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ABSTRACT. Drought is a major threat to agricultural crop growth and 

productivity. However, the molecular mechanism behind such effects 

remains largely unknown. Plant CBL (Calcineurin B-Like)-interacting 

protein kinases (CIPKs) are believed to play an important role in plant 

drought tolerance and signalling transduction. Here, we report the 

influence of a member of the CIPK family, AtCIPK23, in drought stress 

responses in tobacco. Transgenic tobacco plants over-expressing 

AtCIPK23 showed enhanced tolerance to drought stress compared with 

wild-type plants. After drought stress treatment, the survival rates and 

levels of chlorophyll, proline, and soluble sugar in three transgenic lines 

were significantly higher than those in WT plants. Additionally, in the 

transgenic plant lines the accumulation of H2O2 was lower, and the 

expression levels of NtSOD, NtCAT and NtAPX were higher compared 

with wild-type plants under drought stress. A quantitative RT-PCR 

analysis revealed that over-expression of AtCIPK23 in tobacco induced 

the expression of the NtDREB, NtLEA5 and NtCDPK2 genes. 

Therefore, AtCIPK23 perhaps is involved in the plant response to 

drought stress via regulating the expression of stress-related genes.                                                  

Key words: AtCIPK23, Drought, Tobacco (Nicotiana tabacum L), 

transformation, ROS 
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INTRODUCTION 

In agricultural practice, crops often encounter various environmental stresses, such as unfavourable 

temperatures, high salinity, and drought. These stresses negatively affect the growth and development of crops, 

leading to decreased crop yield. To increase the survival rates and improve yield, agricultural plants have 

developed various mechanisms to adapt to these abiotic stresses, which involve various signalling transduction 

cascades and the activation of stress-responsive molecular networks (Zhu, 2002; Albrecht et al., 2003; 

Yamaguchi-Shinozaki and Shinozaki, 2005; Shinozaki and Yamaguchi-Shinozaki, 2007; Vij and Tyagi, 2007; 

Xiang et al., 2007).  

Calcium signaling play important roles in plant physiological and developmental processes. As a secondary 

messenger, the increased cytosolic free Ca
2+

 concentration can transduce the extracellular stimuli and regulates 

various molecular network responses (Sanders et al., 2002; Albrecht et al., 2003; Berridge et al., 2003; Kim et 

al., 2003a, 2003b; Cheng et al., 2004; Kolukisaoglu et al., 2004; Tuteja and Mahajan, 2007; Kudla et al., 2010). 

In higher plants, there are several main Ca
2+

 sensors families identified, including calmodulins (CaMs), 

calmodulin-like proteins (CMLs), calcineurin B-like proteins (CBLs) and calcium-dependent protein kinases 

(CDPKs) (Magnan et al., 2008; DeFalco et al., 2010; Conde et al., 2011; Boudsocq and sheen, 2013; Zhang et 

al., 2014).  

To mediate Ca
2+

 signaling functions, the CBL proteins can specifically target CBL-interacting protein kinases 

(CIPKs, also known as PKS, protein kinase) and activate its activity to transduce calcium signals by 

autophophorylating or phosphorylating downstream components in response to various stimuli (Kim et al., 

2000; Albrecht et al., 2003; Batistic and Kudla, 2004; Pandey et al., 2004; D’Angelo et al., 2006; Cheong et al., 

2007; Batistic et al., 2008; Luan, 2009; Deng et al., 2013; Zhang et al., 2014). 

