

Development of novel polymorphic microsatellite markers for the blood clam *Tegillarca granosa* by pyrosequencing

Y.H. Dong, H.H. Yao, S.F. Shi, Y.B. Bao and Z.H. Lin

Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China

Corresponding authors: Z.H. Lin / H.H. Yao E-mail: zhihua9988@126.com / yaohanhan1020@126.com

Genet. Mol. Res. 14 (3): 8977-8987 (2015) Received January 12, 2015 Accepted May 8, 2015 Published August 7, 2015 DOI http://dx.doi.org/10.4238/2015.August.7.6

ABSTRACT. Large amounts of expressed sequence tags (ESTs) generated using next-generation sequencing technologies provide a cost-effective and valuable genomic resource for the development of microsatellite markers. In this study, we isolated 115 novel polymorphic microsatellite markers for the blood clam Tegillarca granosa from ESTs in 454 sequencing data. All the loci were characterized in 30 individual clams from a natural population in Xiangshan (Zhejiang Province, China). The number of alleles per locus varied from 2 to 10, with an average of 3.78. The observed and expected heterozygosities ranged from 0 to 1 and from 0.040 to 0.799, respectively. The polymorphic information content (PIC) ranged from 0.038 to 0.825, and 29 highly polymorphic loci (PIC ≥ 0.5) and 42 moderately polymorphic loci (0.25 < PIC < 0.5) were identified. Thirty-eight of the 115 loci deviated significantly from the Hardy-Weinberg equilibrium (P < 0.01) after a Bonferroni correction. A BlastX search revealed that 46 (40%) of the polymorphic loci identified were from transcript regions of known genes. The microsatellite markers developed in the present study

Genetics and Molecular Research 14 (3): 8977-8987 (2015)

will greatly enrich the microsatellite resources of *T. granosa*, and are available for further population genetic analysis, genetic trait mapping, and molecular-assisted selection.

Key words: *Tegillarca granosa*; Microsatellite; Polymorphic marker; Pyrosequencing

INTRODUCTION

The blood clam *Tegillarca granosa* L. is found in the Indo-West Pacific, from east Africa to Polynesia, north to Japan, and south to northern and eastern Australia. Its delicious taste and high nutritional value have made it a popular seafood, and it has been extensively farmed along the coasts of southern China and several southeast Asian countries. Although it is a commercially important maricultured species, there have been few genetic studies of *T. granosa* because of a paucity of effective molecular markers.

Microsatellite markers, also known as single-sequence repeats (SSRs), are one of the most powerful genetic tools available, and have been widely applied in diversity analysis, genetic mapping, association studies, and marker-assisted selection (MAS) (Duran et al., 2009). Although over 100 SSRs have been characterized in *T. granosa* to date (Gu et al., 2008; Liu et al., 2012; Dong et al., 2012, 2013; Zhou et al., 2013), the development of multi-allelic SSRs is currently inadequate for studies of genetic connectivity and genetic mapping.

Large *T. granosa* sequence data sets derived from large-scale expressed sequence tag (EST) discoveries have recently enabled the mining of SSRs (Dong et al., 2012). These EST-SSR markers are inexpensive, labor-saving, and are frequently associated with annotated genes. In the present study, we developed 115 validated polymorphic EST-SSR markers in *T. granosa* using deep transcriptome sequencing, which will be useful for future studies of this species in terms of its conservation genetics, evolutionary studies, and molecular breeding.

MATERIAL AND METHODS

Sample collection and DNA extraction

Thirty *T. granosa* individuals were collected from Xiangshan, Zhejiang Province, China (29.21°N, 121.46°E). The adductor muscles of all the samples were dissected and immediately preserved in alcohol at -20°C.

Total genomic DNA was extracted from the adductor muscles by standard proteinase K digestion, phenol-chloroform extraction, and ethanol precipitation. The quality and concentration of DNA were examined using 1.2% agarose gel electrophoresis and the OD_{260}/OD_{280} ratio, using a NanoVueTM UV/Visible spectrophotometer (GE Healthcare Ltd., UK). The DNA templates were adjusted to 100 ng/µL with ultrapure water.

