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ABSTRACT. Digital image analysis of seeds has been used for the 
identification of cultivars, determination of seed color and mechanical 
damage, and classification of different seed sizes. The aim of the present 
study was to evaluate the efficiency of digital image analysis of seeds 
for the quantification of genetic diversity among genotypes of inbred 
guava (Psidium guajava L.) families. The SAS Mini equipment, which 
consists of a capture module and a software program for analysis, was 
employed for the capture and analysis of the seed images. Different 
genetic diversity quantification strategies were tested using the Ward-
Modified Location Model method. The set of variables related to 
geometry of the seeds was the largest contributor to divergence among 
the guava genotypes. The use of seed descriptors obtained by digital 
image analysis via the SAS system was efficient at quantifying the 
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genetic diversity among genotypes of inbred guava families associated 
with the use of the Ward-Modified Location Model method.

Key words: Ward-Modified Location Model; Image analysis; Breeding; 
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INTRODUCTION

The guava [Psidium guajava L. (fam. Myrtaceae)] is a native tropical American tree 
that is widespread from Mexico to Brazil. It is a species of high economic value for several 
countries, since many products are generated from it, including fresh fruit, sweets, jellies, juice, 
syrup, and dried and canned goods. With respect to its nutritional qualities, it is rich in ascorbic 
acid, calcium, vitamin E, fiber, lycopene, and vitamins A, B6, and B2 (Lima et al., 2002).

The State University of Northern Rio de Janeiro (UENF) has been developing a guava 
(P. guajava L.) breeding program for approximately nine years, generating promising results 
regarding the composition of several types of study populations (Pessanha et al., 2011; Campos 
et al., 2013; Oliveira et al., 2013; Campos et al., 2016). In these studies, the production of inbred 
families was determined as the possibility of forming new types of populations. A cross between 
related or self-pollinated individuals causes an increase in homozygosis and a decrease in 
heterozygosis in the offspring, which could be an alternative way to obtain homogeneous fruits 
in commercial guava orchards since the self-pollination process is an alternative method for the 
fixation of alleles for the traits of interest (Falconer and Mackay, 1996). Obtaining these types of 
populations allows recessive alleles for unfavorable effects that are hidden in heterozygotes to 
manifest in the homozygotes, causing a reduction in the adaptive value of the individual. This is 
called inbreeding depression or loss of vigor; in the case of guava, this phenomenon has not been 
observed, which makes possible the use of these strategies in breeding programs for this crop.

To our knowledge, there are no reports of in-depth studies on the effects of inbreeding 
and its use in P. guajava breeding programs, but within the family Myrtaceae, some studies 
can be found on the genus Eucalyptus. Aiming to increase the efficiency of their eucalyptus 
breeding program, Bison et al. (2004) worked with the effects of inbreeding on the developed 
populations. Depression varied among the studied clones, averaging 17.5 to 4% for the several 
variables analyzed. Depression was expected to be higher, but one of the reasons for this 
outcome is that the self-pollination rate in eucalyptus ranges from 10 to 30%. However, 
according to the authors, some of the lethal alleles are eliminated naturally. Mortality also 
occurs during the establishment of seedlings because of the expression of deleterious alleles, 
and this mortality may be present throughout the different stages of the tree’s life cycle. 
Because it was possible to select plants in the F2 generation with performance superior to 
that of the F1 parents in most clones, the authors concluded that clones originating from self-
pollination are a good alternative for obtaining superior plants, since plants with lethal alleles 
can be eliminated in advance during the seedling production stage.

In a breeding program, the breeder needs variability in the population, and not only 
at the beginning of the program. Rather, they must also monitor whether, over its course, the 
population is losing variability, which may cause future genetic gains to become unavailable 
and prevent the continuity of the program. This knowledge allows the breeder to perform the 
introgression of favorable alleles for traits of interest at any time in the breeding program 
when he or she realizes that the genetic variability in the population is small or agronomic 
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performance is low. To measure genetic variability, morphological descriptors of several parts 
of the plant can be used, such as those related to the leaf, flower, fruit, seeds, and DNA markers. 
In the case of guava, many variables and methodologies have been adopted successfully to 
determine genetic diversity among genotypes (Pessanha et al., 2011; Campos et al., 2013; 
Oliveira et al., 2013; Campos et al., 2016).

The seed is the fertilized and developed ovum of superior plants, and its importance is 
related to reproduction and dispersion. Therefore, the phenotyping of this organ is of extreme 
relevance in breeding programs, given that it is possible to determine genetic diversity for 
seed-related variables (Gustin and Settles, 2015).

