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ABSTRACT. Artificial neural networks have shown great potential when 
applied to breeding programs. In this study, we propose the use of artificial 
neural networks as a viable alternative to conventional prediction methods. 
We conduct a thorough evaluation of the efficiency of these networks with 
respect to the prediction of breeding values. Therefore, we considered 
eight simulated scenarios, and for the purpose of genetic value prediction, 
seven statistical parameters in addition to the phenotypic mean in a network 
designed as a multilayer perceptron. After an evaluation of different network 
configurations, the results demonstrated the superiority of neural networks 
compared to estimation procedures based on linear models, and indicated 
high predictive accuracy and network efficiency.
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INTRODUCTION

Researchers conducting plant or animal genetic breeding research daily face the challenge 
of recommending superior genotypes with a view towards an increased yield of the population 
under study. Therefore, biometric genetics, together with concepts from quantitative genetics and 
population studies, has contributed considerably to genetic breeding through methods that assist 
a breeder in identifying superior genotypes, predicting genetic gains, and recommending varieties 
(Cruz, 2005). A highly relevant parameter for evaluating the quality of an experiment is selective 
accuracy (Resende and Duarte, 2007). To recommend or select individuals, a researcher turns to 
experimental methods and statistical analyses (Resende, 2007). Among the methods of statistical 
genetics for selection, we can highlight mass selection (Gardner, 1961; Méndez, 1971), progeny 
selection (Oliveira et al., 2008; Rosado et al., 2012), selection index (Silva, 1982; Cruz and Regazzi, 
2012), and selection based on mixed models such as Best linear unbiased prediction/restricted 
maximum likelihood (BLUP/REML) (Patterson and Thompson, 1971).

In general, these are divergent methodologies; however, in all of them, it is practically 
unanimous that all information on the genotypic characteristics of individuals may be obtained 
through phenotype-based predictions (Cruz et al., 2012). Another predominant factor in studies 
based on these methodologies is setting up experiments with low reliability of predicting the 
true genotypic value and, consequently, according to Petek et al. (2008), the use of mean 
phenotypic values as an indicator of genetic superiority. Upon checking the literature, however, 
a breeder may find a series of other statistics and parameters, not currently used in selection 
procedures, providing a considerable amount of information regarding the genotype of 
individuals.

Unlike all the previously cited methodologies, artificial neural networks (ANNs) present the 
possibility of applying computational intelligence to genetic breeding for the purpose of predicting 
genetic values. The application of neural networks to an analysis of biological data fits within the 
area of research called bioinformatics and involves computational techniques and tools to resolve 
biological problems (Braga et al., 2011).

Various authors have been evaluating the use of ANNs in problems involving genetics 
(Grimaldi et al., 2011; Sant’Anna et al., 2015). Ventura et al. (2012) investigated the application 
of these networks to predicting genetic values in cattle and reported their considerable 
potential for genetic evaluation. Barroso et al. (2013) compared the results obtained by the 
Eberhart and Russel method with discriminant analysis and analysis through neural networks 
to analyze adaptability and stability in alfalfa genotypes. Nascimento et al. (2013) used these 
networks for a classification of alfalfa genotypes, and Silva et al. (2014) used neural networks 
to predict superior genotypes. Sant’Anna et al. (2015) concluded that the use of ANNs is a 
promising technique to solve classification problems, since the number of individuals classified 
incorrectly by an ANN was always lower than that by discriminant functions. Furthermore, 
according to Barroso et al. (2013), in comparison to other methodologies, these networks have 
the advantage of not requiring presuppositions with respect to the distribution of the data to 
be used.

In view of the growing potential of computational intelligence shown by ANNs, this study 
was conducted for evaluating this new approach for the prediction of genetic values and gains by 
using simulated data and considering information often disregarded by breeders and researchers 
as input for the network.



3Artificial neural networks for genetic value prediction

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 15 (1): gmr.15017676

MATERIAL AND METHODS

The data simulation process was carried out through the GENES computational application, 
as described by Cruz (2013). Eight scenarios were simulated with the mean values, coefficient of 
variation, and heritability well established. A randomized block experimental design (RBD) was 
adopted for the simulation, with 100 genotypes and six blocks, assuming heritability values of 40, 
45, 50, 55, 60, 65, 70, and 80%, a mean value of 100, and a coefficient of variation of 15%. The 
values of the mean, heritability, and coefficient of experimental variation were established for each 
variable, and the following statistical model was used:

where ijY  denotes the simulated observation of a given characteristic; µ, the overall mean of the 
characteristic whose value is specified by the researcher; Gi, the effect associated with the i-th 
genotype; Bj, the effect associated with the jth block; and Ɛij, the random error, which is .