Primer design, amplification, and genotyping

Microsatellite markers for *T. granosa* were characterized by screening the partial isotigs (ESTs) of our transcriptomic database (SRA052081) by 454 pyrosequencing. Putative EST-SSR markers were screened using the SSRHUNTER program (Li and Wan, 2005), which

Genetics and Molecular Research 14 (3): 8977-8987 (2015)

was set for detection of di-, tri-, tetra-, penta-, and hexa-nucleotide motifs, with a minimum of 6, 4, 3, 3, and 3 repeats, respectively. Primers flanking the microsatellites were designed by the Primer Premier 5.0 software (Premier Biosoft International, USA), and synthesized by Sangon Biotech Co. Ltd (Shanghai, China).

Polymerase chain reaction (PCR) amplifications were performed in a 20- μ L reaction mixture containing 0.5 U rTaq DNA polymerase (Takara, Japan), 1X PCR buffer, 0.2 mM dNTP mix, 2.0 mM MgCl₂, 0.25 μ M of each forward and reverse primer, and approximately 100 ng template DNA. PCRs were conducted in a thermal cycler (Mastercycler[®] pro S, Eppendorf, Germany) under the following conditions: initial denaturation for 5 min at 94°C, followed by 35 cycles of denaturation for 45 s at 94°C, the optimized annealing temperature (Table 1) for 45 s, and extension at 72°C for 45 s, with a final extension at 72°C for 7 min. The PCR products were separated by electrophoresis on 8% nondenaturing polyacrylamide gel at 180 V for 3 to 4 h, depending on the size of the amplification product, and visualized by ethidium bromide staining under UV light. A 20-bp DNA ladder (MBI Fermentas, USA) was used as a reference marker to determine allele size. Genotypes were determined as approximate allele sizes.

Characterization of polymorphic EST-SSRs and sequence annotation

After optimization of the annealing temperature, primer pairs that produced clear bands of the expected size were selected for polymorphism analysis. Polymorphisms of each SSR locus were evaluated using 30 *T. granosa* individuals. All polymorphic SSR-containing ESTs were searched against the NCBI non-redundant (Nr) protein database and the Swiss-Prot database using BLASTx, with an E-value threshold of 1e-6. Gene names were assigned to each assembled sequence based on the best BLAST hit (the highest score).

Statistical analysis

The number of alleles, the observed (H_0) and expected heterozygosities (H_E), and the polymorphic information content (PIC) were calculated using CERVUS 3.0 (Kalinowski et al., 2007). Deviations from the Hardy-Weinberg equilibrium (HWE) for each locus were estimated using the Markov chain method by the online version of GENEPOP (http://wbiomed. curtin.edu.au/genepop/) (Rousset, 2008). All statistical significance levels were adjusted for multiple tests using sequential Bonferroni corrections (Rice, 1989).

RESULTS AND DISCUSSION

From a screen of 8805 ESTs that examined the length and guanine-cytosine content of the flanking regions, 246 primer pairs were successfully designed and used for validation of the amplification. After optimization of the experimental conditions, 157 primer pairs (63.8%) showed clear and consistent amplification patterns. Among these EST-SSRs, 115 were found to be polymorphic in the 30 clam individuals tested, resulting in a polymorphic percentage of 73.3%, which is similar to that reported by Dong et al. (2012) (76.5%), but is significantly higher than that found by Zhou et al. (2013) (46.8%).

Analysis of the 115 SSR-motif types showed that the most abundant repeat motifs were tri-nucleotides (51, 44.35%), followed by tetra-nucleotides (30, 26.09%), and di-nu-

Genetics and Molecular Research 14 (3): 8977-8987 (2015)

Y.H. Dong et al.

cleotides (19, 16.52%) (Figure 1). This is consistent with the results of Zhou et al. (2013), but not with those of Liu et al. (2012). As is the case in other bivalves, penta-nucleotides (8, 6.96%) and hexa-nucleotides (7, 6.08%) were the least abundant motifs. Among the SSR motifs, TA (29.41%) and AT (29.41%) accounted for more than half of the di-nucleotide repeats, while CAA (9.80%) and TGT (7.84%) accounted for most of the tri-nucleotide repeats. AAAT (13.33%) and TTAA (10.00%) were the two most abundant tetra-nucleotide motifs.

