as 
large as the number of atoms in the universe (≈1080). On the other hand, even computing the 
optimal values of edge lengths on a single tree is not an easy task. This requires cumbersome 
numerical optimization techniques simply due to the number of parameters (2n-3 edges, where 
n is the number of sequences). In fact, it has already been demonstrated that finding the optimal 
tree under the ML criterion is NP-hard (Roch, 2006). Consequently, the introduction of heuris-
tics becomes inevitable.

Research in ML presently focuses on two points. One is on search strategies to re-
duce the search space in terms of potential tree topologies evaluated. For example, hill climb-
ing-based reconstruction algorithms (Felsenstein, 1993; Olsen et al., 1994; Wolf et al., 2000; 
Guindon and Gascuel, 2003); simulated annealing-based reconstructions (Salter and Pearl, 
2001); genetic algorithm-based reconstructions (Lewis, 1998; Lemmon and Milinkovitch, 
2002; Brauer et al., 2002; Zwickl, 2006); Markov chain Monte Carlo algorithms are widely 
used in Bayesian methods (Rannala and Yang, 1996; Li et al., 2000; Simon and Larget, 2000; 
Huelsenbeck and Ronquist, 2001). The other is on the technical issues of the calculation of ML 
(Kosakovsky Pond and Muse, 2004; Stamatakis, 2002, 2006).

However, despite that many efforts have been made in the last decades, inference of 
evolutionary trees using the ML method is far from satisfactory (Williams and Moret, 2003), 
which greatly frustrates many researchers. 

On the other hand, Friedman et al. presented in 2002 an evolutionary tree reconstruc-
tion using structural expectation maximization (SEM; Friedman, 1998) for the first time and 
achieved some success, which provided a new direction in the research of phylogeny recon-
struction. SEM is very efficient in estimating model structures using ML with incomplete data. 
Starting from a structure, SEM completes the data iteratively and probabilistically, according 
to the distribution induced by the current model, and uses the completed data to evaluate dif-
ferent candidate structures. The merit of SEM includes reliable global convergence, low cost 
per iteration and easy programming. 

However, in SEM, the condition probability of the hidden variables is directly com-
puted by Bayes’ rule and the structure obtained in every iteration is optimized with respect to 
the expected likelihood value of the optima in the last iteration. As a result, in later iterations 
of the procedure, the trees that maximize this expected likelihood value will tend to be similar 
to the tree found in the previous iteration. Furthermore, this self-bias gives rise to stationary 
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points of SEM iterations. Moreover, theoretical (Steel, 1994) as well as empirical evidence us-
ing simulated (Rogers and Swofford, 1999; Chor et al., 2000) and real (Salter and Pearl, 2001) 
data has demonstrated that multiple maxima exist under ML. Therefore, the reconstruction 
algorithm using SEM such as SEMPHY can often be strapped in local optima.

The homotopy method belongs to the field of global optimization techniques (Wu, 
1996). The main idea is that a smoothed version of the objective function is first optimized. 
With enough smoothing, the optimization will be convex and the global optimum can be found. 
Smoothing then increases and the new optima are computed, where the solution found in the 
previous step serves as a starting point. The algorithm iterates until there is no smoothing. The 
illustration of the homotopy continuation method is shown in Figure 1.

To escape from local optima, this paper further enhances the SEMPHY by simulating 
the process of the homotopy principle. The new reconstruction algorithm called HEMPHY 
optimizes a series of smoothed versions of the objective functions with different homotopy 
parameter β but not the objective function directly. With enough small β, the global optima 
can be found without the influence of the initial value. β then increases and the new optima 
are computed, where the solution found in the previous step serves as a starting point. Thus, 
with the increase of β, HEMPHY can finally converge on the global optimum of the objective 
likelihood function.

The remainder of the article is organized as follows. Section 2 reviews the ML and 
SEM algorithms. Section 3 gives the derivation of the new SEM algorithm called HSEM. 
Section 4 details the evolutionary tree reconstruction algorithm HSEMPHY using HSEM. Sec-
tion 5 compares HSEMPHY with SEMPHY and the two popular reconstruction approaches 
through experiments and concludes this paper.

Figure 1. Illustration of the homotopy continuation method.
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Maximum likelihood and SEM algorithm

In terms of graph theory, a rooted evolutionary tree is a binary tree. Branch lengths of 
each edge in the graph represent evolutionary distances, which is a measure of how close (or 
different) sequences are. Internal nodes in the tree represent hypothetical ancestors, which 
evolved into distinct descendants. The leaves of the tree represent known sequences.

