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ABSTRACT. The objective of this study was to estimate variance 
components and genetic parameters for accumulated 305-day milk 
yield (MY305) over multiple ages, from 24 to 120 months of age, 
applying random regression (RRM), repeatability (REP) and multi-trait 
(MT) models. A total of 4472 lactation records from 1882 buffaloes of 
the Murrah breed were utilized. The contemporary group (herd-year-
calving season) and number of milkings (two levels) were considered 
as fixed effects in all models. For REP and RRM, additive genetic, 
permanent environmental and residual effects were included as random 
effects. MT considered the same random effects as did REP and 
RRM with the exception of permanent environmental effect. Residual 
variances were modeled by a step function with 1, 4, and 6 classes. 
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The heritabilities estimated with RRM increased with age, ranging 
from 0.19 to 0.34, and were slightly higher than that obtained with the 
REP model. For the MT model, heritability estimates ranged from 0.20 
(37 months of age) to 0.32 (94 months of age). The genetic correlation 
estimates for MY305 obtained by RRM (L23.res4) and MT models 
were very similar, and varied from 0.77 to 0.99 and from 0.77 to 0.99, 
respectively. The rank correlation between breeding values for MY305 
at different ages predicted by REP, MT, and RRM were high. It seems 
that a linear and quadratic Legendre polynomial to model the additive 
genetic and animal permanent environmental effects, respectively, may 
be sufficient to explain more parsimoniously the changes in MY305 
genetic variation with age.

Key words: Bubalus bubalis; Random regression models; 
Heritability; Genetic correlation; Sire rank

INTRODUCTION

The Brazilian buffalo is one of the largest buffalo herds in the world with 1.2 million 
head. In the last decades, Brazilian buffalo milk yield per lactation has significantly increased, 
as a consequence of improvement in management, infrastructure, and feeding practices on 
buffalo farms (Vasconcellos and Tonhati, 1998; Tonhati et al., 2000a; Tonhati et al., 2008). 
However, to develop a buffalo breeding program, it is necessary to define appropriate models 
for genetic evaluation of total milk yield. 

 Several studies in dairy cattle have proposed the repeatability (REP) and multi-trait 
(MT) models to obtain variance components and genetic parameters for accumulated 305-day 
milk yield at multiple parities (Suzuki and VanVleck, 1994; García-Cortés et al., 1995; Powell 
and Norman, 2006). With the MT models, total milk yield records from different lactations 
are assumed as different traits and an unstructured covariance matrix may be used with the 
number of traits equal to the number of different measurements. This may result in a high 
over-parameterized model and high computational demands (Meyer and Hill, 1997). Alterna-
tively, the REP model is less complex than the MT model, but it assumes that total milk yield 
records from different lactations are repetitions of the same trait, with constant genetic and 
non-genetic variances. According to Guo et al. (2002), REP does not fit the data well when 
later lactations are included in the analysis.

Recently, random regression models (RRM) have been proposed as an alternative for 
the analysis of longitudinal data or repeated measures records (Meyer, 2004; Schaeffer, 2004; 
Bignardi et al., 2009). RRM have been applied to model the population mean trend and ran-
dom effects for first lactation test-day milk records (Breda et al., 2010; Sesana et al., 2010) and 
for 305-day milk yield (MY305) records over multiple parities (Guo et al., 2002). By applying 
RRM, the covariance functions that give the covariance between any two ages or lactations, 
within the range of age in the data, can be estimated and impose a structure on the covariance 
matrices (Meyer, 1998). Also, RRM allows changes in variance along the trajectory, providing 
estimates of breeding values for the entire trajectory with higher accuracies than the conven-
tional MT model (Tier and Meyer, 2004; Boligon et al., 2011).
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In the literature, there are few works reporting genetic parameter estimates for buf-
falo total milk yield. According to Rosati and Van Vleck (2002), the majority of studies in 
buffaloes for productive traits have been conducted in Pakistan and India. In Egypt, Mourad 
and Mohamed (1995) and in Italy, Rosati and Van Vleck (2002), obtained heritability esti-
mates for buffaloes total milk yield at different calvings. Recently, in Brazil, Tonhati et al. 
(2008) worked with dairy buffaloes from first to sixth lactation order and estimated genetic 
parameters for total milk yield and MY305.