Phenotyping seeds via visual analysis is a laborious process that yields subjective 
results, further complicating the analysis of seeds for both commercial and technological 
purposes. However, today new technologies for controlled environments such as spectroscopy, 
thermography, tomography, fluorescence, isotope discrimination, and digital imaging 
techniques are being employed to increase the accuracy of and reduce the time required 
for phenotypic measurements for better characterization (Santos and Yassitepe, 2014). As a 
result, traits that have never been measured before or that have only been measured in specific 
situations are starting to be measured more frequently (Fiorani and Schurr, 2013) and with 
greater ease, e.g., traits related to seed size, color, form, and texture (Granitto et al., 2005). 
Venora et al. (2007) also reported that image analysis is a fast method that requires less than 
one minute for digitalization and measurement. It is also a very easily reproducible technique, 
in addition to being reliable and non-destructive. Images can be acquired by classic reflectance 
techniques such as light and microscopy photography or by more modern techniques like 
thermography, fluorescence, tomography, magnetic resonance, and nuclear resonance (Montes 
et al., 2007; Berger et al., 2010; Houle et al., 2010).

In Brazil, the Seed Analysis System (SAS) equipment was developed by Tbit in 2011 
to capture images, histograms, graphs, and other items that facilitate the analysis of seeds and 
seedlings. The equipment consists of a capture module and analysis software. The object of 
study is placed on an acrylic tray in capture mode and its image is captured by one or two 
cameras, depending on the version used. SAS performs an individual analysis of the images of 
seeds and plantlets, providing a large amount of information on the color, texture, geometry, 
uniformity, vigor, and growth of seedlings (Andrade et al., 2016).

The digital image analysis of seeds has been employed for the identification of cultivars, 
determination of seed colors and mechanical damage, and classification of different seed sizes 
(Venora et al., 2009; Medina et al., 2010; Kara et al., 2013; Pinto et al., 2015; Andrade et 
al., 2016). However, to our knowledge, there are no reports on the use of digital imaging to 
measure seed traits such as size, form, texture, and color as applied for the quantification of 
intraspecific genetic diversity. Thus, the objective of the present study was to evaluate the use 
of digital image analysis of seeds, obtained via SAS, for the quantification of genetic diversity 
among genotypes from inbred guava families obtained in a program under development at 
UENF associated with the use of the Ward-MLM (Modified Location Model) method.

MATERIAL AND METHODS

Obtaining the seeds

The experiment was performed at the experimental unit of UENF in Itaocara - Ilha 
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Barra do Pomba (21º40'S, 42º04'W, 76 m in altitude), in the northwest region of Rio de Janeiro 
State, Brazil. The soil of the experimental area is classified as a Red-Yellow Argisol.

The experiment was set up as a randomized block design with 18 inbred guava (P. 
guajava) families, 3 replications, and 10 plants per plot. Families were obtained by self-crosses 
of progenies resulting from controlled biparental crosses (Pessanha et al., 2011) from the 
breeding program of the State University of Northern Rio de Janeiro (UENF). Planting took 
place in July 2014, with rows spaced 4 m apart and plants 1.5 m apart. Liming and fertilization 
at planting and topdressing were performed according to the soil analysis, following the 
recommendations of Costa and Costa (2003).

In this experiment, 61 genotypes (individual plants) of guava were evaluated. Fifty 
seeds were collected from five ripe fruits per genotype in the period from March to April 2016. 
Seeds were removed manually, washed in running water over a fine mesh sieve, and then left 
to dry for three days on germination paper at room temperature.

Capture and analysis of guava seed images

SAS mini equipment was used to capture and analyze the seeds. The equipment 
comprises a capture module and a software program for analysis. The capture module consists 
of an acrylic tray in which 50 seeds were placed for image capture by the high-resolution camera 
(Figure 1). The software generates graphs and spreadsheets from the captured information to 
facilitate interpretation of the seed images. The CIELab color system was used to calibrate the 
background color, in which lightness ranged from 0.0 to 74.0, component a* from -120.0 to 
120.0, and component b* from -120.0 to 0.0. The recognition parameter of the studied object 
was the seeds in general, and the minimum size was fixed at 0.2 mm (Andrade et al., 2016).

Figure 1. Capture module of images from the SAS mini equipment.
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SAS generated a spreadsheet with mean values of each genotype for the color, 
geometry, and texture variables. In this study, 136 seed variables were obtained; 49 of these 
were related to color, 44 to geometry, and 43 to texture.