Number of motifs

Figure 1. Distribution of 115 simple-sequence repeat (SSR)-motif types in Tegillarca granosa.

The number of alleles observed for the 115 loci ranged from 2 to 10, with an average of 3.78 (Table 1), which is similar to previous results obtained from EST-SSRs (Dong et al., 2012; Liu et al., 2012). The H_0 ranged from 0 to 1, while the H_E varied from 0.040 to 0.799. The average H_0 (0.3885) across all loci was lower than the H_E (0.4338).

The mean PIC was 0.3834, and ranged from 0.038 to 0.825. There were 29 highly polymorphic loci (PIC \ge 0.5) and 42 moderately polymorphic loci (0.25 < PIC < 0.5) that were suitable for population genetic analysis. Thirty-eight of the 115 loci deviated significantly from the HWE (P < 0.01) after a Bonferroni correction (Table 1). This may be attributable to one or more factors, such as insufficient sample size, bottleneck effects, or even the presence of null alleles. Additionally, of the 115 polymorphic loci, 46 (40%) were identified from transcript regions of known genes that serve as type I markers, and can be easily linked to a phenotypic trait of interest, making them valuable for functional diversity studies (Varshney et al., 2005). Furthermore, the presence of SSRs in the 5'-untranslated region (UTR) can affect transcription or translation, while SSRs in the 3'-UTR can affect splicing (Li et al., 2004; Lawson and Zhang, 2008).

Overall, the transcriptome data of *T. granosa* using pyrosequencing contained a large amount of accurate sequence information that was suitable for the rapid and large-scale discovery of EST-SSRs. A total of 115 novel polymorphic SSRs for *T. granosa* were identified in the present study, which will greatly enrich the SSR resources of this species and provide a valuable tool for further population genetic analyses, the construction of linkage maps, and MAS.

Genetics and Molecular Research 14 (3): 8977-8987 (2015)