In Brazil, the genetic evaluation for dairy buffaloes is carried out for total milk 
yield (MY305) using a REP model. This model allows the inclusion of all animal informa-
tion available and few assumptions about the model. Recently, RRM are currently being 
used for national genetic evaluations of dairy cattle in several countries. To date, there is 
no consensus for buffalo milk yield about the most appropriate model for genetic evalu-
ation of MY305. Thus, it is crucial to develop alternative models to be implemented in a 
genetic evaluation program for dairy buffaloes in Brazil. The objectives of this study were 
to estimate (co)variance components and genetic parameters for MY305 at different ages 
using REP, MT, and RRM models. Also, the breeding values for MY305 at different ages 
predicted from different models were compared.

MATERIAL AND METHODS

Buffaloes’ milk yield records were obtained from monthly test-day records from 
the database of the Animal Science Department/FCAV, São Paulo State University. Data 
were from 12 herds located in the State of São Paulo, Brazil, and recorded from 1985 to 
2005. The data set comprised 4472 complete lactation records from 1882 animals of the 
Murrah breed raised on pastures with feed supplementation during the dry period from 
April to September.

Lactation records were truncated at 305 days, since only 16% of records had shown 
lactation beyond this point. The data sets included only lactations where the first test-day 
milk record was measured from 5th to 45th day after calving. Lactation records less than 90 
days long were excluded. Age of cows at calving ranged from 2 to 10 years.

Contemporary groups (CG) were defined as animals that calved in the same herd, 
year and season (season 1 = October to March; season 2 = April to September). CG with less 
than 3 lactations and animals with milk yield above or below 3.0 standard deviations from 
CG mean, were excluded from the data set. The observations were grouped into classes of 
age at calving (in months) from 24 to 120 months of age.

In the MT model, five traits were considered as different traits, MY305 at 37, 52, 66, 
79, and 94 months of age (calving age). The number of MY305 records (means ± standard 
deviation for MY305) at 37, 52, 66, 79, and 94 months of age were 1496 (1599 ± 571); 1050 
(1804 ± 674); 769 (1881 ± 719); 503 (1936 ± 756); and 402 (1969 ± 750), respectively. The 
MT model included the additive genetic and residual as random effects, and the CG and 
number of milkings per day (two levels) were included as fixed effects. The genetic additive, 
residual and permanent environmental effects were included as random effects in the REP 
and RRM models. The same fixed effects considered in the MT model were included in the 
REP model. The age of cow at calving (in months) was included as a covariable (linear and 
quadratic effects) in the REP model. There were 2810 animals and 261 sires in the relation-
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ship matrix. The matrix representation of the MT and REP models is:

y = Xb + Za + Wc + e

where, y is a vector of observed traits; X is the incidence matrix of fixed effects; b is a vector of 
fixed effects; Z is the incidence matrix of additive genetic random effects; a is a vector of ad-
ditive genetic random effects; W is the incidence matrix of permanent environmental random 
effect (only for REP); c is a vector of permanent environmental random effects (only for REP); 
and e is a vector of random error effects. The assumptions about expectation and variances 
are: E[y] = Xb; Var (a) = A Sa; Var (c) = I Sc; and Var (e) = I Se. Sa is the additive genetic ef-
fect covariance matrix; Sc is the permanent environmental effect covariance matrix and Se is 
the residual covariance matrix; A is the relationship matrix between animals; I is the identity 
matrix; and ⊗  is the Kroenecker product between matrices.

A total of 9 random regression models were fitted with different residual variance 
structures and order of covariance function for additive genetic and permanent environmental 
effects. Residual variances were modeled by step function with 1, 4 (24-47, 48-71, 72-95 
and 96-120 months of age) and 6 (24-40, 41-56, 57-63, 64-72, 73-96, and 97-120 months of 
age) classes. The random regression analyses were carried out using a one-trait model. The 
GC and the population mean trend, modeled by a cubic regression on Legendre polynomials 
of animal age at calving, were included as fixed effects. The additive genetic and permanent 
environmental effects were modeled by Legendre polynomials on age at calving in months as 
basis functions, from second to fourth order. To define the most adequate structure to model 
the residual variance, the analyses started with a model considering equal number of regres-
sions for all effects, second-order Legendre polynomial, and the polynomial order for additive 
genetic and animal permanent environmental effects were afterwards increased. The matrix 
representation of the RRM models is:

