Development of transcript-associated microsatellite markers in Ancherythoculter nigrocauda and cross-amplification in Culter alburnus

Y. Sun ${ }^{1,2}$, Q. Li', G. Wang ${ }^{1}$, D. Zhu ${ }^{1}$, J. Chen ${ }^{1}$ and P. Li ${ }^{1}$
${ }^{1}$ Wuhan Aquaculture Science Research Institute, Wuhan, China
${ }^{2}$ Wuhan Academy of Agricultural Science Technology, Wuhan, China
Corresponding author: Q. Li
E-mail: xfsckj@163.com

Genet. Mol. Res. 14 (4): 14286-14290 (2015)
Received March 17, 2015
Accepted July 23, 2015
Published November 13, 2015
DOI http://dx.doi.org/10.4238/2015.November.13.12

Abstract

Twenty-eight polymorphic microsatellite markers were developed from the transcriptome of Ancherythoculter nigrocauda. These loci were used to characterize the genotypes of 48 individuals. The observed number of alleles per locus ranged from 5 to 11, with an average of 7.7. Expected and observed heterozygosities ranged from 0.437 to 0.978 and from 0.373 to 1.000 , respectively. Four of these polymorphic microsatellite loci (HWB14, HWB18, HWB24, and HWB30) deviated significantly from the Hardy-Weinberg equilibrium after use of the sequential Bonferroni correction ($\mathrm{P}<0.05$). Twenty of the 28 loci could be successfully amplified in Culter alburnus. These novel markers will be useful for germplasm resource conservation and management of A. nigrocauda and C. alburnus.

Key words: Ancherythoculter nigrocauda; Culter alburnus; Polymorphism; Simple sequence repeat; Cross-amplification

INTRODUCTION

The fish species Ancherythoculter nigrocauda, which belongs to subfamily Culterinae, family Cyprinidae, and order Cypriniformes (Luo and Chen, 1998), is endemic to the upper reaches of the Yangtze River in China. Recently, its natural resources have been declining in China because of habitat fragmentation as a result of dam construction, long-term overfishing and water pollution (Xiong et al., 2006). Therefore, there is an urgent need for monitoring and preserving genetic diversity in this species. Microsatellite or simple sequence repeat (SSR) markers are widely used in assessing population genetic structures and genetic diversity because of their hyper-variability and abundance throughout most vertebrate genomes. Some anonymous SSRs have been developed previously for A. nigrocauda (Sun et al., 2014); however, SSRs derived from expressed sequence tags (EST-SSRs), which are associated with biological functions, are not so far available for this species. Compared to anonymous SSRs, EST-SSRs can provide more useful information for investigating genetic diversity, such as determining the ability to adapt to the environment (Reed and Frankham, 2003). In this study, we developed 28 EST-SSRs for A. nigrocauda, with the aim of providing new molecular tools to investigate genetic diversity in an A. nigrocauda population.

MATERIAL AND METHODS

A total of 11,211 putative microsatellites from the A. nigrocauda transcriptome were generated by direct high-throughput Illumina sequencing of a liver cDNA library (unpublished results). Of these, 36 microsatellite-containing sequences were randomly selected to design primers using PRIMER PREMIER 5.00 (Premier Biosoft International). Polymorphisms in all loci were initially tested in eight A. nigrocauda and eight Culter alburnus individuals. Subsequently, the polymorphic markers were used to investigate 48 A . nigrocauda individuals from Wu Lake in Wuhan, Hubei Province of China and 48 C. alburnus individuals from Danjiangkou, Hubei Province of China. Genomic DNA was extracted from ethanol-preserved fin tissues using the standard phenol-chloroform method. A $25-\mu \mathrm{L}$ reaction mixture was used for PCR; this mixture contained $50-100 \mathrm{ng}$ genomic DNA, $5 \mu \mathrm{M}$ forward primer (5 ' modified with FAM, HEX, or ROX), $5 \mu \mathrm{M}$ reverse primer, 10 mM dNTPs, 10 X Taq buffer ($15 \mathrm{mM} \mathrm{MgCl}{ }_{2}$), and 0.5 unit Taq polymerase (Takara). PCR amplifications were carried out with the following conditions: $95^{\circ} \mathrm{C}$ for $5 \mathrm{~min} ; 35$ cycles comprising $94^{\circ} \mathrm{C}$ for 30 s , the optimized annealing temperature (Tables 1 and 2) for 30 s , and $72^{\circ} \mathrm{C}$ for 30 s ; and a final extension of $72^{\circ} \mathrm{C}$ for 7 min . The PCR products were genotyped on an ABI 3730 DNA sequencer (ABI) and analyzed using Genescan 3.7 (ABI).

The number of alleles $\left(N_{A}\right)$, observed heterozygosity $\left(H_{0}\right)$, expected heterozygosity $\left(H_{E}\right)$, exact test of Hardy-Weinberg equilibrium (HWE), and linkage disequilibrium were analyzed using ARLEQUIN version 3.0 (Excoffier et al., 2005).