In higher plants, 43 CIPKs in maize (Chen et al., 2011), 34 CIPKs in rice (Kanwar et al., 2014; Zhang et al., 

2014), 27 CIPKs in poplar (Yu et al., 2007), and 26 CIPKs in Arabidopsis (Kolukisaoglu et al., 2004) were 

identified. Plant CIPKs play crucial roles in plant ion homeostasis and transportation across the plasma 

membrane or tonoplast to increase plants’ tolerance to various abiotic stress (Zhang et al., 2014). AtCIPK24 

(AtSOS2) and its counterparts in higher plants are proved to increase salt resistance. Interacting with AtCBL4 

(AtSOS3), AtCIPK24 (AtSOS2) can activate the plasma membrane-localized Na+/H+ antiporter 

AtNHX7(SOS1) and vacuolar H+-ATPase resulting in enhanced salt tolerance in Arabidopsis (Qiu et al., 2002; 

Batelli et al., 2007; Kudla et al., 2010). Similarly, the formation of AtCBL10 and AtCIPK24 (AtSOS2) complex 

also improves Arabidopsis shoots tolerance to salt stress (Kim et al., 2007; Quan et al., 2007). The homologous 

genes of AtCIPK24 (AtSOS2), such as MdCIPK6L, MdSOS2, and ZmCIPK16 (Zhao et al., 2009; Hu et al., 

2011; Wang et al., 2012) have been reported similar functions as it in increasing plants’ tolerance to salt stress. 

Additionally, plant CIPKs have also been proved to function in cellular K+ homeostasis. In Arabidopsis, the 

CBL1/CBL9-CIPK23 complex can interact with and activate K+ transporter protein AKT1 by phosphorylation 

on the membrane to promote K+ transport into the plant cell (Li et al., 2006; Xu et al., 2006). In rice, the 

OsCBL1/OsCIPK23 complex can activate K+ channel OsAKT1 and enhance OsAKT1-mediated K+ uptake (Li 

et al., 2014). Similar results have also been found in HbCIPK2 and SlSOS2 in cell K+ homeostasis (Huertas et 

al., 2012; Li et al., 2012). Moreover, AtCIPK23 can also phosphorylate T101 of CHL1 to maintain a low-level 

primary response in response to low nitrate concentrations (Yu et al., 2014).  

Several reported plant CIPK family genes could be activated by other abiotic stresses and plant hormone, 

including auxin and abscisic acid (ABA) (Luan et al., 2009; Weinl and Kudla, 2009). In rice, OsCK1/OsCIPK3 

is involved in responses to diverse signals including cold, light; cytokinin’s, sugars and salts (Kim et al., 2003b). 

Down-regulated expression of OsCIPK23 conferred a drought stress sensitive phenotype, and over-expression 

resulted in up-regulated expression of several drought tolerances related genes (Yang et al., 2008). In cassava, 

most MeCIPKs were induced by drought stress (Hu et al., 2015), underlying their roles in response to this 

stimuli. Arabidopsis CIPK6 is critical for auxin transportation, influencing root morphogenesis and salt stress 

response (Tripathi et al., 2009; Chen et al., 2013). AtCIPK26 has been shown involved in ABA signaling during 

seed germination by interacting with ABI1, ABI2, and ABI5 (Lyzenga et al., 2013). In conclusion, all these 

evidences have proved that plant CIPKs are vital for plant response to various stimuli. However, the function of 

AtCIPK23 in response to drought stress remains still unknown. In this study, we report that AtCIPK23 could be 
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involved in transgenic tobacco plants’ response to drought stress, and our results suggest that AtCIPK23 could 

be a multistress induced gene that is critical for plant abiotic stress adaption. 

MATERIALS AND METHODS 

Construction of AtCIPK23 overexpression vectors and tobacco genetic transformation 

For AtCIPK23 overexpression vectors construction, full-length coding sequence of the AtCIPK23 gene was 

cloned using RT-PCR. The resulting amplicons was then inserted into pCAMBIA 1300 plant expression vector 

under the control of Super promoter (Chen et al., 2009). This vector was introduced into Agrobacterium 

tumefaciens strain EHA105, and transgenic tobacco plants were generated by Agrobacterium-mediated 

transformation as described in previous study (Bao et al., 2017). 