y = Xb + Za + Wap + e

where y is the vector of observations, b is the vector of fixed effects, a is the vector of ran-
dom coefficients for additive direct effects, ap is the vector of random coefficients for animal 
permanent environment effects, e is the vector of residual effects, and X, Z, and W are the cor-
responding incidence matrices. The model is based on the following assumptions:

where Ka and Kap are (co)variance matrices between random regression coefficients for ad-
ditive genetic and animal permanent environment effects, respectively, A is the relationship 
matrix, I is an identity matrix, ⊗ is the Kronecker product between matrices, and R is a block 
diagonal matrix containing residual variances. Correlations between random regression coef-
ficients for different effects were set to zero.
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The covariance components and genetic parameters were estimated by the restricted 
maximum likelihood method using the WOMBAT program (Meyer, 2006). Results from dif-
ferent RRM were compared by the Schwarz Bayesian information criterion (BIC) (Schwarz, 
1978), and by inspecting the variance component and genetic parameter estimates. Here, p 
denotes the number of parameters estimated, N the sample size, r(X) the rank of the coefficient 
matrix of fixed effect in the model of analysis, and log L the REML maximum log likelihood. 
The information criterion is then given as:

BIC = -2logL + plog [N - r(X)],

The RRM are referred to as: ka.kap.resy, where ka = the order of the covariance 
function for additive genetic effect, kap = animal permanent environmental effect, and res = 
residual variances modeled by a step function with y classes.

The sires breeding values were predicted for MY305 at 37, 52, 66, 79 and 94 months 
of age (calving age), by REP, MT, and RRM. Only the sires (N = 119) with progeny in 
the data were considered. Spearman correlations between breeding values of sires and the 
percentage of common sires chosen for higher MY305 with REP, MT, and RRM models at 
different ages at calving were calculated considering two selection intensities of selected 
sires: 5 and 10%.

RESULTS AND DISCUSSION

The corresponding mean, standard deviation, and variation coefficient for total milk 
yield (MY305) was 1789 ± 686 kg. The mean MY305 obtained was higher than those estimat-
ed by Vasconcellos and Tonhati (1998) and Tonhati et al. (2000b) also for Brazilian buffaloes. 
MY305 increased from 24 to 90 months of age, approximately, since only the most productive 
cows remained in the herd until 6 to 8 years of age (Figure 1). After this age, the mean MY305 
showed high variation, probably, as a consequence of decrease in the number of records. The 
number of calving per cow was 2.37 with a calving interval of 498 days.

Figure 1. No. of animals and milk yield means (●) and standard deviations (■).
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First, a model considering the same number of regressions for all effects was fitted, 
and the polynomial order for additive genetic and animal permanent environmental effects 
was then increased. A summary of RRM analyses with the maximum likelihood logarithmic 
function values (log L) and Schwarz BIC are shown in Table 1. The model with heterogeneous 
residual variances showed a better fit than a model with homogenous residual variances (Table 
2). These results indicated that residual variances had different behavior over the lactations, 
so it was necessary to consider a heterogeneous variance structure for the residual. According 
to log L results, a model fitting the residual variance with a step function with 4 or 6 classes 
showed a similar fit. However, the BIC result showed that 4 residual classes were more ad-
equate to model the residual variances. The statistical criterion BIC tests the lack of fit and the 
number of parameters estimated in the model, where models with lower BIC values are chosen 
as the best models to fit the data. Guo et al. (2002) working with milking records from the first 
to seventh parity of Danish Jersey cows and applying RRM assumed that residual variances 
were constant across parities. These results disagreed with those obtained in the present study. 

   Age at calving (months)

 37 52 66 79 94

37 - 0.97 0.92 0.85 0.78
52 0.97 - 0.98 0.95 0.90
66 0.92 0.99 - 0.99 0.96
79 0.93 0.99 0.99 - 0.99
94 0.78 0.80 0.83 0.80 -

Table 2. Genetic correlation estimates obtained by L23.res4 model (above the diagonal) and by MT model 
(below the diagonal) between MY305 at different ages.