RESULTS AND DISCUSSION

The 28 polymorphic loci identified 5 to 11 alleles per locus, with an average of 7.7, in a wild population (Table 1). H_{E} ranged from 0.437 to 0.978 and H_{O} from 0.373 to 1.000 . Four of the polymorphic microsatellite loci (HWB14, HWB18, HWB24, and HWB30) showed significant deviations $(P<0.05)$ from HWE after use of the sequential Bonferroni correction. There was no evidence of linkage disequilibrium among the loci at the 5% significance level. These polymorphic
Table 1. Isolation and characterization of polymorphic microsatellite loci from Ancherythoculter nigrocauda.

Table 2. Characterization of polymorphic microsatellite loci in the Culter alburnus.

Locus	Repeat motif	Ta (${ }^{\circ} \mathrm{C}$)	$N_{\text {A }}$	Size range (bp)	H_{E}	H_{0}	GenBank accession No.
EHWB01	$(\mathrm{GT})_{7}$	60	5	127-133	0.373	0.437	KM588228
EHWB03	(AC)9	60	8	243-253	0.688	0.500	KM588230
EHWB04	(TTC) ${ }_{6}$	48	8	240-280	0.505	0.680	KM588231
EHWB06	(AG) ${ }_{6}$	52	7	253-281	0.705	0.761	KM588232
EHWB08	(TG) ${ }_{7}$	52	9	256-322	0.790	0.691	KM588234
EHWB09	(CT) ${ }_{6}$	55	10	179-205	0.954	0.783	KM588235
EHWB14	(TTCT) ${ }_{5}$	50	11	130-240	0.768	0.708^{*}	KM588239
EHWB17	(GA) ${ }_{6}$	55	8	230-268	0.814	0.971*	KM588242
EHWB18	(GT) ${ }_{9}$	60	8	102-116	0.730	0.958	KM588243
EHWB20	(AGC) ${ }_{5}$	50	6	248-259	0.698	0.792	KM588245
EHWB22	(AC) ${ }_{6}$	56	9	123-151	0.793	0.890	KM588247
EHWB24	(CT) ${ }_{8}$	60	9	256-296	0.783	1.000	KM588249
EHWB26	(AG) ${ }_{7}$	60	14	161-193	0.879	0.958	KM588251
EHWB27	(AG) ${ }_{6}$	60	6	214-228	0.574	1.000	KM588252
EHWB30	(TG) ${ }_{7}$	60	3	318-324	0.535	0.979	KM588255

$\mathrm{Ta}=$ annealing temperature; $N_{\mathrm{A}}=$ number of alleles; $H_{\mathrm{E}}=$ expected heterozygosity; $H_{\mathrm{O}}=$ observed heterozygosity. *Significant deviation from the Hardy-Weinberg equilibrium after Bonferroni correction.
microsatellite markers will therefore provide a powerful tool for investigating genetic diversity and population genetic structures in A. nigrocauda.

The 28 polymorphic markers were tested for cross-species amplification in C. alburnus, a closely related species to A. nigrocauda. Of these, 20 loci successfully amplified a product and 15 showed polymorphisms. The N_{A} per polymorphic locus ranged from 3 to 14 with an average of 8.1. H_{E} ranged from 0.373 to 0.954 and H_{O} from 0.437 to 1.000 (Table 2). Two of the polymorphic microsatellite loci (HWB14 and HWB17) showed significant deviations ($P<0.05$) from the HWE after use of the sequential Bonferroni correction. There was no evidence of linkage disequilibrium among loci at the 5% significance level. Therefore, these cross-species microsatellite markers from A. nigrocauda are also potentially of value for conservation and management of germplasm resources in C. alburnus.

We identified strong heterozygosities for some microsatellite loci, such as HWBE18/ HWBE23/HWBE24/HWBE27, which are therefore potentially suitable for genetic mapping in A. nigrocauda and C. alburnus.

In this study, we have described 28 polymorphic microsatellite loci in A. nigrocauda and showed that 15 of these markers can identify polymorphic loci in C. alburnus through cross-species amplification. These loci will be of value for investigating genetic variation and population structures in A. nigrocauda and C. alburnus, and will also prove helpful in the management of their fisheries and in the design of conservation strategies.

Conflicts of interest

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

Research supported by the National Science Foundation of China (\#31402296), the China Postdoctoral Science Foundation (\#2014M562077), the Wuhan Chenguang Project for Youth Scholar (\#201372304010832), and the Science and Technology Planning Project of Wuhan (\#BSH201301).

REFERENCES

Excoffier L, Laval G and Schneider S (2005). Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. 1: 47-50.
Luo YL and Chen YR (1998) Cultrinae. In: Fauna Sinica, Osteichthyes, Cypriniformes II (Chen YY, ed.). Sciences Press, Beijing.
Reed DH and Frankham R (2003). Correlation between fitness and genetic diversity. Conserv. Biol. 17: 230-237.
Sun YH, Wang GY, Zhu DM, Chen J, et al. (2014). Development of polymorphic microsatellite loci isolated from the Ancherythoculter nigrocauda. Conserv. Genet. Resour. 6: 919-923.
Xiong M, Qiao Y, Rosentha H, Que Y, et al. (2006). Early ontogeny of Ancherythoculter nigrocauda and effects of delayed first feeding on larvae. J. Appl. Ichthyol. 22: 502-50.