Transgenic tobacco plants were monitored on MS medium containing 50 mg/L hygromycin, and the survival 

plants were then verified by PCR. T1 transgenic tobacco seeds were surface-sterilized and germinated on MS 

medium supplemented with 50 mg/L hygromycin, and transgenic lines with a 3:1 (resistant: sensitive) 

segregation ratio were selected to produce seeds. The T3 transgenic lines which exhibited 100% hygromycin 

resistance were then chosen for further study. 

Plant material and stress treatment 

The tobacco wild-type K326 and the AtCIPK23-over-expressing transgenic tobacco lines KA13, KA14 and 

KA44 were obtained as described above, and the expression levels of AtCIPK23 in the transgenic lines and the 

wild-type were monitored by qRT-PCR using gene-specific primers (Supplementary data).  

Tobacco seeds from various transgenic lines and wild-type were surface-sterilized and planted in 20 cm 

diameter plastic pots filled with 3 kg of nutrient soil. For the drought treatment, water was withheld from the 

tobacco seedlings for 12 days after 40 days of normal water supply. Then, the tobacco seedlings were re-

watered, and the survival rate was calculated after 3 days of rewatering.  

On the seventh day after the drought treatment, leaf samples from 10 plants of each transgenic line and wild-

type were collected. Total chlorophyll was determined by SPAD Chlorophyll Meter (SPAD502 Plus, Konica 

Minolta, Japan). The content of proline was measured as described by Claussen (2005). 0.2 g leaf samples (fresh 

weight) from treatments and control were collected, ground in a mortar with quartz sand and 5 ml 3% (w/v) 

aqueous sulfosalicylic acid solution, and transferred to test tubes. The closed test tubes were kept in a boiling 

water bath for 10 min, cooled to room temperature (21°C) and filtered. The clear filtrate was then transferred to 

another clear test tubes and constant-volume to 5 ml with 3% (w/v) aqueous sulfosalicylic acid solution. The 

proline concentration was determined immediately at a wavelength of 546 nm with a LG-721 

spectrophotometer. The amount of soluble sugar was measured as described by Yang et al. (2007). Tobacco 

seedling leaves from treatments and control were collected, and treated at 105°C for 20 min and further dried at 

80°C for 8 h. Then, 0.1 dry materials from each sample was boiled in 40 ml ddH2O for 40 min, and filtered. The 

filtrates were then transferred to 50 ml volumetric flasks and constant-volume to 50 ml with ddH2O. Total 

amounts of soluble sugar were measured at 620 nm on a LG-721 spectrophotometer.  

RNA extraction and qRT-PCR analysis 

Total RNA was isolated from leaves of 30-day-old tobacco seedlings and from seedlings after 7 days of the 

drought treatment by using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s 

protocol. cDNA generation and real-time PCR were performed according to Lu et al. (2015). In brief, cDNA 

was generated by using TaqMan Reverse Transcription Regents kit (Applied Biosystems, Foster City, USA: 

ABI), and 5 ng of the cDNA template was applied for quantitative assays using the SYBR Green Master Mix 

(ABI, PN4309155) with an ABI 7900 sequence detection system according to the manufacturer’s 

instructions(ABI). The tobacco Actin gene was used as an internal control, and the relative expression of the 

tested genes between replicates examined were evaluated according to the relative quantification method (Delta-

Delta CT, Livak and Schmittgen, 2001).  

Gene-specific primers were designed using Primer 3 (http://frodo.wi.mit.edu/primer3/input.htm) as described in 

Supplementary data. 
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Water loss assay 

Leaves from various transgenic lines and wild-type of 30-day-old seedlings were collected and left to dry for 12 

h at room temperature. The water loss rates were then calculated according to following formula: water loss 

rate= (total weight - fresh weight)/total weight × 100%. 