After defining the most adequate structure to model the residual variance, the poly-
nomial order for additive genetic and animal permanent environmental effects was increased. 
The log likelihood (log L) value slightly increased with the number of parameters in the model 
(Table 1). The resultant BIC values indicated the model L23.res4, with 13 parameters, as the 
best to fit the data. Increasing the order of fit to two and three for the direct additive genetic and 
animal permanent environmental effects, respectively, did not improve the criterion (BIC). 

  Polynomial order  P Log L BIC

Model ka kp e

L22.res1 2 2 1   7 -28,248.72 56,555.98
L22.res6 2 2 6 12 -28,228.82 56,558.00
L22.res4 2 2 3 10 -28,231.46 56,546.56
L23.res4 2 3 3 13 -28,215.79 56,540.31
L24.res4 2 4 3 17 -28,205.29 56,552.76
L32.res4 3 2 3 13 -28,217.63 56,543.99
L42.res4 4 2 3 17 -28,213.41 56,569.02
L33.res4 3 3 3 16 -28,210.97 56,555.76
L34.res4 3 4 3 20 -28,199.78 56,566.84
MT    30 -23,282.74 46,810.24
REP      3 -28,318.82 56,662.73

Table 1. Polynomial order.

Polynomial order for additive genetic (ka) and permanent environmental effect (kp), residual (e) with heterogeneous 
(het) and homogeneous classes (hom), number of parameters (P), maximum likelihood logarithmic function values 
(Log L) and Schwarz Bayesian Information criterion (BIC).
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Also, for the animal permanent environmental effects, convergence problems and eigenvalues 
close to zero occurred when polynomial order was increased from 3 to 4. Guo et al. (2002) 
also used a third-order Legendre polynomial to model the additive genetic and permanent 
environmental effects in Danish Jersey cows.

According to log L and BIC criteria, the REP model showed worse fit than the most 
adequate RRM (L23.het3). Despite that the MT model had a better fit than the L23.res4 model, 
a larger number of parameters (30) needed to be estimated with the MT model. Moreover, the 
database used with the MT model is not the same as that used with RRM analyses, since only 
the MY305 records closer to 37, 52, 66, 79, and 94 months of age (calving age) were consid-
ered in the analyses, and thus, the log L and BIC criteria of the MT model are not comparable 
with RRM.

The additive genetic variance estimates obtained with the L23.res4 model increased 
with age (Figure 2A), and were similar to those obtained with REP model until 56 months of 
age. Guo et al. (2002) applying RRM observed that additive variance estimates for MY305 
were maximal at third parity and decreased thereafter. Additive genetic variance estimates 
obtained with MT model showed a similar trend as those observed with the L23.res4 model 
at 37, 52, 79, and 94 months of age, but at other ages, estimates obtained with MT were 
higher. The results obtained in the present study showed heterogeneity of variance between 
records from different lactations. This heterogeneity is taken into account by the MT and 
L23.res4 models.

Figure 2. Additive genetic (A; σ2
a/1000), animal permanent environmental (B; σ2

ap/1000) Phenotypic (C; σ2
p/1000) 

and residual (D; σ2
e/1000 for RRM and repeatability model or σ2

e + σ
2
ap for multi-trait model) variance estimates for 

MY305 obtained with repeatability (REP), multi-trait (MT) and the best random regression model fitted (L23.res4).
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The additive genetic variance estimates obtained with MT increased until 66 months 
of age. This behavior is probably explained by the decrease in the number of records after 5 
years of age. According to Meyer et al. (2004), multivariate analyses involving more than 3 
or 4 traits are notorious for producing erratic estimates on occasion, particularly where the es-
timation procedure converges at the boundary of the parameter space. The animal permanent 
environmental variance estimates obtained with L23.res4 increased with age, and they were 
higher than that obtained with REP (Figure 2B).

For the MT and L23.res4 models, the residual variance estimates increased with age 
(Figure 2C). MT showed higher residual variances than did REP and L23.res4. The residual 
variance estimates obtained by L23.res4 were lower at early and intermediate ages than those 
obtained with MT and REP. Espinoza et al. (2007), working with Holstein milk yield records 
of the first four lactations, applied one-trait and MT models to estimate genetic parameters for 
MY305 and reported larger residual variance for later lactations.