To estimate the effects of the genotypes, it is necessary to know the value of genetic variance, 
which is obtained from the information on heritability (h2) and the coefficient of experimental variation 
(CVe). Thus, the value of environmental variance is obtained through  knowing that

On the basis of this information, the fixed or random effects of genotypes may be 

established. In the first case, the existence of g fixed effects is admitted, whose values constitute 

an arithmetic progression of ratio r with g1G  = -G  and G = 0 . Thus, the value Gg is estimated by 

 and the other effects estimated considering the ratio of arithmetic progression given 

as follows:

To simulate the effect of random errors, it is considered that . As the 
researcher supplies the value of the coefficient of experimental variation and of the mean value of 
the characteristic, the value of σ2 becomes known; therefore, random and independent errors may 
be estimated using the previously described random function.

Finally, once the mean value of the characteristic and of the effects involved are known, 
the phenotypic values of each variable, in each environment (when it is the case), are established 
through the model as follows:

For the purpose of network training, we expanded the initial dataset by using the following 
process:

The simulated values were taken as a random variable . The data were 

(Equation 1)

(Equation 2)

(Equation 3)

(Equation 4)
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transformed into a random variable Z ~ N ( , 1)φ  through the linear transformation Z = F'Y , in 
which F was obtained through the spectral decomposition process of 𝛴, such that . The 
expansion process consisted of the simulation of new values of Y, considering 1Y ~ N ( , (F') Z)φ − . An 
expanded data file was considered, consisting of 5000 genotypes for training the neural network. 
The data expansion process was also carried out by using the integration module in the GENES 
computational application (Cruz, 2013).

In dataset simulation procedures, or the replication of a known data structure, or even 
the expansion of a set based on the structure of another, some presuppositions must be made. 
The first of them is that the dataset must have a known distribution and, in the beginning, a mean 
value equal to zero and variance equal to V. To satisfy this requirement, a Box-Muller transform 
was used, which ensures that the variables x and y are normally distributed with a mean of zero 
and variance V as follows:

where RND denotes a random number.
To ensure that the covariance of the X set of data is null, the recommended methodology 

is the use of the principal components technique and is based on a simplification of the dataset to 
a reduced set of components, which have the properties of retaining the maximum of the variation 
originally available and being independent of each other (Cruz, 2006).

Consider the random variable  that we wish to transform into the random 
variable Z ~ N ( , 1)φ . Through the spectral decomposition process, we have:

Let us consider that Z ~ N ( , 1)φ . If Z = F'Y , then -1Y = (F') Z . Therefore, 

In the expanded dataset, files with 5000 genotypes were obtained for training the ANN. In 

breeding programs for the selection of superior genotypes, the conventionally adopted model was based 

on a decomposition of the phenotypic values of the individuals at the mean value of the characteristic 

and on the effects involved, just as in the equation , already described.

As seen throughout the study, selection is usually practiced on the basis of the mean 

phenotypic values obtained. Thus, given two individuals i and i’, their mean values are given by   

. Given the equations obtained, the individual recommended 

by the breeder will be the one that exhibits the greatest value for the estimated phenotypic mean .

(Equation 5)

(Equation 6)

(Equations 7 and 8)
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In the methodology proposed in this study, we believe that a consideration of other 
additional statistics in the decision-making process increases the selection accuracy; i.e., an 
expansion of the information regarding the genotypes evaluated adds value to the genotypes and 
assists the breeder in selection. Thus, for a given genotype Gi, the following model is proposed:

where wk denotes the synaptic weight associated with the kth statistic; Eik, statistic k associated with 
genotype i; ϕ(), the activation function used; and θ, the activation (bias) threshold of the network.

Having established the model, given two genotypes Gi and Gi’, we only need to compare 
the values obtained for each of them, just as described in the equation above. The individual that 
has the greatest value for Gi is considered superior.

A schematic representation of the ANN model proposed is shown in Figure 1.

(Equation 9)

Figure 1. Schematic representation of an MLP network, with an input layer, three hidden layers, and an output layer.

The architecture of the network used was multilayer perceptron (MLP), which in this study 
was established by adopting three hidden layers of neurons. The MLP network was created using 
the Matlab software (Matlab, 2010) through the script from the integration module of the GENES 
computational application. To train the network, the trainlm training algorithm was adopted, and the 
activation functions investigated to establish the best architecture were the function purellin, the 
hyperbolic tangent function – tansig, and the sigmoidal function – logsig.

