

Development of novel polymorphic microsatellite markers for the silver fox (*Vulpes vulpes*)

S.Q. Yan¹, C.Y. Bai¹, S.M. Qi², Y.M. Li¹, W.J. Li¹ and J.H. Sun²

¹College of Animal Science, Jilin University, Changchun, China ²College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, China

Corresponding authors: S.Q. Yan / J.H. Sun E-mail: yansq@jlu.edu.cn / jhsun0528@163.com

Genet. Mol. Res. 14 (2): 5890-5895 (2015) Received July 21, 2014 Accepted January 21, 2015 Published June 1, 2015 DOI http://dx.doi.org/10.4238/2015.June.1.6

ABSTRACT. The silver fox (*Vulpes vulpes*), a coat color variant of the red fox, is one of the most important fur-bearing animals. To date, development of microsatellite loci for the silver fox has been limited and mainly based on cross-amplification by using canine SSR primers. In this study, 28 polymorphic microsatellite markers were isolated and identified for silver fox through the construction and screening of an $(AC)_n$ -enriched library. The number of alleles per locus ranged from 2 to 8 based on 48 individuals tested. The expected and observed hetero-

©FUNPEC-RP www.funpecrp.com.br

Genetics and Molecular Research 14 (2): 5890-5895 (2015)

zygosity and polymorphism information content per locus ranged from 0.2544 to 0.859, 0.2083 to 0.7917, and 0.2181 to 0.821, respectively. The polymorphic markers presented in this study may be useful for future analysis of the genetic diversity and population structure of farmed silver fox and wild red fox.

Key words: Silver fox; Microsatellite marker; Genetic polymorphism

INTRODUCTION

The red fox (*Vulpes vulpes*) belongs to the Canidae family and is the most widely distributed terrestrial carnivore in the world (Larivière and Pasitschniak-Arts, 1996). The silver fox, a farmed coat color variant of the red fox, has been domesticated for animal behavioral studies (Statham et al., 2011; Kukekova et al., 2012) and raised to provide fur for the clothing industry (Nowacka-Woszuk et al., 2013).

Microsatellites, also known as simple sequence repeats (SSRs), are short tandem repeats 1-6 bp in length (Zhao and Kochert, 1993). Microsatellite markers have been widely used in population genetic analysis due to their high degree of polymorphism, co-dominance, and their abundance in the eukaryotic genome (Sha et al., 2009; Ma and Chen, 2011). To date, development of microsatellite loci for the silver fox has been very limited and mainly based on cross-species amplification with canine SSR primers (Kukekova et al., 2004; Sacks and Louie, 2008). In the present study, we developed 28 polymorphic microsatellite markers for silver fox from a microsatellite enriched library.

MATERIAL AND METHODS

Genomic DNA from the muscle tissue of 48 farmed silver foxes was isolated using the standard proteinase K/phenol extraction protocol (Sambrook and Russel, 2001). A partial DNA library enriched for $(AC)_n$ motifs was constructed as described by Novelli et al. (2006) with modifications. Briefly, the genomic DNA from a male individual was digested with the *Sau3A* I restriction enzyme. Fragments ranging from 300 to 1000 bp were recovered and ligated with adapters (Linker1: 5'-PO₄-GATCGCAGAATTCGCACGAGTA CTAC-3'; Linker2: 5'-GTAGTACTCGTGCGAATTCTGC-3'). The fragments were enriched by hybridizing to an $(AC)_{13}$ biotin-labeled probe and separated with streptavidin magnetic beads (Promega, Madison, USA). The amplified products from the Linker2 primer were cloned into a pMD18-T vector (Takara, Dalian, China) and transformed into *E. coli* DH5 α competent cells. Clones containing inserts were sequenced by Sangon Biotech (Shanghai, China).

Primer pairs were designed according to the flanking DNA sequences of the repetitive region using Primer Premier 5.0 (Premier Biosoft International, Palo Alto, CA, USA). A M13 (-21) tail (5'-TGTAAAACGACGGCCAGT-3') was added to all the for-

Genetics and Molecular Research 14 (2): 5890-5895 (2015)

S.Q. Yan et al.

ward primers (Schuelke, 2000). The universal M13 (-21) primer was fluorescently labeled (FAM, HEX, or TAMARD). To evaluate the PCR primers and amplification conditions, preliminary analyses were first conducted with a sample of 4 individuals. The polymorphic information for those loci that showed specific amplification patterns was assessed in 48 farmed silver foxes following the protocol provided by Schuelke (2000) with modifications. PCR was conducted in a total reaction volume of 25 μ L containing approximately 10 ng genomic DNA, 1X *Taq* polymerase buffer with Mg²⁺, 0.1 mM of each dNTP, 0.5 U *Taq* polymerase (Takara), 0.25 μ M M13 (-21) tailed forward primer, 1 μ M M13 (-21) fluorescently labeled tag primer, and 1 μ M reverse primer. PCR amplification was conducted on a GeneAmp PCR System 9700 (Applied Biosystems, Foster City, CA, USA) with the following condition: 95°C for 3 min, followed by 30 cycles of 94°C for 30 s, 58°C for 30 s, and 72°C for 30 s, and a final extension at 72°C for 20 min.

