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ABSTRACT. Ubiquitin protein ligase E3C (UBE3C) is involved in 
the ubiquitin-proteasome pathway, and several ubiquitin protein ligases 
are important for fat deposition and lipid metabolism. The objective of 
this study was to analyze the association between a single nucleotide 
polymorphism (SNP) of the UBE3C gene with intramuscular fat 
(IMF) content and fatty acid (FA) composition in Duroc pigs. Four 
SNP markers (g.1586399A>G, g.1591358G>A, g.1600132G>C, 
and g.1600166G>A) of porcine UBE3C were genotyped using the 
polymerase chain reaction-restriction fragment length polymorphism 
method, and their associations with IMF content and FA composition 
were investigated in a commercial Duroc pig population. Two SNP 
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markers (g.1586399A>G and g.1591358G>A) were segregated 
among the pigs. No UBE3C polymorphisms at g.1600132G>C or 
g.1600166G>A were observed. The UBE3C g.1586399A>G SNP 
was significantly associated with IMF content, while the UBE3C 
g.1591358G>A SNP was associated with palmitic, stearic, eicosenoic, 
and eicosadienoic acid levels, and saturated FA levels. These results 
suggest that polymorphisms in porcine UBE3C are correlated with IMF 
content and FA composition, and confirm the importance of porcine 
UBE3C as a candidate gene for fat deposition in pigs.
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INTRODUCTION

Intramuscular fat (IMF) content is an important determinant of meat quality in the pig 
(Gerbens et al., 2000; Sanchez et al., 2007; Lee et al., 2010b), and is positively correlated with 
quality characteristics such as juiciness, flavor, and tenderness (Fernandez et al., 1999; Gerbens 
et al., 1999, 2000; Zhao et al., 2012). Fatty acid (FA) composition serves as an indicator of 
lipid quality (Sanchez et al., 2007; Lee et al., 2010b). IMF content and FA composition are 
considered complex traits, and are controlled by genetic and environmental factors (Rosenvold 
and Andersen, 2003; Cesar et al., 2014). In order to understand the genetic control of IMF 
content and FA composition, many genomic regions and putative positional candidate genes 
that are associated with IMF deposition and FA composition have been identified as genetic 
dissection traits (Kim et al., 2011; Muñoz et al., 2013; Nonneman et al., 2013; Yu et al., 
2013; Chen et al., 2014). Significant quantitative trait loci (QTLs) for fatness, including IMF 
content and FA composition, are located on SSC18 (Lee et al., 2003; Choi et al., 2010; Kim 
et al., 2011; Rückert et al., 2012; Uemoto et al., 2012; Muñoz et al., 2013). Several QTLs 
for IMF content and FA composition (C14:0, C16:0, C18:2, and C20:5) in muscle tissue and 
subcutaneous fat are located at position 1-26 Mb of SSC18 (Sanchez et al., 2007; Pérez-
Montarelo et al., 2012; Ramayo-Caldas et al., 2012; Uemoto et al., 2012; Nonneman et al., 
2013). Interestingly, within this region, several potential candidate genes for fat deposition 
traits are present, such as leptin (LEP), insulin-induced gene 1 (INSIG1), and ubiquitin protein 
ligase E3C (UBE3C). Previous studies have used LEP and INSIG1 as candidate genes for 
determining the fat deposition and FA composition of meat in various mammal species (Li 
et al., 2003; Pérez-Montarelo et al., 2012; De Jager et al., 2013; Ramayo-Caldas et al., 2014; 
Toedebusch et al., 2014). However, information on the association between UBE3C and IMF 
deposition and FA composition is limited. The present study evaluated the effects of UBE3C 
on IMF deposition and FA composition in pigs.