Given a dataset Dn×m containing n sequences with m sites, the main idea of ML is to 
find a tree T with highest likelihood value P(D|T,t) or log P(D|T,t), where T and t represent the 
branch pattern and the branch length of the evolutionary tree T, respectively. 

The likelihood function of an evolutionary tree is based on a model of evolution. To simpli-
fy computations, the current models are generally assumed to have the two properties as follows: 
•	 All sites evolve identically and independently. Thus, the likelihood for all sites is the 

product of the likelihoods for individual sites. 
•	 Evolution is time reversible, that is

( ) ( )p p p pt tij jii i j j j i=→ → , 
 where pi denotes the probability of state i, 

tij  ( tij ≥0) 

 denotes the time undergone from state i to state j , and 

( )p tiji j→  
 denotes the probability of state i becoming state j after tij . 

The likelihood function of the whole dataset D given the phylogeny (T,t) is then de-
fined as follows:

  
(Equation 1)

According to ML, we need to find a topology T and associated parameters t that maxi-
mizes this likelihood. The evolutionary tree (T,t) is, in some sense, the most plausible candidate 
for having generated the data.

Even for simple models of evolution (parsimony), and for a binary alphabet, the problem 
has been shown to be NP-hard since there are n-3 internal nodes that are unknown, and we need 
to jointly optimize over the parameters. For general stochastic models, no polynomial granted 
optimization algorithm is known even for a fixed topology (Rambaut and Grassly, 1997). Even 
heuristics are often too computationally intensive for all but small data sets. All this has led to the 
situation that, although it has been shown that ML produces more accurate results, researchers are 
forced to use some other optimization criterion instead of ML for real life applications.

However, when internal nodes are assumed known, the likelihood of the complete data is

  (Equation 2)



Genetics and Molecular Research 6 (3): 522-533 (2007) www.funpecrp.com.br

Evolutionary tree reconstruction 526

As shown in Equation 2, in case of complete data, the global optimization problem 
breaks down into significantly smaller problems, where we optimize the parameters of each 
independent of the rest. The ML problem is reduced to a combinatorial optimization problem, 
which greatly decreases the computation complexity. 

Therefore, to decrease the computation complexity, P(D|T,t) can be approached 
through P(D,H|T,t). This is the proper idea of SEM.

SEM is very efficient for estimating model structures using ML with incomplete 
data. Starting from a structure, SEM iteratively and probabilistically completes the data 
according to the distribution induced by the current model and uses the completed data 
to evaluate different candidate structures. Each iteration of the SEM algorithm consists 
of three processes: the E-step, the M-step and the S-step. In the E-step, the hidden data 
are estimated given the observed data and current estimate of the model and parameters. 
This is achieved using the conditional expectation, explaining the choice of terminology. 
In the M-step, the likelihood function is maximized under the assumption that the miss-
ing data are known. The estimates of the missing data from the E-step are used in lieu of 
the actual hidden data. In the S-step, the structure is adjusted according to the parameters 
estimated in M-step. Convergence is assured since the algorithm guarantees the increase 
in the likelihood value at each iteration. The main idea of the SEM-based evolutionary tree 
reconstruction algorithm called SEMPHY, introduced by Friedman, is that in the (k + 1)th 
iteration, E-step computes expectation

for all links (i, j); M-step optimizes link lengths by computing for each link (i, j) its best length

( )1 ( )( )arg max , , | ,k kkQ i j tt tTtij
+ = , computes ( )1 ( )( ), , | ,k kkQ i j t tTij

+  

and then fills matrix

( )( )[ ][ ] ( )11 ( )( ), , | ,kk kkT i j Q i jW t tTij
++ = ; 

S-step constructs a topology 1
*
kT + that maximizes ( )( )1k TW +

by finding a maximum spanning tree and then constructs a bifurcating topology ( )1kT +  such that 

( ) ( )1 1 11, ,*
k k kkL Lt tT T+ + ++= .