The fluorescently labeled products were separated on an ABI 3730 DNA sequencer in conjunction with the GeneScan-500 internal size standard (Applied Biosystems). Allele size was estimated using the GeneMapper[®] software version 4.0 (Applied Biosystems). The polymorphic parameters for each locus, including number of alleles, observed heterozygosity (H_0), expected heterozygosity (H_E) and the polymorphism information content (PIC), were assessed using the CERVUS 2.0 software (Marshall et al., 1998). Deviations from Hardy-Weinberg equilibrium were evaluated using the GENEPOP software (Raymond and Rousset, 1995).

RESULTS AND DISCUSSION

Sequencing analysis revealed that out of 142 recombinant clones, 113 clones contained more than five CA or TG tandem repeats. Each colony was given a name consisting of the prefix VVM (*V. vulpes* microsatellite) followed by a number. The number of CA or TG repeats in these clones ranged from 4 to 20. Of the 113 clones, 78 had perfect motifs, 20 had imperfect motifs, and 15 had compound repeat motifs.

Fifty-eight primer sets were designed for microsatellite sequences, which contained at least 8 repeats and possessed sufficient flanking sequences suitable for primer design. Thirty-three loci produced specific products while other primers showed multibanded patterns or non-specific amplification. Of these 33 loci, 28 exhibited polymorphisms in the 48 individuals tested. The primer sequences, motif information, number of alleles, PCR product size, and the GenBank accession No. of the 28 loci are shown in Table 1. The number of alleles per locus ranged from 2 to 8. The $H_{\rm E}$ and $H_{\rm O}$ per locus ranged from 0.2544 to 0.859 with a mean of 0.6371 and from 0.2083 to 0.7917 with a mean of 0.5856, respectively. The PIC ranged from 0.2181 to 0.821 with a mean of 0.5683. None of the loci showed significant deviations from Hardy-Weinberg equilibrium in the population tested.

In summary, the 28 polymorphic microsatellite loci described in the present study will provide useful tools to estimate the population genetic structure and diversity of the farmed silver fox and wild red fox in the future.

Genetics and Molecular Research 14 (2): 5890-5895 (2015)