Porcine UBE3C has been successfully characterized; its coding sequence is 1878 bp 
long and is composed of 11 exons and 10 introns, which encode a peptide of 492 amino 
acids (ENSSSCT00000017866; http://asia.ensembl.org/index.html). Porcine UBE3C 
polymorphisms have been documented in the Ensembl database (http://asia.ensembl.org/
index.html). A total of 1489 single nucleotide polymorphisms (SNPs) of porcine UBE3C 
have been identified and classified, consisting of 10 missense, 11 synonymous, 1200 intron, 2 
5'-untranslated region, 120 upstream, and 146 downstream variants. UBE3C is an E3 ubiquitin 
protein ligase, and is involved in ubiquitination (Rotin and Kumar, 2009). It plays a role in 
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the ubiquitin-proteasome pathway for protein degradation (Ponsuksili et al., 2009; Lee et al., 
2010a; Pasaje et al., 2011). Recent evidence suggests that several E3 ubiquitin proteins play 
roles in fat deposition, lipid metabolism, and the inflammatory response in mammals (Qi et al., 
2006; Pasaje et al., 2011; Song et al., 2013; Abe et al., 2014). E3 ubiquitin ligase COP1 is a key 
regulator of lipid metabolism and energy homeostasis in mice (Qi et al., 2006). E3 ubiquitin 
ligase MG53 and E3 ubiquitin ligase CBL-B induce insulin resistance in muscle and adipocyte 
tissue (Song et al., 2013; Abe et al., 2014). In addition, UBE3C exhibits altered expression 
levels in pig adipocyte tissue (Toedebusch et al., 2014), and E2 and E3 ubiquitin proteins 
are expressed in muscle and are associated with meat quality in pigs (Ponsuksili et al., 2010; 
Huynh et al., 2013). Therefore, E3 ubiquitin ligase can be regarded as a candidate gene for 
fat deposition in muscle. To elucidate the effects of this gene, porcine UBE3C polymorphisms 
were identified, and their associations with IMF content and FA composition were investigated 
in a commercial Duroc pig population.

MATERIAL AND METHODS

Animals and phenotypic measurements

The study was approved by the Animal Ethics Committee of the Faculty of Agriculture, 
Chiang Mai University, Thailand. A total of 324 pigs (188 gilts and 136 barrows) were obtained 
from a commercial Duroc population (Betagro Hybrid International Company, Thailand). All 
of the pigs were reared under commercial conditions and slaughtered at about 90 kg of body 
weight. Longissimus dorsi (LD) muscle samples from the 10th rib were collected and used 
to determine IMF content by the ether extraction method (AOAC, 2000). FA composition 
was measured by gas chromatography (SCION 456-GC, Bruker Daltonics Inc., Fremont, CA, 
USA) with an RT-2560 capillary column (Restek, Bellefonte, PA, USA). Individual FAs were 
calculated as a percentage of total FAs. The proportions of saturated (C14:0, C16:0, C18:0, and 
C20:0), monounsaturated (C16:1n-9, C18:1n-9, and C20:1n-9), polyunsaturated (C18:2n-6, 
C18:3n-6, C20:2n-6, C20:3n-6, and C20:4n-6), w3 (C18:3n-3, C20:5n-3, and C22:6n-3), w6 
(C18:2n-6, C18:3n-6, and C20:3n-6), and w9 (C16:1n-9 and C18:1n-9) FAs were calculated.

Isolation of genomic DNA and SNP genotyping

The isolation of genomic DNA from muscle tissue was conducted using the phenol-
chloroform method (Sambrook and Russell, 2001). The quantity and purity of the genomic DNA 
samples were measured using a NanoDropTM 2000c spectrophotometer (Thermo Scientific, 
USA). The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) 
method was used to verify the presence and content of porcine UBE3C polymorphisms. Four 
polymorphic sites on porcine UBE3C were selected based on the restriction enzymes available 
in the Ensembl database, and consisted of g.1586399A>G (rs81329544), g.1591358G>A 
(rs32466023), g.1600132G>C (rs81261314), and g.1600166G>A (rs81261315). Specific 
primers were designed based on the porcine UBE3C nucleotide sequence (GenBank accession 
No. NC_010460), as shown in Table 1. A mismatched primer was designed to introduce a 
recognition site of the restriction enzyme for genotyping (Table 1). PCR amplifications were 
performed using 50 ng genomic DNA, 4 pM of each primer (Table 1), 1.5 mM MgCl2, 0.25 
mM of each dNTP, 0.25 U Taq DNA polymerase (Fermentas), and 1X Taq buffer (20 mM 
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Tris-HCl, pH 8.4, 50 mM (NH4)2SO4; Fermentas) in a final volume of 20 µL. The thermal 
cycling conditions were as follows: denaturation at 94°C for 3 min; 35 cycles at 94°C for 30 
s, 58°-60°C for 30 s, 72°C for 30 s; and a final extension at 72°C for 5 min. Digestions were 
performed using the restriction enzymes (Table 1), and the digested fragments were analyzed 
by 6% polyacrylamide gel electrophoresis.

*Mismatched nucleotide is underlined to generate a recognition site of the restriction enzyme for genotyping. SNP, 
single nucleotide polymorphism; Ta, annealing temperature.

Table 1. Primer sequences, polymerase chain reaction conditions, and restriction enzymes used for genotyping 
polymorphisms of the porcine UBE3C gene.