However, in SEM, the condition probability of the hidden variables is directly comput-
ed by Bayes’ rule and the structure obtained in every iteration is optimized with respect to the 
expected likelihood value of the optima in the last iteration. As a result, in later iterations of the 
procedure, the trees that maximize this expected likelihood value will tend to be similar to the 
tree found in the previous iteration. Furthermore, this self-bias gives rise to stationary points of 
SEM iterations. This makes the performance of SEM depend on its starting point. To improve 
SEMPHY, a new algorithm named HSEMPHY based on the homotopy principle is proposed in 
this paper for reconstructing evolutionary trees. The HSEMPHY algorithm computes the con-
dition probability of the hidden variable in the structural through maximum entropy principle. 
It can reduce the influence of the initial value on the final resolution by simulating the process 
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of the homotopy continuation principle to resolve problems and by introducing the homotopy 
parameter β. The problem to get trapped in local optima is also then overcome.

HSEM algorithm

Let y be observed variables, z be unobserved variables and θ be parameters to be es-
timated in model structure Mk. In case of compute data x = (y,z), the likelihood function log p 
(z,y|θ, Mk) can be seen as the function of the hidden variables z for fixed model structure Mk 
and parameter θ.

In the kth iteration, the conditional probability of z in Mk is assumed as f(z|y,Θ,Mk). 
According to the maximum entropy principle, we need to maximize the entropy

 ( ) ( )log | , , | , ,k kS f z y f z y dzM Mθ θ= − ×∫  
with respect to f(z|y,Θ,Mk) subject to the constraints of Equations 3 and 4.

 ( )log | , , 1kf z y dzMθ =∫     (Equation 3)

( ) ( )log , | , | , ,k kp z y f z y dz CM Mθ θ× =∫
   (Equation 4)

According to the variation principle, the objective function is 

( ) ( ) ( ) ( ) ( )( )log | , , | , , | , , log , | , | , ,k k k k kf z y f z y f z y p z y f z y dzM M M M Mθ θ λ θ β θ θ− × + + ×∫ . That is, 

( ) ( )1 log | , , log , | , 0k kf z y p z yM Mθ λ β θ− − + + =
   

(Equation 5)
From Equation 5, we can obtain Equation 6 as follows. 

  
(Equation 6)

Replace ( )| , , kf z y Mθ  in Equation 3 with Equation 6, we can arrive at 

( )1 1 , | , k dzp z ye M
βλ θ− = ∫    (Equation 7)

From Equations 6 and 7, thus

( ) ( ) ( )| , , , | , , | ,n k kf z y dzp z y p z yM M M
β β

θ θ θ= ∫    (Equation 8)

From the above, we can see that when β = 0, Equation 8 is a uniform distribu-
tion. When β = 1, Equation 8 is reduced to the distribution computed by Bayes’ rule. 
For 0 < β <  1, an increase of β means a change in the form of ( )| , , nf z y Mθ  from uniform 
to the distribution computed by Bayes’ rule. Therefore, Equation 8 meets the homotopy 
properties. Therefore, according to Equation 8, a homotopy function ( )( )| , , ,nH f z y Mθ β  is 
constructed as Equation 9. 
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( )( ) ( ) ( ) ( )| , , , | , , , | , , | ,n n k kH f z y f z y dzp z y p z yM M M M
β β

θ β θ θ θ= − ∫
   

(Equation 9)
where β is the homotopy parameter.

According to homotopy theory, since ( ), 1H f fβ∂ ∂ = − , then the Jacobian of H f  is 
full rank. Therefore, there is a homotopy path, that is, there is a smooth path from the 
trivial solution at β = 0 to a solution at β = 1. Typically, the path can be described by

( ), 0H f β β∂ ∂ = .
We can adopt the prediction-correction method to trace the homotopy path as the pa-

rameter β varies from 0 to 1.The procedure is shown as follows:
•	 Compute the tangent vector 

 
( ) 2k Rξ ∈  by ( ) ( ), 0kkDH f k ξβ = ; if

 , 

 then prediction direction ( ) ( )kk ξη = , otherwise ( ) ( )kk ξη =− ;

•	 Let ( )( ) ( )( ) ( ), ,k kkff kk ηβββ = + ∆ , where β∆ is the stepsize;

•	 Let ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( )
1

1 , , ,, , ,1
TTk kk k kk DH DH DHf f f Hf f fk k kk k kβ β ββ β β

−+ = −+   
.

The above is the derivation of HSEM. We can see that HSEM adds a homotopy-loop 
to the original SEM algorithm and replaces the condition probability of hidden variables origi-
nally computed by Bayes’ rule with Equation 8. When β is very small, the dependency of 
HSEM iterations on the starting point is very weak; as the iterations proceed, β increases, the 
dependency of HSEM iterations on the starting point becomes increasingly stronger. When 
β = 1, HSEM tries to determine ML precisely. When the parameter ß is initialized as 1, HSEM 
is reduced to SEM, that is, SEM is a special case of HSEM. Therefore, in theory, the optimum 
returned by HSEM is at least as good as that by SEM.