Quantification of genetic divergence

The Ward-MLM (Modified Location Model) method proposed by Franco et al. (1998) 
was employed as described by Viana and Resende (2014). First, the Gower (1971) index was 
used, generating an estimate of the dissimilarity index, which ranges from 0 to 1. Dissimilarity 
was calculated as:
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where i and j = individuals to be compared for trait k; p = total number of traits; and Sij = 
contribution of variable k to the total distance.

If the variable was qualitative, Sijk assumed value 1 when there was positive or 
negative agreement for the trait k between individuals i and j; otherwise, when the variable 
was quantitative,
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where Rk = amplitude of variation of variable k, assuming values of 0 to 1 or integers between 
them.

The Wijk value was a weight used to define the contributions of the individual Sijk’s. When 
the value of variable k was absent in one or both individuals, Wijk = 0; otherwise, it was equal to 1.

Next, the ideal number of groups was defined according to the pseudo F and pseudo t2 
criteria by Ward’s clustering method (Ward, 1963). According to the optimal number of groups, 
the hierarchical classification was obtained by Ward’s method, which provides the necessary 
parameters to implement the final step of the MLM model (Crossa and Franco, 2004). The 
differences between groups, the correlation between variables, and the canonical variable (CV) 
were analyzed graphically. All analyses were performed using SAS statistical software (SAS 
Institute, 2009). The diagrams were performed using the Sigma Plot software version 11.0.

For the analyses, different strategies were used to quantify the genetic diversity. 
First, the WARD-MLM methodology was applied for each group of color, geometry, and 
texture variables in which the contribution of variables was evaluated to quantify the existing 
genetic diversity among the genotypes; i.e., which showed the highest correlations with the 
first canonical variable. Later, three strategies were applied for the quantification of genetic 
diversity. In the first, the 30% of variables that contributed most to divergence within each 
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group were used, including 9 color, 12 geometry, and 6 texture variables. In the second 
strategy, 20% were used (6 color, 8 geometry, and 4 texture variables), and in the third, 10% 
were used (3 color, 4 geometry, and 2 texture variables).

RESULTS

Of the 136 evaluated variables, 44 were discarded because there was no variation. 
Thus, 31 color, 40 geometry, and 21 texture variables were analyzed.

According to the pseudo F and pseudo t2 criteria, three groups were formed for all 
of the seed descriptor evaluation strategies obtained via digital image analysis using SAS 
(Table 1). The ideal number of groups was found where there was the highest increase in the 
logarithmic function. Thus, there was no reduction in the number of groups even after the 
number of descriptors was reduced to nine.

However, the number of genotypes per group varied between the evaluated strategies 
(Table 1). In the strategy in which only the 31 color descriptors were evaluated, groups I, II, and 
III were formed by 43, 12, and 6 genotypes, respectively. For the set of seed-geometry variables, 
group I was formed by 19, group II by 20, and group III by 22 genotypes. In the analysis of 
texture variables, group I included 21 genotypes; II, 31; and III, 9. In the evaluation of the 
strategy in which the 30% of the total descriptors that contributed most to divergence were used, 
group I was formed by 18 genotypes, II by 37, and III by 6. For the strategy that utilized 20% of 
the total descriptors, group I had 42 genotypes; II, 12; and III, 7. Lastly, when 10% of the total 
descriptors were used, group I was formed by 35; II by 4; and III by 22 genotypes (Table 1).

Regarding the distance between the groups formed by the Ward-MLM method for 
the different seed descriptor evaluation strategies, there was also an alteration in the values. 
The largest distance was found between groups I and III (218.25) for the 31 color descriptors, 
and between groups II and III for the geometry (69.37) and texture (65.19) descriptors. In 
the evaluation of 30% of the total descriptors, the largest distance was between groups II and 
III (79.46). For the evaluation of 20 and 10% of the total descriptors, however, the largest 
distance was between groups I and II: 40.09 and 22.41, respectively (Table 1).

Table 1. Number of groups, number of genotypes per group, and distance between groups formed by the Ward-
MLM method for the different strategies of evaluation of seed descriptors in 61 genotypes of inbred guava families.