SNP Primer sequence* Size (bp) Ta (°C) Restriction enzyme 
g.1586399A>G F: 5'-AACCTGTCCTGTTGCTCTCA-3' 192 58 Bsh1236I 
 R: 5'-CAGGAGAGCCAGCTAAACT-3'    
g.1591358G>A F: 5'-CTATGCCCACCTTAGAAGGA-3' 319 58 Hin6I 
 R: 5'-GCTTGCTGCTGCTCTTTTAG-3'    
g.1600132G>C F: 5'-AGGAGAGGGGAGATGGCG-3' 126 60 Hin6I 
 R: 5'-AACGCCTTCAGAAACCACC-3'    
g.1600166G>A F: 5'-AGTCCATCTGCAATGTGAGC-3' 149 60 HpyCH4V 
 R: 5'-CAGAAACCACCGTTCAGATA-3'    

 

Statistical analysis

Genotypic and allelic frequencies were calculated, and the effects of porcine 
UBE3C on IMF content and FA composition were analyzed using a general linear model 
that included sex and marker genotype as fixed effects. Differences between the least 
square mean averages for the porcine UBE3C genotypes were considered, with the value 
of significance set at P < 0.05.

RESULTS

Verification of porcine UBE3C polymorphisms

Four SNP markers of porcine UBE3C were selected for verification in the commercial 
Duroc population. The results revealed that two SNP markers (g.1586399A>G and 
g.1591358G>A) on introns 5 and 6 were segregated among the Duroc pigs (Figure 1). There 
were no polymorphisms at g.1600132G>C or g.1600166G>A.

Genotypic and allelic frequencies of porcine UBE3C

The genotypic and allelic frequencies of porcine UBE3C were estimated, and the 
results are shown in Table 2. At the g.1586399A>G locus, two genotypes (AA and AG) 
were present, while at g.1591358G>A, three genotypes were observed. At the g.1600132 
and g.1600166 loci, these two SNPs were fixed as g.1600132G and g.1600166G. A low 
frequency of the homozygous AA genotype (2%) at the g.1591358G>A locus was observed. 
Consequently, genotype AA was excluded from an analysis of the association between the 
g.1591358G>A SNP and fat deposition. Alleles of g.1586399A and g.1591358G were more 
frequently observed.
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Figure 1. Polymerase chain reaction-restriction fragment length polymorphism analysis of the porcine UBE3C 
gene. A. Polymerase chain reaction fragments of g.1586399A>G and B. g.1591358G>A were digested using the 
restriction enzymes Bsh1236I and Hin6I, respectively. Lane M, 100-bp DNA ladder; UBE3C genotypes are given 
at the top of each lane.

*Allele A represents wild-type alleles of UBE3C g.1586399A, g.1591358G, g.1600132G, and g.1600166G for 
each locus and allele B represents mutant alleles of g.1586399G, g.1591358A, g.1600132C, and g.1600166A for 
each locus.

Table 2. Genotypic and allelic frequencies of porcine UBE3C genotypes in Duroc pigs.

Marker  Genotypic frequency Allelic frequency 
 N AA AB BB A* B 
g.1586399A>G 220 0.75 0.25 0 0.87 0.13 
g.1591358G>A 324 0.78 0.20 0.02 0.88 0.12 
g.1600132G>C 195 1 0 0 1 0 
g.1600166G>A 208 1 0 0 1 0 

 

Associations between porcine UBE3C, IMF content, and FA composition

The effects of porcine UBE3C on IMF content and FA composition are shown in 
Tables 3 and 4. The g.1586399A>G SNP was significantly related to IMF content, and 
pigs with the AA genotype had a higher IMF content than pigs with the AG genotype 
(P < 0.05). There was no significant association between the g.1586399A>G SNP with 
any FA trait (Table 3). However, the g.1591358G>A SNP was significantly associated 
with FA composition in the LD muscle. Pigs with the GG genotype had significantly 
higher palmitic (C16:0), stearic (C18:0), eicosenoic (C20:1n-9), and eicosadienoic acid 
(C20:2n-6) levels and saturated FA levels than those with the GA genotype (P < 0.05). 
There was no significant association between the g.1591358G>A SNP and IMF content 
(Table 4).
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Table 3. Associations between porcine UBE3C g.1586399A>G, IMF content, and FA composition in the 
longissimus dorsi muscle of Duroc pigs.

aMeans ± SE represent least square means ± standard error. b,cValues in each row with different superscript letters 
were significantly different (P < 0.05). IMF, intramuscular fat; FA, fatty acid.