Leaf relative electrical leakage assay 

Tobacco leaf samples from wild-type and the transgenic lines were collected after 4 days of the drought 

treatment. Ten leaf discs 10 mm in diameter were obtained from each sample, and the electrical conductivity 

(R1) was measured using the electrical conductivity metre (Sino measure Product, Hangzhou, China) after 

soaking in ddH2O for 12 h. Then, the discs were incubated in boiling water for 30 min, and the electrical 

conductivity (R2) was determined. The relative leaf electrical leakage=R1/R2 × 100%. 

Measurements of H2O2 Production 

H2O2 was detected by DAB staining as described previously (Guan and Scandalios, 2000; Zou et al., 2015). 

Tobacco seedling leaves from drought treatments and control were incubated in DAB solution (1 mg/mL 21, pH 

3.8; Sigma-Aldrich) for 8 h in dark at 28°C, and then dipped into boiling 80% (v/v) ethanol for 10 min. The 

leaves were extracted with 80% (v/v) ethanol after cooling, and photographed. 

RESULTS 

Transgenic lines overexpressing AtCIPK23 demonstrated enhanced drought tolerance  

To monitor the water loss rate, tobacco leaves from three transgenic lines and wild-type (WT) were collected 

and left to dry for 12 h. The results showed that the relative water loss of all tested samples gradually increased 

during the testing time. The water loss rate of the WT K326 was significantly higher than that of all three 

transgenic lines at all-time points (Figure 1A). The average water loss rate of WT leaves was approximately 

55% after 12 h, compared with 47%, 40% and 34% in the three transgenic lines, KA13, KA14 and KA44, 

respectively. This result indicated that the transgenic lines overexpressing AtCIPK23 lost less water under 

drought stress and eventually exhibited drought tolerance. 

To investigate whether AtCIPK23 can increase drought tolerance in transgenic tobacco plants, three AtCIPK23 

transgenic lines and wild-type (WT) were treated with drought stress. There were no obvious morphological or 

developmental differences between the three transgenic lines and WT plants under normal growth conditions. 

During a 12-d period of drought treatment, WT plants showed a much more sensitive phenotype compared with 

the three transgenic lines. At 4-d after the drought treatment, the WT plants started to wilt, and this drought-

sensitive phenotype was obvious (Figure 1B). After the drought stress treatment, all WT plants wilted, and their 

leaves became chlorotic, while plants from the three transgenic lines were turgid, and their leaves remained 

green.  

After re-watering for 3 days, the plants from the transgenic lines recovered more quickly than the WT plants 

(Figure 1C). The survival rates of three transgenic lines KA13, KA14 and KA44 were 67%, 78%, and 89%, 

respectively, which were significantly higher than the recovery rate of 30% observed in WT K326.  

The determination of relative electrical leakage of the tobacco leaves showed that the WT had significantly 

higher leakage than the transgenic lines KA14, KA 13 and KA44 (Figure 1D). Meanwhile, the chlorophyll, 

proline and soluble sugar contents of the transgenic plants were significantly higher than those of the WT plants 

at the 7th day without watering (Figures 1E, 1F and 1G). 

The lower electrolytic leakage and higher concentrations of proline and soluble sugar in transgenic lines 

suggested that AtCIPK23 improved the membrane integrity and maintained higher osmotic pressure in cells to 

enhance drought stress tolerance. 

Figure 1 AtCIPK23 gene enhanced drought tolerance in tobacco and Physiological indices determination. (A) 

Relative water loss rate, (B) and (C) the phenotype of tobacco after 7 days drought stress treatment and 5 days 
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re-watering. (D) relative electrolytic leakage. (E) and (F) the concentration of proline and soluble sugar. (G) 

chlorophyll content. Each data point represents mean ± SE (n=3). Asterisk indicates significant difference 

relative to WT. 

 

Figure 1. AtCIPK23 gene enhanced drought tolerance in tobacco and Physiological indices determination.  