Evolutionary tree reconstruction using HSEM

On the basis of SEMPHY, introduced by Friedman, this paper presents an evolutionary 
tree reconstruction algorithm called HSEMPHY using HSEM. A significant difference between 
HSEMPHY and SEMPHY is that HSEMPHY is multiple iterations of the SEMPHY procedure 
with different parameter β. When β is increased to some size (β ≥ 1) and convergence condi-
tions are met, HSEMPHY stops.

The pseudocode of the HSEMPHY is shown as follows.
Input: a dataset D of n sequences with m sites 
Output: a phylogeny of D

1) Initialize the homotopy parameter ß and the increase stepsize β∆ of β;
2) Reconstruct an evolutionary tree T(0) with n sequences as the starting point of HSEMPHY;
3) Repeat steps 4-11 until convergence;
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4) E-step: according to prediction-correction method, compute the conditional probability

  [ ] ( ) ( )( )| , ,1... kkp a tX X Ti n=  and [ ] ( ) ( )( ), | , ,1... kkp a b tX X X Ti j n= =

 for every node i and every link (i, j), respectively. That is,

  [ ] ( ) ( )( ) ( )( ) ( )( )| , ,1... k kkkp a p a p at U u U uX X Ti n i j j i i j j ia
β β

= = ∑→ → → →

 
[ ] ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
,

, | , ,1...
,

kp a a bpU t Ui j i j j ia bkkp a b tX X X Ti j n kp a a bpU t Ui j i j j ib a a b

β

β
→ →→

= = =
∑ ∑ → →→

5) Compute expectation ( ) [ ] [ ] [ ]( )( ) ( )( ) ( ), , | , , | , ,1...k kk kQ i j t P s a s bt tT X X X Ts i j m∑= = =  for all links (i, j).

 When  ( ),i j T∈ ,  ( ) [ ] ( ) ( )( )( )( ), , | , , | , ,1...k kk kQ i j t p a bt tT X X X Ti j n= = = .  

 When ( ),i j T∉ , ( ) [ ] ( ) ( )( ) [ ] ( ) ( )( )( )( ), , | , | , , * | , ,1... 1...k k kk k kQ i j t p a p bt t tT X X T X X Ti n j n= = = .
6) M-step: optimize link lengths by computing for each link (i, j) its best length 

( )1 ( )( )arg max , , | ,k kkQ i j tt tTtij
+ =

7)  Compute ( )1 ( )( ), , | ,k kkQ i j t tTij
+

8)  Fill matrix ( )( )[ ][ ] ( )11 ( )( ), , | ,kk kkT i j Q i jW t tTij
++ =

9)  S-step: construct a topology 1
*
kT + that maximizes ( )( )1k TW + by finding a maximum  

spanning tree;
10)  Construct a bifurcating topology ( )1kT +  such that ( ) ( )11 11, ,*

kk kkL Lt tT T ++ ++ =

11)  k←k+1;
12)  Increase β by β∆ ;
13)  If β < 1, go to step 3, otherwise stop and output ( )1kT + .

The above is the description the HSEMPHY. 

ExpERIMEnTS

In this section, HSEMPHY is tested through experiments. The experiments include two 
parts. In the first part, HSEMPHY is compared with SEMPHY to test the robustness to starting 
points. In the second part, HSEMPHY is compared with the two most popular algorithms, PHYML, 
and RAXML to test the efficiency of HSEMPHY. Two versions of all algorithms are tested. One 
version is started from relatively better evolutionary trees (reconstructed by reconstruction algo-
rithms such as neighbor joining), the other version is started from random trees. Random trees are 
useful to check that the algorithm is not affected by potentially poor starting trees, while starting 
with relatively better evolutionary trees corresponds to standard use, notably regarding efficiency.

All the algorithms are also based on the HKY85 nucleotide substitution model with 
a transition/transversion ratio of 2.0, plus a four-category discrete gamma distribution of pa-
rameter 0.3. The frequencies of every nucleotide are empirical frequencies estimated from 
sequences. In addition, the stepsize increase of homotopy parameter β is 0.2.
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Comparison of HSEMpHY with SEMpHY

 To test the sensitivity to the starting points, HSEMPHY is tested on 10 real datasets, 
such as lysozymeSmall, TipDate, lysozymeLarge, CatLemurs, Rbcl55, 101_SC, 4Dat, 3dat, 
132, and 150_ARB, to compare its result and that of SEMPHY. Experimental results are shown 
in Table 1.