Evaluation strategy Number of groups Number of genotypes per group Distance between groups 
31 color descriptors I 43 I x II = 25.44 

II 12 I x III = 218.25 
III 6 II x III = 118.93 

40 geometry descriptors I 19 I x II = 34.35 
II 20 I x III = 36.37 
III 22 II x III = 69.37 

21 texture descriptors I 21 I x II = 20.01 
II 31 I x III = 25.09 
III 9 II x III = 65.19 

30% of the total descriptors 
(color: 9; geometry: 12; texture: 6) 

I 18 I x II = 28.97 
II 37 I x III = 38.02 
III 6 II x III = 79.46 

20% of the total descriptors 
(color: 6; geometry: 8; texture: 4) 

I 42 I x II = 40.09 
II 12 I x III = 24.13 
III 7 II x III = 32.38 

10% of the total descriptors 
(color: 3; geometry: 4; texture: 2) 

I 35 I x II = 22.41 
II 4 I x III = 14.13 
III 22 II x III = 21.81 
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The distances between groups were also observed in the graphic analysis (Figure 2). In 
the analysis based on the canonical variables, the first two canonical variables (CV) obtained 
by the Ward-MLM method explained 100% of the total variation for all evaluation strategies 
adopted (Figure 2). This high value indicates that a two-dimensional graph is appropriate for 
visualizing the relationship between the groups and the genotypes within the groups.

Figure 2. Dispersion of the first two canonical variables (CV1 and CV2) representing the formation of three 
groups by the Ward-MLM strategy based on: A. 31 color descriptors; B. 40 geometry descriptors; C. 21 texture 
descriptors; D. 30% of the total seed descriptors; E. 20% of the total descriptors; and F. 10% of the total descriptors.
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Table 2 shows the values of the contribution of variables to quantifying the existing 
genetic diversity between the genotypes; i.e., which ones presented the highest correlations 
with the first canonical variables for the strategies evaluating 30, 20, and 10% of the descriptors. 
In the three strategies, the set of variables regarding geometry were the largest contributors to 
quantifying the existing genetic diversity among genotypes, followed by the texture variables 
and lastly the color-related variables.

Table 2. Canonical variables for the different strategies of evaluation of seed descriptors in 61 genotypes of 
inbred guava families.

Descriptor Evaluation strategy1/ 
30% 20% 10% 

CV1 CV2 CV1 CV2 CV1 CV2 
Color Below Otsu: blue band 0.060 0.496 0.337 0.406 - - 

Below Otsu: green band 0.136 0.361 0.339 0.248 0.221 0.201 
Below Otsu: CIELab: a -0.011 -0.307 -0.191 -0.200 - - 
Below Otsu: CIELab: L 0.152 0.356 0.353 0.242 0.234 0.186 
CIELab: dispersion 0.029 -0.518 - - - - 
CIELab: a dispersion 0.015 -0.451 -0.325 -0.435 -0.148 -0.326 
CIELab: L 0.064 0.342 - - - - 
Intensity 0.106 0.406 0.310 0.321 - - 
Lightness 0.106 0.395 - - - - 
Circularity by FFCg 0.775 -0.046 - - - - 

Geometry Feret diameter -0.814 0.162 -0.571 0.678 - - 
Maximum diameter (cm) -0.778 0.184 - - - - 
Circumference (cm) -0.813 0.130 -0.564 0.633 -0.679 0.474 
Convex circumference (cm) -0.815 0.164 -0.568 0.660 -0.676 0.530 
Rectangles: largest area (cm2) -0.822 0.182 -0.533 0.711 - - 
Rectangles: largest edge (cm) -0.819 0.173 - - - - 
Rectangles: largest circumference (cm) -0.815 0.171 -0.560 0.656 -0.661 0.525 
Rectangles: average largest edges (cm) -0.807 0.166 - - - - 
Rectangles: average smallest edges (cm) -0.792 0.192 -0.548 0.660 - - 
Rectangles: smallest circumference (cm) -0.807 0.180 -0.554 0.676 - - 
Rectangles: average circumference (cm) -0.811 0.178 -0.558 0.671 -0.652 0.554 

Texture Laws: ER -0.767 0.256 -0.444 0.723   
Laws: EW -0.760 0.256 -0.447 0.715 -0.599 0.497 
Laws: LW -0.763 0.294 - - - - 
Laws: RW -0.757 0.269 - - - - 
Laws: SR -0.761 0.275 -0.427 0.735 - - 
Laws: SW -0.755 0.272 -0.427 0.732 -0.574 0.519 

 1/30% of total descriptors (color: 9; descriptors: 12; texture: 6); 20% of total descriptors (color: 6; geometry: 8; 
texture: 4); 10% of total descriptors (color: 3; geometry: 4; texture: 2).

DISCUSSION

The use of likelihood function analysis can define more precise criteria in the formation 
of groups, resulting in the determination of less-subjective groups (Barbé et al., 2010). Campos 
et al. (2013) quantified the divergence among 138 guava genotypes obtained from controlled 
biparental crosses and found eight groups, with an increase of 67.51. However, the number 
of groups may vary according to species, number of accessions, and number and type of 
descriptor (Gonçalves et al., 2009). Another fact that explains the formation of a lower number 
of groups in this study is that the genotypes originated from inbred guava families.