Transgenic lines accumulated less H2O2 than WT under drought stress 

The production of H2O2 in leaves after the drought treatment was determined using the 3,3’-diaminobenzidine 

(DAB) uptake method according to previous studies (Guan and Scandalios, 2000; Zou et al., 2015). As shown in 

Figure 2A, after the drought treatment, the transgenic tobacco plants accumulated less H2O2 in the tobacco 

leaves than the WT plants. 

NtSOD, NtCAT and NtAPX encode superoxide, catalase and peroxidase, respectively, which are three key ROS 

scavenging enzymes that function to detoxify ROS. The expression levels of NtSOD, NtCAT and NtAPX were 

measured, and the results showed that the transgenic lines exhibited higher expression levels of these genes, 

especially NtCAT and NtAPX, under drought stress compared to WT (Figures 2B, 2C, 2D). These data 

suggested that the elevated expression level of ROS scavenging genes resulted in less accumulation of H2O2, 

and eventually enhanced drought tolerance in the transgenic tobacco plants. 

 

Figure 2. DAB staining and gene expression analysis of NtSOD、NtCAT and NtAPX. (A) DAB staining. (B), (C) and (D) gene 

expression analysis of NtSOD、NtCAT and NtAPX. Each data point represents mean ± SE (n=3). Asterisk indicates significant 

difference relative to WT. 
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Gene expression of drought related genes were increased obviously under drought stress 

To further explore the reasons that the transgenic tobacco plants exhibited enhanced drought tolerance, the 

expression levels of three drought related genes, NtDREB, NtLEA5 and NtCDPK2, were determined using 

qPCR. The results showed that the expression levels of these three genes were much higher in the transgenic 

lines than in WT under drought stress (Figure 3). This result suggested that the expression of NtDREB, NtLEA5 

and NtCDPK2 may be directly or indirectly regulated by AtCIPK23, leading to the enhanced drought tolerance 

in the transgenic tobacco plants. 

 

Figure 3. Expression profiles of three drought relative genes, NtDREB(A)、NtLEA5(B) and NtCDPK2(C), in WT and transgenic 

lines after 7 days drought stress. Each data point represents mean ± SE (n=3). Asterisk indicates significant difference relative to 

WT. 

DISCUSSION 

AtCIPK 23 responses to multiple abiotic stresses 

Plant CIPKs widely participate in signal transduction under multiple stresses (Cheong et al., 2003; Kim et al., 

2003a; Cheong et al., 2007; Yang et al., 2008; Cheong et al., 2010; Tsou et al., 2012; Chen et al., 2013; Tai et 

al., 2016). In Arabidopsis, AtCIPK 23 was identified as a positive regulator of AKT1, and plays a key role in 

Arabidopsis potassium uptake (Li et al., 2006; Xu et al., 2006). AtCIPK 23 overexpression in potato, sugarcane 

and tobacco can significantly increase the ability of transgenic plants against low potassium stress (Wang et al., 

2011; Li et al., 2014; Xue et al., 2016). Apart from potassium, AtCIPK 23 also involved in the increasing high-

affinity nitrogen transport capacity under nitrate deficient conditions (Ho et al. 2009). Interestingly, in 

Arabidopsis, when the CBL1/CBL9-CIPK23-AKT1 pathway was inhibited, the plant stomatal response was 

altered, and plants exhibited drought tolerance (Cheong et al., 2007). Our results also showed that tobacco plants 

over-expressing AtCIPK23 exhibit greater drought tolerance than wild-type plants with higher chlorophyll 

content and recovery rate (Figure 1). All these results indicate that AtCIPK23 involves in multiple abiotic 

stimuli. However, it remains unclear how AtCIPK23 functions in drought stress responses.  