Trait (%) Genotype (means ± SE)a P value 
 AA AG  
IMF 5.963 ± 0.339b 4.169 ± 0.555c 0.0426 
C12:0 (Lauric acid) 0.139 ± 0.021 0.105 ± 0.044 0.2910 
C14:0 (Myristic acid) 1.480 ± 0.061 1.523 ± 0.130 0.7722 
C16:0 (Palmitic acid) 14.754 ± 0.880 14.103 ± 1.853 0.7580 
C18:0 (Stearic acid) 12.546 ± 0.602 11.050 ± 1.267 0.3036 
C20:0 (Arachidic acid) 0.299 ± 0.045 0.274 ± 0.095 0.8155 
Saturated FA 29.081 ± 1.414 26.951 ± 2.975 0.5310 
C16:1n-9 (Palmitoleic acid) 4.386 ± 0.206 4.763 ± 0.433 0.4470 
C18:1n-9 (Oleic acid) 34.699 ± 1.772 36.459 ± 1.989 0.2234 
C20:1n-9 (Eicosenoic acid) 1.659 ± 0.129 1.574 ± 0.272 0.6974 
Monounsaturated FA 40.780 ± 1.864 46.263 ± 3.921 0.2246 
C18:2n-6 (Linoleic acid) 20.112 ± 1.336 18.834 ± 2.812 0.6902 
C18:3n-6 (Linolenic acid) 0.093 ± 0.032 0.109 ± 0.044 0.1812 
C20:2n-6 (Eicosadienoic acid) 1.702 ± 0.161 1.205 ± 0.240 0.0786 
C20:3n-6 (Homolinolenic acid) 0.201 ± 0.081 0.189 ± 0.072 0.6042 
C20:4n-6 (Arachidonic acid) 0.982 ± 0.141 0.119 ± 0.231 0.1710 
Polyunsaturated FA 23.090 ± 1.450 21.456 ± 2.899 0.5505 
3 FA 0.787 ± 0.099 0.578 ± 0.208 0.3830 
6 FA 20.395 ± 1.332 19.177 ± 2.802 0.7033 
9 FA 39.085 ± 1.793 41.222 ± 2.122 0.1976 

 

aMeans ± SE represent least square means ± standard error. b,cValues in each row with different superscript letters 
were significantly different (P < 0.05). IMF, intramuscular fat; FA, fatty acid.

Table 4. Associations between porcine UBE3C g.1591358G>A, IMF content, and FA composition in the 
longissimus dorsi muscle of Duroc pigs.

Trait (%) Genotype (means ± SE)a P value 
 GG GA  
IMF 5.095 ± 0.280 4.624 ± 0.591 0.4748 
C12:0 (Lauric acid) 0.113 ± 0.018 0.166 ± 0.034 0.1652 
C14:0 (Myristic acid) 1.471 ± 0.058 1.396 ± 0.110 0.5394 
C16:0 (Palmitic acid) 15.629 ± 0.456b 13.554 ± 0.859c 0.0350 
C18:0 (Stearic acid) 14.172 ± 0.410b 12.120 ± 0.771c 0.0209 
C20:0 (Arachidic acid) 0.290 ± 0.040 0.270 ± 0.076 0.8136 
Saturated FA 31.562 ± 0.984b 27.340 ± 1.186c 0.0155 
C16:1n-9 (Palmitoleic acid) 4.550 ± 0.178 4.355 ± 0.335 0.6028 
C18:1n-9 (Oleic acid) 37.292 ± 1.636 34.872 ± 2.087 0.1198 
C20:1n-9 (Eicosenoic acid) 1.976 ± 0.157b 1.212 ± 0.296c 0.0246 
Monounsaturated FA 43.818 ± 1.738 40.439 ± 2.079 0.0856 
C18:2n-6 (Linoleic acid) 18.712 ± 1.296 20.384 ± 2.437 0.5397 
C18:3n-6 (Linolenic acid) 0.098 ± 0.030 0.063 ± 0.026 0.1798 
C20:2n-6 (Eicosadienoic acid) 1.683 ± 0.139b 1.124 ± 0.233c 0.0398 
C20:3n-6 (Homolinolenic acid) 0.241 ± 0.072 0.186 ± 0.135 0.7131 
C20:4n-6 (Arachidonic acid) 0.974 ± 0.232 1.207 ± 0.312 0.1878 
Polyunsaturated FA 21.708 ± 1.369 22.964 ± 2.463 0.4103 
3 FA 0.690 ± 0.092 0.822 ± 0.172 0.4947 
6 FA 19.065 ± 1.296 20.493 ± 2.438 0.6004 
9 FA 41.842 ± 1.614 39.227 ± 2.113 0.1126 
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DISCUSSION

Ubiquitination, a process in the ubiquitin-proteasome system, is responsible for the 
majority of protein degradation in the intracellular pathway of mammalian cells (Ponsuksili et 
al., 2009; Keller et al., 2012; Bugliani et al., 2013). Three enzymatic components, designated 
as E1 (activation enzyme), E2 (conjugate enzyme), and E3 (ligase enzyme), promote the 
conjugation of ubiquitin molecules to the target proteins (Keller et al., 2012; Bugliani et al., 
2013). The ubiquitin-proteasome named 26S proteasome is a large multicatalytic protease 
complex that degrades ubiquitinated proteins to small peptides (Keller et al., 2012).