The formation of three groups also showed that the use of a set of variables referring 
to color, geometry, and texture measured by digital analysis of seed images obtained via SAS 
was efficient at quantifying the genetic diversity among the genotypes of the inbred guava 
families evaluated here, even when only nine descriptors were used (Table 1). In this way, 
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these variables are useful as additional descriptors in the evaluation of genetic variability.
Tourian and Padilha (2008) aimed to identify eight varieties of soybean according to 

the shape and source of the seeds using digital image processing aided by Artificial Neural 
Networks (ANN). Analysis of the morphological properties of the soy seeds by digital image 
processing together with RNA enabled the distinction between soy cultivars.

With respect to the analysis of canonical variables in this study, the first two variables 
explained 100% of the variability for all evaluated strategies (Figure 2). Thus, the two-
dimensional graphic representation was a satisfactory interpretation of the variability among 
the genotypes, because the first two canonical variables allowed estimates of greater than 80% 
of the total variation (Cruz et al., 2012).

Campos et al. (2013) evaluated 138 guava accessions based on morphological, 
agronomic, and physicochemical descriptors, and found that the first two variables were 
responsible for only 61.79% of the variability. Canonical variable 1 was responsible for 
39.12% and CV2 for 22.68% of the total variation. Thus, a two-dimensional graph would 
not capture a good proportion of total variability, thereby requiring the introduction of the 
third variable, which accounted for 19.50% of the variation. Therefore, the tridimensional 
representation was the most suitable for the representation of the data set, and the sum of the 
three variables accounted for 81.30% of the total variation.

Kara et al. (2013) utilized seed size and shape properties, which were determined 
using the image processing method in digital photography to group 12 varieties of beans in 
Turkey. According to the results of the principal components, the most important variables of 
the first component were weight, average geometric diameter, surface area, volume, projected 
area, equivalent diameter, perimeter, and length. The authors also found that the first two 
components explained 96.1% of the total variation, with four groups formed.

Principal component analysis was used by Medina et al. (2010) in the investigation 
of a set of 38 variables composed of 8 geometrical, 20 morphological, four fractal, and six 
color variables obtained from 25 varieties of quinoa (Chenopodium quinoa Willd) seeds. The 
first principal component (PC1) explained 47.7% of the total variation; the second plus the 
first, 65.8%; and the sum of the first three components explained 75.5%, suggesting that a 
three-dimensional graphic representation would be more suitable. The authors also observed 
that the European varieties were grouped separately by both the principal component analysis 
and UPGMA. Thus, the results demonstrated the possibility of separating the 25 quinoa seed 
varieties by geographic origin.

Analysis of the contribution of the variables to quantifying the existing genetic 
diversity among the genotypes showed that the set of geometry-related variables was the 
largest contributor to quantifying the existing genetic diversity among the genotypes, followed 
by the sets of texture and color variables (Table 2). Because of the small size and irregular 
shape of the guava seeds, obtaining the set of geometry variables by visual analysis would 
be a laborious process with subjective results. However, with the analysis of digital images 
obtained via SAS, measurement is rapid and efficient, facilitating the use of these variables in 
the quantification of genetic variability.

Venora et al. (2007) worked with lentil seeds and used a digital image analysis method 
developed in Canada in which the image is captured by a flatbed scanner. The authors used the 
equipment to measure the size, shape, and color of the seeds and differentiate five varieties of 
lentil. They mentioned that the method typically used to evaluate these traits is visual analysis 
of the seed, which is slow and subjective. The digital image analysis was faster, and the time 
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spent on digitalization and measurement was less than one minute. Furthermore, the authors 
stressed that image analysis is a safe, non-destructive method with high repeatability.

In Italy, 15 crossbred bean varieties were evaluated using seed shape, size, color, and 
texture characteristics obtained via digital analysis to identify the growing region of these 
varieties (Venora et al., 2009). The authors demonstrated that it was possible to differentiate 
the bean varieties according to their growing region, thus enabling their traceability, and 
consequently perform the geographical indication. Moreover, they concluded that this method 
of digital image analysis of seeds is rapid, requiring less than one minute for digitalization and 
measurement, in addition to being easily repeatable, reliable, and non-destructive. It is also a 
low-cost identification method, as it does not require any type of chemical reagent.

CONCLUSIONS

The set of variables related to seed geometry was the largest contributor to divergence 
among the guava genotypes.

The adoption of seed descriptors obtained via digital image analysis using the SAS 
system was efficient at the quantification of genetic divergence among genotypes of inbred 
guava families associated with the Ward-MLM (Modified Location Model) method.
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