ocus p VM 148 F VM 219 F VM 33 F VM 33 F VM 812 F VM 85 F VM 85 F VM 509 F F VM 192 F	rimer sequences (5' - 3) CCTAACTTCCAACCTGAAATACTCT	Repeat motif	z	Size range* (bp)	H_r	Н	PIC	Acression No.
VM 148 F VM 219 F VM 219 F VM 33 F VM 812 F VM 85 F VM 869 F VM 509 F F VM 192 F	CCTAACTTCCAACCTGAAATACTCT				2	0	~~~	TUCKED TO LEGANDE
VM 219 F VM 33 F VM 812 F VM 812 F VM 85 F VM 509 F VM192 F								
VM 219 F VM 33 F VM 812 F VM 85 F VM 509 F F VM192 F	E GALTTIALTACIACATGUICCUIG	$(TG)_{11}(AC)_{5}$	4	135-145	0.6002	0.5833	0.5047	JN831722
VM 33 F VM 812 F VM 85 F VM 85 F VM 509 F F VM192 F	A: TCCCAGATATCAAGACTCCCTAG	(TG), (AG),	9	143-166	0.5816	0.4583	0.5373	JN831723
VM 812 F VM 85 F VM 509 F VM192 F	CAATCAATCTGAGCACCACAATC		ı			00100		
VM 85 F VM 85 F VM 509 F VM192 F	≿ TAGATGAGGGGAATGTGAGGAAC ∾ GCAAATGGCAACATCTCCTT	$(TG)_{12}$	5	164-184	0.6735	0.6400	0.6037	JN831724
VM 85 F VM 509 F VM192 F	A: ATGGAAGCAGCCCAAGTGTG	$(AC)_{18}$	5	142-176	0.5434	0.4583	0.4891	JN831725
VM 509 F VM192 F	CATAGTAGCAATTAAGTTTTCCCAG			021 731	2002.0	0 5700	20120	
VM192 F	€ TIGAGACCAIGAGGAGGIAGGA № GGTTGCTGGTAACAGTAACAAGACA	$(AC)_{16}$	9	0/1-961	0.6996	0.9600	0.6435	97/168Nf
VM192 F	& GAGTGCTTTCATTCTTAGGGAGTG	(AC) _o	7	319-327	0.5027	0.5417	0.3711	JN831727
R	·: GTGTCCTTGCTAACAAATGCTG							
T LOUND	CCACCTTTAGATGAGATTCTGTTTC	$(CA)_{17}$	Э	316-322	0.5293	0.4583	0.4624	JN831728
VIN 224	CLIDUAAAUCALCIAUILCAUICA CTCAGCTTCTTTAAAATGGTTC		4	198-204	0 6754	0 7391	0 5031	IN831729
7. TVM 39 F	ACTACGGCTTTCATAATAGCCT	14	F	107-071	1000	1/6/.0	1000.0	CT I TONTO
R	<pre>k: TGTATACCCTCTGCATGGTT</pre>	(TG) ₁₉	2	195-205	0.5106	0.5833	0.3750	JN831730
VM 104 F	∵TTTGACCGAGGAGTTAGTGATGC → CTA AGTCA CCCTTGGTTTTCACA		~	006 106	0,605.0	0 6667	0 6218	IN 021721
TVM 838 F	CIAAUTCAUCUTUUTTTTCACA		t	607-107	0.00.0	0.0007	0.0210	IC/ ICONIC
1 2 0 0 M 1	a contract c	(TG),TT(TG),,TT(TG),	7	191-223	0.4326	0.3750	0.4079	JN831732
'VM 25 F	Price A B B B B B B B B B B B B B B B B B B							
R	A: CATGTTGTAGCAAATAGCAGGA	$(CA)_{18}$	5	205-213	0.6871	0.5833	0.6178	JN831733
VM 831 F	CAAGCGTTAGTAGCAGGATTTTC	ČĘ.	ç	110 000		000000	0000	10010101
TAA 100 E	C AUAUUU LUAI UAU I I UUUAUA	(1G) ₁₂	Ś	500-511	0.0101	00000.0	8670.0	10831/34
R R	CUCUCUCAAACUTATAACAACA CTGCTGAAGGAAGAAAAGAGGTC	(CA)	4	285-294	0.6587	0.6250	0.5876	JN831735
VM 190 F	ACATTTGAGGGTCAGTGTAAGAG							
R	R: CATAATGTCACTCCAGCAACC	$(TG)_{17}$	ŝ	227-231	0.6693	0.5833	0.5817	JN831736
7VM 246 F	ATCTGGTTCTTATTTTTGCTCTGA	ČĘ.	-	000 200		E000 0		DCD 1 COIN
	C. UAAAUAUI UAAUAAAI UAUAUUAUI	(10) ₁₇	4	867-077	0.7201	0.000/	0.024 /	16/ 168NIC
T CO IMI V	PAGICCITIGCGIGGITCTICIG	(AAAT) AAG(TG)	7	232-244	0.8590	0 7917	0.8210	IN831738
'VM 128 F	TGGCAAGAGGAGCAGACATTTC		-		0.000	11.01.0	0170.0	
	X: TGAAGGTAGGAACAATCCCCAC	(GT), c	7	240-250	0.4317	0.4583	0.3741	JN831739
'VM 529 F	··· GGCAGTAAAATGTGAAACAACTAATG	e1, ,						
	R: ATCTTTGCTCTTCCTTAAACCCA	$(TG)_5C(GT)_{15}$	7	272-294	0.8440	0.7500	0.8028	JN831740
VM 189 F	*: aGTTTAAGGTTGTACAGALTTGAGTT &: GTAATGTTCCAGACAGGAGGATGT	(TG).	9	244-260	0.7828	0.7500	0.7346	JN831741
		61/>						

Microsatellite markers for the silver fox

Genetics and Molecular Research 14 (2): 5890-5895 (2015)