The number of neurons per layer ranged from one to seven, with the maximum number 
of iterations (or epochs) equal to 2000. Combining the variation in the number of neurons per 
layer and the possibilities of the activation function, a total of 7 × 7 × 7 × 3 × 3 × 3 = 9261 network 
architectures were tested.

As an alternative to the usual selection methods, which base their selection only on the 
mean phenotypic values of the genotypes, the network was trained and validated using the true 
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genotypic values as the desired output and, as the input, the information from seven other statistics 
(in addition to the mean) as follows: x1 denotes the mean phenotypic value; x2, the maximum value 
of each genotype in b blocks; x3, the minimum value of each genotype in b blocks; x4, the value 
of the standard deviation of each genotype; x5, the value of the coefficient of variation for each 
genotype; x6, the value of the sum of rank (or positions) obtained in the b blocks for each genotype; 

x7, the value of the Pi statistic, adapted from Lin and Binns (1988) for studies on adaptability and 

stability in genotypes, given by 
2

b ij j
j=1

(x  - M )
2b∑ , where Xij represents the phenotypic value of the ith 

genotype in the jth block, Mj indicates the maximum response observed among all the genotypes in 
block j, and b refers to the number of blocks of the experiment; and x8, the discrete values, codified 

from 1 to 6, established from the transformation of the phenotypic mean considering its variation 
around the mean value in the lower and upper limits, taken as one, two, or three standard deviations.

To verify the efficiency of the ANN, validation files were generated and also obtained 
through a trial simulation process in an RBD, with the numbers of blocks and genotypes exactly 
equal to those of the original file. These files were considered replicas of the test file and 
maintained the same mean vector and the same variance and covariance structure among the 
values obtained by the genotypes in the different blocks. Thus, 120 validation files were used as 
replicas of the simulated experiments. The criterion adopted by the ANN to conclude the analyses 
using computational intelligence was based on the number of times in which the reliability of the 
genotypic prediction provided by the network proved to be superior to that of the phenotypic mean. 
Reliability was determined by using the square of the correlation between the ANN response and 
the true genotypic value, analogous to the square of the correlation between the phenotypic mean 
and the true phenotypic value, which expresses the heritability of the characteristic, applied to 
all the combinations of neurons, number of hidden layers, and activation functions used. Thus, a 
comparison was made between the measure of reliability of the network and the heritability of the 
characteristic, which is the criterion used conventionally for the prediction of gains, identification of 
selective units, and choice of selection strategies.

RESULTS

The methodology presented in this study involved the use of a set of expanded data, 
which have the particular feature of preserving the characteristics of the experiment from which 
they are derived. For the purpose of showing that the expansion of the data did not change the 
structure of the original dataset, as established by the researcher, an analysis of variance of the 
data from the different files was carried out, and the effectiveness of the simulation process in 
conserving characteristics was shown.

The correlation between the statistics used in the input layer and the real genetic values 
was analyzed to verify whether the simulation process, like the expansion process, affected the 
structure of the expanded experiment. The correlations (r) proved to be statistically equal, according 
to a t-test (P < 0.01) that evaluated the correlations for the simulated file and the expanded file. 
Furthermore, although the statistics used in the input layer proved to be sufficient for the prediction 
of genetic values, additional studies are necessary to quantify the influence of each of these in the 
prediction process, as well as to evaluate the removal or inclusion of statistics.

The same evaluation was carried out using the 120 replicated files used in the validation 
process. To facilitate the evaluation of the correlations between the additional statistics and the real 
genetic values for each heritability value, a boxplot diagram was drawn up for all the heritability 
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values. Figure 2 shows the box plot for the heritability of 80%. We found results similar to those 
obtained from the simulation and from the expansion of the original file. The reasoning underlying 
this step is based on the fact that the researcher may question the validity in the validation 
process since this process may sometimes be carried out with the training file or a part of it. The 
replicated files serve to emulate situations in which the ANN created is used in the prediction of the 
contemporary experiments of the genotypes evaluated.

Figure 2. Boxplot for the heritability of 80%.

As the network stop criterion, a hit was considered to be the number of times in which the 
square of the correlation between the response of the neural network and the true genotypic value 
was greater than the square of the correlation between the phenotypic mean and the phenotypic 
value, considering all the combinations of neurons, number of hidden layers, and activation 
functions used, as proposed by Silva et al. (2014). Thus, a comparison was made between a 
measure of reliability of the network and the heritability of the characteristic, which is the criterion 
used conventionally for the prediction of gains and the definition of selection strategies.