Previous studies have shown that gene expression in the ubiquitination system is 
associated with meat quality (Ponsuksili et al., 2008, 2009), and ubiquitin protein ligase 
UBE3B, a paralog of UBE3C, is significantly associated with carcass, water-holding capacity, 
meat color, and conductivity traits in pigs (Basel-Vanagaite et al., 2012; Huynh et al., 2013; 
Jiang et al., 2014). Many studies have reported that E3 ubiquitin protein ligases are involved 
in fat deposition, lipid metabolism, energy homeostasis, insulin resistance, and immune 
responses in mammals (Qi et al., 2006; Pasaje et al., 2011; Song et al., 2013; Abe et al., 2014). 
Although there is little published information regarding UBE3C and its possible functions 
related to fat deposition in muscle, it is of significant interest as a positional candidate gene for 
fat deposition in muscle due to its location on SSC18, near the QTLs for IMF content and FA 
composition (Pérez-Montarelo et al., 2012; Ramayo-Caldas et al., 2012; Uemoto et al., 2012).

In the present study, we verified polymorphisms of porcine UBE3C and evaluated 
the effects of this gene on IMF content and FA composition in LD muscle. Two of four SNPs 
(g.1586399A>G and g.1591358G>A) of porcine UBE3C were segregated in the Duroc pigs, 
and a high frequency of the alleles g.1586399A and g.1591358G was observed. The results 
indicate that there has been strong selection pressure on desirable production traits that are 
associated with the UBE3C g.1586399A and g.1591358G alleles. These two SNPs were 
significantly associated with IMF content and FA composition; the g.1586399A>G SNP was 
significantly associated with IMF content, while the g.1591358G>A SNP was significantly 
associated with FA composition (palmitic, stearic, eicosenoic, and eicosadienoic acids, and 
saturated FA). In addition, the favorable g.1586399A and g.1591358G alleles exhibited 
positive relationships with IMF and FAs in muscle. However, these two SNPs were identified 
in non-coding regions of porcine UBE3C. We hypothesize that these SNPs might be in linkage 
disequilibrium with other causal polymorphisms, which may be located in another region 
of UBE3C. Recent evidence suggests that UBE3C expression levels are downregulated in 
the adipocyte tissue of obese pigs (Toedebusch et al., 2014). This result is consistent with 
those obtained from a previous study, which found that E3 ubiquitin ligase CBL-B deficiency 
increases macrophage activation and accumulation in adipose tissue, resulting in induced 
insulin resistance in mice (Abe et al., 2014). In contrast, upregulated E3 ubiquitin ligase 
MG53 causes metabolic syndrome that includes insulin resistance, obesity, hypertension, and 
dyslipidemia in mice (Song et al., 2013). E3 ubiquitin ligase COP1 is associated with the 
pseudokinase TRB3 in deactivating acetyl-coenzyme A carboxylase, which is a key regulatory 
enzyme in the FA synthesis pathway (Qi et al., 2006). This indicates that E3 ubiquitin protein 
ligases are key regulators of fat deposition and energy homeostasis. Our results demonstrate 
that porcine UBE3C polymorphisms are correlated with IMF content and FA composition. 
Further studies will be required to test these SNPs in variant populations of pig breeds, in order 
to confirm the association with fat deposition. In addition, the association between porcine 
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UBE3C SNPs and transcriptional and protein expression levels in adipocyte and muscle tissue 
needs to be examined, in order to gain a better understanding of the molecular mechanisms 
underlying UBE3C function in fat deposition in muscle.

In conclusion, we verified variant DNA markers in porcine UBE3C and analyzed the 
effects of porcine UBE3C on IMF content and FA composition in pigs. Two porcine UBE3C 
polymorphisms (g.1586399A>G and g.1591358G>A) were associated with IMF content and 
FA composition. These results confirm the importance of porcine UBE3C in fat deposition 
in muscle. Therefore, these two SNPs may be used as candidate markers for the genetic 
improvement of fat deposition in pigs.
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