©FUNPEC-RP www.funpecrp.com.br

5893

Table 1. Co	ntinued.							
Locus	Primer sequences (5' - 3')	Repeat motif	Z	Size range* (bp)	$H_{\rm E}$	H_0	PIC	Accession No.
VVM 235	F: CCTTCTTGTTTCCTGTTAGATGCA R: GTCTGTCTCTCACACACACACACACACACACACACACACA	(TG).	m	255-259	0.5505	0.5000	0.4817	JN831742
VVM 508	F: GATACTGAAGGGGAACTCCATAC			C3C C3C	1127.0	L999 0	6203 0	C1712
VVM 238	K: IUTGICAACAUCICAAAGAIAGC F: CATCTGCTCTATGTATGTGGGGTC	$(10)_{20}(AU)_{14}$	4	707-707	0.0/11	0.0007	6/00.0	64/ 160NIC
	R: TTGCGTTGCCTGAGGCTTTC	(AC) ₁₆ AATG(CA) ₅	5	247-265	0.7473	0.6667	0.6869	JN831744
VVM 81	F: ACTGAATTGCATGGACTCTGAGA		v	000 CEC	000000	05020	0 7702	IN1021745
VVM 844	E: TGTGTGTCTATGTGTCTGCTTTGA	(UL) ₁₇ A(UU) ₄	n	767-717	0.1020	0070.0	0.1242	CH/ ICONIC
	R: GCCAGGGAAAGTGAGCAGAG	(TG),,	8	263-291	0.7863	0.7500	0.7357	JN831746
VVM 213	F: AGGAGTGGGCTTGCTGTTTG	07						
	R: CTTAGGTTCTCTTAGTTTTGTTGGT	$(AC)_{18}$	2	273-275	0.4965	0.4167	0.3680	JN831747
VVM 124	F: TGAACACGCCTCTGCTACAC	2						
	R: TCTCCTGGTATTCCTGTGCCT	(CA) ₁ ,	7	272-274	0.2544	0.2083	0.2181	JN831748
VVM 828	F: GACTATGACAATGGGACTGTAAGGT	<u>4</u>						
	R: CTCTAACTTTGCCAATGGTGAA	$(TG)_{17}$	L	270-288	0.8324	0.7917	0.7923	JN831749
F = forward; F ranges include	$x = reverse; N_A = number of alleles; H_0 = ot the additional 18 bp from the M13 (-21) ta;$	sserved heterozygosity; J	$H_{\rm E} = \exp m ec$	ted heterozygosity;	PIC = poly	morphic inf	ormation c	ontent; *size

S.Q. Yan et al.

Genetics and Molecular Research 14 (2): 5890-5895 (2015)

5894

ACKNOWLEDGMENTS

Research supported by projects of the National Natural Science Foundation of China (#31072018).

REFERENCES

- Kukekova AV, Trut LN, Oskina IN, Kharlamova AV, et al. (2004). A marker set for construction of a genetic map of the silver fox (*Vulpes vulpes*). J. Hered. 95: 185-194.
- Kukekova AV, Temnykh SV, Johnson JL, Trut LN, et al. (2012). Genetics of behavior in the silver fox. Mamm. Genome 23: 164-177.

Larivière S and Pasitschniak-Arts M (1996). Vulpes vulpes. Mamm. Species 537: 1-11.

- Ma H and Chen S (2011). Development of polymorphic microsatellite markers in barfin flounder (*Verasper moseri*) and spotted halibut (*Verasper variegatus*) by the cross-species amplification. *Mol. Biol. Rep.* 38: 4545-4551.
- Marshall TC, Slate J, Kruuk LE and Pemberton JM (1998). Statistical confidence for likelihood-based paternity inference in natural populations. *Mol. Ecol.* 7: 639-655.
- Novelli VM, Cristofani M, Souza AA and Machado MA (2006). Development and characterization of polymorphic microsatellite markers for the sweet orange (*Citrus sinensis* L. Osbeck). *Genet. Mol. Biol.* 29: 90-96.
- Nowacka-Woszuk J, Salamon S, Gorna A and Switonski M (2013). Missense polymorphisms in the *MC1R* gene of the dog, red fox, arctic fox and Chinese raccoon dog. *J. Anim. Breed. Genet.* 130: 136-141.
- Raymond M and Rousset F (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. *J. Hered.* 86: 248-249.
- Sacks BN and Louie S (2008). Using the dog genome to find single nucleotide polymorphisms in red foxes and other distantly related members of the Canidae. *Mol. Ecol. Resour.* 8: 35-49.

Sambrook J and Russel D (2001). Molecular cloning. Cold Spring Harbor Laboratory Press, New York.

- Sha ZX, Xing SC, Shao CW, Tian YS, et al. (2009). Isolation and characterization of 12 polymorphic microsatellite markers from ladyfish (*Elops saurus* Linnaeus). *Conserv. Genet.* 10: 1799-1801.
- Schuelke M (2000). An economic method for the fluorescent labeling of PCR fragments. *Nat. Biotechnol.* 18: 233-234. Statham MJ, Trut LN, Sacks BN, Kharlamova AV, et al. (2011). On the origin of a domesticated species: identifying the

parent population of Russian silver foxes (Vulpes vulpes). Biol. J. Linn. Soc. Lond. 103: 168-175.

Zhao X and Kochert G (1993). Phylogenetic distribution and genetic mapping of a (GGC)_n microsatellite from rice (*Oryza sativa* L.). *Plant Mol. Biol.* 21: 607-614.

Genetics and Molecular Research 14 (2): 5890-5895 (2015)