Since an improvement of the selection efficiency is still a challenge shared by breeders 
and biometricians, the selection efficiency was evaluated using the capacity of the ANN for rejecting 
an inferior genotype and/or selecting a superior genotype. The results obtained through the ANNs 
were at least as good as those obtained through traditional methods, such as estimates obtained 
by the least squares method. In 75% of the scenarios, the ANN proved to be more effective than 
the least squares method in the attainment of the genetic value (Table 1). The estimates of the 
prediction accuracy through the neural network, considering the 120 validation experiments, were 
an average of 0.6916% superior considering the heritability values of 40, 45, 50, 55, 65, and 70%. 
For the heritability values of 60 and 80%, the network provided lower accuracies; nevertheless, 
they were very close to those obtained by the least squares method used in linear models (LMs). 
The percentage values of the superiority of the neural network to the LM are shown in Table 1.
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Table 1. Mean values of the estimates of accuracies obtained using ANN versus those obtained using LM, as well 
as the mean value of superiority (ANNSup. (%)) of the network for each heritability value.

Accuracy (%) h2 (%) 
40 45 50 55 60 65 70 80 

LM 0.6325 0.6708 0.7071 0.7416 0.7746 0.8062 0.8366 0.8944 
ANN 0.6411 0.6711 0.716 0.7432 0.7738 0.8128 0.8403 0.8911 
ANNSup. (%) 1.3697 0.0447 1.2587 0.2157 - 0.8187 0.4423 - 

 

Moreover, it may be seen that upon fitting a regression for the accuracy values obtained 
as a function of the heritability values evaluated, the relationship is practically linear, showing a real 
relationship between these values.

After the prediction and ordering of the genetic values, variation was perceived in the 
classification of the genotypes. According to Ventura et al. (2012), this may lead to risks in the use 
of the networks for a genetic evaluation of the characteristic under study. Estimates of coincidence 
in the classification of the selected genotypes, intensities of 5 and 10%, and rejected genotypes, 
intensities of 5 and 10%, based on the real genetic values and on the genetic values obtained 
through the ANN and through the LM are shown in Table 2.

Table 2. Mean percentage of coincidence of genotypes selected (Selec.) and rejected (Rej.) by prediction using 
ANN and LM.

  Coincidence (%) for each h2 

40 45 50 55 60 65 70 80 

Selec. (5%) 
LM 30.17 37.33 40.83 42.67 48 52 50.67 59.17 
ANN 34.17 36.67 44 42.67 47.17 52.33 52.33 59 
LM-ANN 69.67 93.33 85.5 89.67 90.67 93 91.83 91.67 

Selec. 
(10%) 

LM 38.58 43 44.58 46.08 51.92 53.42 57.92 67.58 
ANN 39.83 42.75 47.33 45.92 52.25 53.67 58.17 65.67 
LM-ANN 80.92 95.25 89.33 88.33 93.5 95.58 94.92 93.33 

Rej. (20%) 
LM 51.29 52.17 56.29 59 61.54 63.63 67.58 71.29 
ANN 52.33 52.92 56.46 59.29 60.92 64.38 67.67 71.08 
LM-ANN 89.63 89.13 97.04 93.58 95.21 96.04 98.25 94.25 

Rej. (10%) 
LM 42.5 46.42 48.92 52.42 54.58 59 62.33 67 
ANN 46 47.75 49.5 51.92 53.75 60 62.92 67.33 
LM-ANN 81.87 83.75 94.17 92.5 93.5 95.17 97.17 93.08 

 

DISCUSSION

In conventional statistical procedures used in the process of predicting the genetic gain, 
only the mean genotypic values are considered, assuming the existence of their correlation with the 
real genetic values of the genotypes denoted by the heritability of the characteristic. Admittedly, the 
mean is the primary piece of information for judging superiority among genotypes and, in cases of 
low heritability, the selective process has a relatively low reliability. Nevertheless, a more thorough 
analysis may be carried out, taking other relevant statistics or statistics of a highly practical nature 
into account, beyond the mean value of the genotypes; however, this makes decision making 
more complex for the data analyst. Thus, two genotypes may have similar mean values but very 
different behaviors in terms of variation, ranking, and minimum and maximum values, among other 
aspects. In the biometric approach, this additional information is disregarded; however, when a 
computational intelligence approach is used, such information is indispensable and constitutes a 
relevant input to be considered in the ANN in the training processes.