The phenotypic, additive genetic, animal permanent environmental and residual vari-
ance estimates for MY305 obtained with the REP, MT, and L23.res4 models, are presented 
in Figure 2. Phenotypic variance estimates obtained with L23.res4 and MT were similar and 
increased with age (Figure 2D). Guo et al. (2002) reported that the phenotypic and permanent 
environmental variance estimates for MY305 obtained by RRM increased from lactation 1 
to 7. The phenotypic variance estimates obtained with the REP were lower than with L23.
res4 and MT.

For all models, the heritability estimates showed the same trend as those observed for 
additive genetic variance estimates. The MY305 heritability estimate obtained with REP was 
0.20 (Figure 3A). The REP model has been extensively applied in dairy cattle to estimate ge-
netic parameters for MY305 over multiple parities (Suzuki and VanVleck, 1994; Ferreira and 
Fernández, 2000; Espinoza et al., 2007). The heritabilities estimated with L23.res4 increased 
over ages, varying from 0.19 to 0.34, and were slightly higher than that obtained with REP. 
These results disagreed with those reported by Guo et al. (2002), who observed that MY305 
heritability estimates decreased over lactations. Araújo et al. (2007) applied RRM to estimate 
genetic parameters for MY305 in dairy buffaloes and dairy cattle, respectively, and reported 
that heritability increased until 12 to 14 years of age and then decreased.

Figure 3. Heritability estimates A. and animal variance estimates B. as proportions of phenotypic variances for 
MY305 at different ages obtained with repeatability (REP), multi-trait (MT) and random regression model (L23.res4).
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For the MT model, heritability estimates ranged from 0.20 (37 months of age) to 
0.32 (94 months of age) (Figure 3A). The heritability estimates obtained with MT after 37 
months of age, were higher than those estimated with L23.res4. Heritability estimates ap-
plying MT models in dairy buffaloes are scarce in the literature (Mourad and Mohamed, 
1995). In general, as the number of records decreased after 4 years, the heritability esti-
mates obtained with MT were almost constant. In dairy cattle, several studies have reported 
(co)variance components and genetic parameter estimates for milk yield from multi-trait 
analyses, but only for the first three lactations (Meyer, 1984; Swalve and Van Vleck, 1987; 
Teepker and Swalve, 1988; Albuquerque et al., 1996). These studies have reported constant 
heritabilities over the first parities and high genetic correlations.

The animal variance estimates as proportions of phenotypic variances (c2) obtained 
by RRM (L23.res4) were higher at extreme and intermediate ages (Figure 3B). Neverthe-
less, Guo et al. (2002) reported that animal variance estimates as proportions of phenotypic 
variances estimates obtained by RRM increased over parities.

The genetic correlation estimates for MY305 obtained by RRM (L23.res4) and MT 
models were very similar, and varied from 0.78 to 0.99 and from 0.78 to 0.99, respectively 
(Table 2). Genetic correlation estimates between MY305 at first lactation (37 months of age) 
with MY305 at consecutive lactations obtained with L23.res4 and MT were almost similar. 
For lactations after 4 years of age, the genetic correlation estimated with L23.res4 was high, 
close to unity.

According to Teepker and Swalve (1988), Albuquerque et al. (1996) and Guo et al. 
(2002), the first lactation is a good indicator of the productive performance of a cow, since 
the genes that affect milk yield in the first lactation also influence yield in the subsequent 
lactations. The results obtained in the present study pointed out that selecting for higher 
total milk yield at first lactation will probably increase the total milk yield at consecutive 
lactations. Similar conclusions were drawn by Guo et al. (2002), with Danish Jersey cows 
and also applying RRM. However, Araújo et al. (2007), using RRM to adjust the MY305 in 
buffaloes over multiple parities, reported low and negative genetic correlations between the 
first total milk yield lactation with total milk yield at advanced ages.

Despite that some genetic correlation estimates were high and close to unity be-
tween adjacent ages, genetic correlations different from unity demonstrates a need to con-
sider them as different traits, mainly between MY305 at early (37 months of ages) with 
later ages (94 months of age), and REP could be inappropriate for modeling this type of 
trait. Moreover, the heterogeneity of variances between lactations shown in Figure 2 must 
be taken into account. According to Swalve and VanVleck (1987), the REP model can be 
justified by the computational requirements of MT models only if the genetic correlations 
are close to one.