A possible role of AtCIPK23 played in plants drought resistance 

There are three different mechanisms for plants to adopt to fight against drought stress: a) to adjust the stomata 

opening-closure to control water loss rate, b) to trigger an ABA-dependent signaling pathway, and c) to induce 

the expression of drought-response genes (Yang et al., 2008). Many stress-related genes, such as WRKY, LEA, 

DREB, NCED, and Rd29A, have been shown to be induced under abiotic stresses (Liu et al., 1998; Yang et al., 

2008; Li et al., 2015; Kim et al., 2016). Furthermore, transgenic plants carrying the Arabidopsis DREB1A gene 

and the stress-inducible promoter rd29A improved drought tolerance in tobacco (Kasuga et al., 2004). A 

previous report showed that NtLEA5 and NtCDPK2 were up-regulated under drought stress treatment compared 

to wild-type (Huang et al., 2010). The results of these studies indicate that the up-regulation of these drought 

related genes could result in drought tolerance in plants. In our study, the expression levels of three drought 

relative genes NtDREB, NtLEA5 and NtCDPK2 significantly increased in transgenic tobacco plants under 

drought stress. In addition, the water loss assay in our study showed that the leaf relative water loss rate of 

transgenic plants were significantly lower than wild type K326 (Figure 1A). These results indicate that 

AtCIPK23 can adjust stomata opening and enhance plant drought-resistance ability.  

Osmotic substances such as proline and soluble sugar play key role in plant drought response, and accumulation 

of which is beneficial to scavenging reactive oxygen species, reducing cell osmotic potential and maintaining 
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water content of leaves under stress (Babita et al., 2010). Proline can protect plants from various stresses by 

functioning as an osmolyte in the cytosol. Many studies have observed that plant proline content increased under 

drought stress (Yoshiba et al. 1997; Man et al. 2011). In addition, the increase of soluble sugar content in plant 

cells can also maintain water content in leaves, keep plant cell photosynthesis rate together with higher 

chlorophyll content, and eventually help plants to survival under drought stress. These results suggest that 

AtCIPK23 can preserve plant cell in suitable condition to carry out basic physiological processes.  

As electrolyte leakage (EL) is the result of membrane damage, its’ content is widely used as an indicator of 

plant cell membrane damage (Bao et al., 2017). Previous reports showed that PmLEAs and ZmDHN2b 

overexpression in tobacco leading to lower electrolyte leakage content than wild-type under drought stresses 

(Xing et al., 2011; Bao et al., 2017). Similarly, in our study, the EL was lower in transgenic tobacco plants than 

in wild type indicating that AtCIPK23 can protect plant cell membranes from damage. 

Low levels of ROS accumulation in living plant cells is important for plant growth and development (Mittler, 

2002; Apel and Hirt, 2004). ROS are generated under stress, and ROS-scavenging pathways are responsible for 

eliminating excessive ROS during this process (Mittler et al., 2004; Miller et al., 2010). Several studies have 

shown that transgenic plants exhibit enhanced tolerance to salt and drought stresses, possibly as a result of 

decreased ROS accumulation (Asano et al., 2012; Zou et al., 2015). In this study, AtCIPK23 transgenic tobacco 

plants showed lower ROS accumulation and exhibited enhanced drought stress. Meanwhile, three ROS 

scavenging related genes, NtSOD, NtCAT and NtAPX, were up-regulated in the transgenic plants. This result 

indicates that AtCIPK23 may indeed enhance plants’ drought stress tolerance via ROS-scavenging pathways 

(Figure 2). 

Altogether, the results of our study suggest that AtCIPK23 involves in plants’ response to drought stress via a) 

and c) mechanism described above. 

CONCLUSION 

In conclusion, overexpression of AtCIPK23 significantly enhances the tolerance of transgenic tobacco plants in 

response to drought stress through regulation of ROS eliminating genes and drought resistance-related gene 

expression. It is likely that AtCIPK23 acts as a positive regulator in drought-resistance process. Further studies 

including identification of AtCIPK23 targets will unveil the molecular basis of the role of AtCIPK23 in plant 

response to drought stress. 
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