Upon considering the overall values of different statistics of each genotype obtained in 
a determined trial, it may be seen that more reliable criteria are obtained for predicting genotypic 
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superiority than basing oneself solely on the mean value obtained for the genotype in trials, in 
which there may be significant variation in genotypic variability and experimental precision.

The usual procedure for determining the criteria of the optimization of network architecture, 
also called early stopping rules of the iterative process of the ANN, is the mean squared prediction error. 
Once the mean squared error reaches an ideal level, training is interrupted and the values obtained until 
then are the best estimates of the network coefficients (Haykin, 2001; Braga et al., 2011).

These early stopping rules are normally adopted when the ANN validation process is 
carried out with a single set of validation data, and they have been used by several authors such 
as Sant’Anna et al. (2015), Silva et al. (2014), and Gianola et al. (2011). As 120 datasets were 
used in this study (representative of the replicas of a base experiment) for network validation, an 
alternative was to adopt the maximum number of hits obtained by the ANN as the early stopping 
rule, considering the 120 replicas.

From the results obtained in Table 1, it is clear that ANNs show considerable potential for 
use in studies involving prediction procedures. Nevertheless, the accuracy values found did not 
exhibit superiority greater than 1.5% in any of the eight scenarios evaluated, which shows that 
the results obtained are still quite close to the results found when the researcher makes use of 
procedures based on the least squares method.

In contrast, the paradigm in effect was constructed using methodologies based on the LM, 
and the results obtained in this study are nearly at par with the results of these methodologies. 
Thus, it is still difficult to evaluate the effectiveness of the network based on a model originally 
conceived by using the mean of the genotype as the best value of its superiority disturbed only by 
noises brought about by the environmental effect, over which biometrics attempts to establish the 
best prediction models considering the stochastic distribution.

In spite of the difficulty in evaluating the ANNs, studies based on them represent a 
considerable advance with respect to the use of trial simulation processes for the prediction of 
superior genotypes. In breeding programs, which involve experimental statistics, a simulation may 
be used as an alternative for generating or replicating information representative of the evaluations 
of a set of genotypes in experiments of suitable design, such as randomized blocks, in which the 
principles of replication, randomization, and local control are observed.

Simulation processes have been increasingly used in diverse areas of science. Coelho 
and Barbin (2006) used simulated data to compare different methods for the estimation of variance 
components. Júnior et al. (2010) used simulated data to compare the Empirical Best Linear 
Unbiased Predictor (EBLUP) and Bayesian methodologies on data with homogeneity of variances, 
heterogeneity of genetic variance, and heterogeneity of genetic and environmental variance.

The comparison in this study was performed under artificial conditions considering the 
use of simulated data. The use of this type of data was important to develop the study because 
these data speed up the process of comparing methodologies; moreover, the training process of 
the network may be refined when the researcher has a considerable deal of information available.

In this study, the paradigm of the selective process was based on the estimate of the 
true genotypic mean value, which is not available in real situations of experimentation. Therefore, 
once more the use of simulated data was of utmost importance since this procedure allows the 
researcher to obtain the true genetic values of the genotypes by using the information on the 
coefficient of variation, mean value, and heritability.

According to Table 2, it is noted that, in all cases, the ANN led to mean coincidences 
superior to those brought about by the selective process using LMs, indicating that the predictions 
allowed a better discrimination of the genotypes based on their genetic value. The low percentage 
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of coincidence of genotypes selected and rejected by prediction using ANN and LM (Table 2) 
reflect the difficulty in selecting genotypes in a quantitative characteristic. This effect being more 
pronounced the lower the heritability of the characteristic (40%).

In contrast, coincidences greater than 69% were observed when genotypes selected by 
the ANN and by the traditional method were compared, showing that, in most cases, the same 
genotypes were selected by both approaches.

The ANNs proved to be efficient in predicting values and genetic gains in the simulated 
trials under the randomized block design. However, it should be noted that as the entire study was 
developed using simulated data, subsequent studies in real breeding populations are necessary 
for confirming the superiority of predictions by the ANN.

The proposed strategy for training the ANNs constitutes a new approach for analysis, which 
may be used for increasing the efficiency of the selection process in genetic breeding programs.

The ANN shows superiority in relation to the traditional method of discriminating genotypes 
on the basis of their real genetic value; moreover, the model fitted to the ANN obliges the 
researcher to consider additional statistics of a highly practical nature in the process of predicting 
genetic values. In short, the ANN shows considerable potential for use as an alternative method for 
predicting genetic values and as a tool for genotypic selection.
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