Considering all sires, the rank correlation between breeding values for MY305 at 
different ages predicted by REP, MT, and L33.het3 were high (Table 3). The sire breeding 
value rank correlations between the REP and MT models were lower than those obtained for 
rank correlations between the REP and L23.res4 models. With high selection intensities, the 
results indicated that practically the same sires would be selected by REP and L23.res4. On 
the other hand, different sires would be selected if a MT were used instead of a REP model. 
Differences in sire classification between MT and REP are expected since both models made 
different assumptions and gave different (co)variance component estimates.
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The sire breeding value rank correlations between the L23.res4 and MT models fol-
lowed the same trend as those obtained between REP and L23.res4 (results not shown). As 
the selection intensity increased, the sire rank correlations and the number of common sires 
selected by L23.res4 and MT decreased.

Even though the statistical criteria pointed to MT as the most suitable model to fit 
the data, L23.res3 is a more parsimonious model, which is less computation demanding and 
time consuming. These aspects are very important to define an appropriate model for genetic 
evaluation on a large scale. In the present study, with a small data set, little differences in time 
demand (few hours) were observed between the MT and L23.res3 models, but greater differ-
ences are expected with a large data set, such as in national genetic evaluations. Also, L23.
res3 allows a better fitting of environmental and genetic effects, since lower residual variance 
estimates are obtained with this model. In this sense, several studies with simulated and real 
data (Strabel et al., 2001; Tier and Meyer, 2004; Boligon et al., 2011) have confirmed that 
RRM provide (co)variance components with lower prediction error variance and more reli-
able breeding value accuracy estimates than finite models (MT models). Finally, model selec-
tion is not an easy task in animal breeding. As stated by Box (1976), all models are wrong 
but some are useful. Hence, other studies are necessary to evaluate the predictive ability of 
models chosen as most appropriate for genetic evaluation. In this sense, one possibility is the 
implementation of cross-validation or bootstrap methods or evaluation of the selected models 
in other large data sets.

In conclusion, genetic correlations for milk yield between ages are not equal to unity 
showing that the estimation of genetic parameters for milk yield using a RMM on age at calv-
ing was more reasonable than an animal REP model. Applying RRM to model MY305 over 

% of sires selected on RP model No. of sires selected on RP model No. of sires selected on MT model No. of sires selected on L23.res4

Age at calving (37 months)
       5     6       5 (0.60 b)     6 (0.89)
     10   12   11 (0.63)   11 (0.89)
   100 119 119 (0.92) 119 (0.97)
Age at calving (52 months)  
       5     6     5 (0.60)     6 (0.89)
     10   13   10 (0.67)   11 (0.89)
   100 119 119 (0.91) 119 (0.97)
Age at calving (66 months)  
       5     6     5 (0.60)     6 (0.89)
     10   13   10 (0.67)   11 (0.89)
   100 119 119 (0.91) 119 (0.97)
Age at calving (79 months)  
       5     6     5 (0.60)     6 (0.89)
     10   13   10 (0.67)   11 (0.89)
   100 119 119 (0.91) 119 (0.97)
Age at calving (94 months)  
       5     6     5 (0.60)     6 (0.89)
     10   13   10 (0.80)   11 (0.89)
   100 199 119 (0.89) 119 (0.97)
aL23.res4 corresponding to the order of ka (2) and kpe (3) effects and to the residual variance structure modeled by a 
step function (het) assuming 4 variance classes; bRank correlation between breeding values predicted by RP model 
with MT or L23.res4 model.

Table 3. Spearman correlations applying different selection intensities and number of sires selected for higher 
MY305 based on repeatability model (RP), that would also be selected based on breeding values predicted by 
multi-trait (MT) or L23.res4a.
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multiple ages, the residual variances should be modeled through heterogeneous classes, with 
four classes of residual variances being the most adequate. It seems that a linear and quadratic 
Legendre polynomial to model the additive genetic and animal permanent environmental ef-
fects, respectively, may be sufficient to explain more parsimoniously the changes in MY305 
genetic variation over ages. Random regression analyses on Legendre polynomial of age at 
calving are able to describe the genetic variability for total milk yield at different ages and 
would be most appropriate for genetic evaluation of dairy buffaloes.
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