Table 1. Results of HSEMPHY and SEMPHY on the given datasets.

Dataset Number of seqs Number of sites SEMPHY (nj/rnd) HSEMPHY (nj/rnd)

lysozymeSmall 7 390 -918.567/-921.277 -918.567/-920.6304
TipDate 17 1485 -3824.511/-3842.173 -3824.498/-3826.995
lysozymeLarge 19 390 -1042.806/-1048.603 -1042.806/-1042.870
4Dat 35 452 -1081.723/-1083.186 -1081.723/-1081.474
3dat 39 1116 -2850.185/-2865.576 -2849.36/-2860.96
CatLemurs 35 604 -7348.583/-7384.862 -7348.533/-7374.192
Rbcl55 55 1315 -22177.69/-22792.13 -22177.61/-22319.55
101_SC 101 1858 -66139.41/-71882.72 -66139.07/-66874.38
132 132 1881 -42519.42/-43556.33 -42517.42/-42531.37
150_ARB 150 3188 -71228.24/-71694.03 -71225.82/-71251.87

The first column shows the dataset names to test, the second and third columns show the number of sequences and the number 
of sites included in every sequence in corresponding datasets, respectively, the fourth and fifth columns list the log-likelihood 
values of two versions separated by “/” of the SEMPHY and HSEMPHY on corresponding datasets, respectively. 

From Table 1, we can see that when starting from neighbor joining trees, HSEMPHY 
is at least as good as SEMPHY; while starting from random trees, HSEMPHY is better than 
SEMPHY, which means that HSEMPHY is robust to poor starting points.

Comparison of HSEMpHY with two most popular algorithms 

HSEMPHY is tested on both simulated and real datasets mentioned in the “Compari-
son of HSEMPHY with SEMPHY” subtitle to compare with the two most popular methods, 
PHYML and RAXML.

Tests on simulated datasets  

In computer simulation experiments, an important measure criterion is the Robinson-
Foulds (RF) rate which measures the topological difference between two evolutionary trees. 

Twenty-eight datasets of 40 sequences with different lengths generated by Seq-gen[29] 
are tested in this experiment. The results are shown in Figures 2 and 3.

From Figure 2, we can see that when three algorithms are all started from relatively 
better trees, none of the algorithms is always better than any of the other two algorithms in 
all datasets. On some datasets, HSEMPHY is better than others; however, on some datasets, 
PHYML (RAXML) is better than others. 

From Figure 3, we can see that the difference in the performance of three algorithms is 
distinct, where PHYML is the worst, RAXML is better and the HSEMPHY is the best.
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Tests on real datasets

HSEMPHY, PHYML and RAXML are compared on 10 real datasets mentioned in the 
“Comparison of HSEMPHY with SEMPHY” subtitle. To improve the speed, both PHYML 
and RAXML have adopted some specific technical strategy. Therefore, a direct comparison of 
running times of these three algorithms, although useful for practical purposes, does not give 
much insight into the improvements in efficiency that is achieved by our proposed method. 
Consequently, we only care about the quality of the resulting evolutionary tree. Moreover, 
since there is a difference in the way likelihood values are calculated among PHYML, RAXML 
and HSEMPHY, final trees found by PHYML and RAXML are reevaluated using PHYML 
(without doing any further optimization, but just evaluating the likelihood of the given tree) to 
enable a direct comparison.

Figure 2. Comparison of different algorithms starting from relatively better trees. RF = Robinson-Foulds rate.

Figure 3. Comparison of different algorithms starting from random trees. RF = Robinson-Foulds rate.
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The experimental results are shown in Table 2. 

From Table 2, we can see that when starting from a relatively better tree, HSEMPHY 
is comparable with PHYML and RAXML; while starting from random trees, HSEMPHY is the 
better than PHYML and RAXML.

From the above experiments, it can be concluded that that HSEMPHY is at least as 
good as the PHYML and RAXML and is very robust to poor starting trees.
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or HSEMPHY) starting from the tree reconstructed by neighbor joining and the second part is the average results of the version 
of algorithm (PHYML or HSEMPHY) starting from random trees. In the third column, the first part is the version of RAXML 
starting from the tree reconstructed by maximum parsimony, and the second part is the average result of the version of RAXML 
starting from random trees. 
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