lable	1. Unaracteristics of 115 polymorph	c expressed	sequen	ce tag-su	lgle	-sedneuce	repea	1 CH) SI	SSKS) IOT legularca granosa.	
Locus	Primer sequence (5'-3')	Repeat motif	Ta (°C)	Size (bp)	$\sim^{\!$	$H_0/H_{\rm E}$	PIC	P-HWE	Functional annotations a/E-value	Accession No.
Tg11970	F: CATTITTGTTCTGCCTCACT D: ATCCATCTCTA GGG AC ATAGTC	(ATAC) ₃	61.1	111-115	7	0.040/0.040	0.038	1.0000	·	KF171182
Tg5455	R: TTTGCTGTTTTCCGACTCA P: GGGAGAAGAGAGAG	(ATTT) ₃	63.1	190-198	7	1.000/0.510	0.375	0.0000*		KF171185
Tg5804	E: TTTCTCTATGCTCACTTTCCG D: TGACCTACAACGATACGACAAT	(TAATAT) ₃	61.1	160-183	4	0.840/0.669	0.590	0.0001*	Superoxide dismutase [Cu-Zn]/4e-14	KF171184
Tg6987	R. LUACCIACAACUAIACUACAAI F: TACTCTACGATTCCTCAAGCAA P: ATGACACACACTTCCTTCCTTCCTTCTTC	(TGT),	61.1	117-126	4	0.200/0.255	0.234	0.4051		KF171186
Tg6767	E: CGGGGTCATTTTGTCTCCTCCTCCT P: ATGCTCGA GCGTCAGATTT	$(TTAG)_4$	61.1	235-248	4	0.680/0.620	0.537	0.0000*		KF171183
Tg5938	R. ALUCTUUAUUUUUUUUUUUUUUUU F: GTAGGGTTTTTTGCCCAGGTATTG D: CAACGCGAGAGGAGGAGAAA	(TTG) ₅	63.1	185-190	7	0.040/0.040	0.038	1.0000		KF171187
Tg5972	F: TGACAGTTTGAGGACAGCAC	$(AAT)_5$	63.1	210-228	2	0.480/0.407	0.372	1.0000		KF171188
Tg5996	F: TTACATTCGGTGGCGTCGGG	(ACAACG) ₃	63.1	205-210	ŝ	0.160/0.153	0.143	1.0000	Macrophage mannose receptor 1/4e-07	KF171189
Tg11521	E BETAGTCCAATAAGTAGACTGT F. GGTAGTCCAATAAAGTAGACCTGT	$(AATA)_4$	64.5	175-188	7	0.680/0.458	0.348	0.0214		KF171190
Tg11456	E: CUCIGIAACIAI GUGIGIGIA F: TGTGATACCATCTCAGGGAAGCGAA	$(CCA)_4$	64.5	195-210	4	0.480/0.699	0.630	0.0000*		KF171191
Tg11571	R: GTCTGAGAACTGACAGGGATTTA	(AAAG) ₃	64.5	180-203	9	0.200/0.443	0.414	0.0000*		KF171192
Tg11472	R: CAIACAACTIACCUTIACGCAA F: AGGATAATACTACAATCGGGTC	$(CAA)_4$	64.5	120-133	4	0.280/0.349	0.320	0.2334	,	KF171193
Tg11614	R: IAGATICGGTIACCICAGAIGT F: CATCAGTGGGAAGTCTACA	(TAAA) ₃	56.1	105-114	ŝ	0.167/0.358	0.322	0.0002*		KF171194
Tg12255	R: ACTCGGAATACTTGAACT F: ATCGGGGCTCCCATCATC	$(TAT)_4$	56.1	110-130	7	0.480/0.372	0.298	0.2775	Dolichol-phosphate mannosyltransferase/e-115	KF171195
Tg13782	R: AGAGAACGAGAAAACTTACCACTG F: CGGACAATCTCAAAAAACAG	$(TGA)_4$	61.1	165-170	7	0.000/0.490	0.365	0.0000*		KF171196
Tg6446	R: CUTITGTTTGACCUUACTAC F: TTTAGGCGGTTCTACAACTACTTC	$(CTT)_4$	45.3	128-142	ŝ	0.440/0.375	0.337	1.0000	Bromodomain adjacent to zinc finger domain protein 1A/3e-60	KF171197
Tg11881	F: TGCCACTACCACTACTGCTGCTCCAC	$(CTT)_4$	45.3	242-258	4	0.880/0.647	0.570	0.0015	Cyclin-dependent kinase 11/8e-13	KF171198
Tg11241	E: GACCTGGACATTTTTCACACA B: TTCATCGACATTTTTCACACA	(TTTCA) ₃	45.3	240-255	4	0.917/0.675	0.604	0.0012	Programmed cell death protein 5/1e-24	KF171199
Tg12230	F. ATTCCATTCAAACAGCACT B. TATCCATTCAAACAGCACT	$(ATG)_4$	61.1	200-220	5	0.560/0.636	0.570	0.0409		KF171200
Tg11282	R: TAGUCAULUAL IULAAUU F: TTGTCAAGATTGCTATGTGG R: TGGTTGGTGTGTAGAAG	(ATCA) ₃	53.4	220-243	ŝ	0.040/0.153	0.143	0.0015		KF171201
									Continued on	next page

Novel polymorphic microsatellite markers for T. granosa

Genetics and Molecular Research 14 (3): 8977-8987 (2015)

©FUNPEC-RP www.funpecrp.com.br

Table	1. Continued.									
Locus	Primer sequence (5'-3')	Repeat motif	Ta (°C)	Size (bp)	$^N_{^{\sf N}}$	$H_0/H_{ m E}$	PIC	P-HWE	Functional annotations $^{a/E}$ -value	Accession No.
Tg11914	F: AGATGAGGTTGTCTTGGGAA P: CCTTTCAGGTGCTGGATTAT	$(AG)_6$	53.4	190-208	7	1.000/0.510	0.375	0.0000*	Protein CutA homolog/8e-35	KF171202
Tg12185	E: TCGGGAGCGACTAAGAAGAAGAT P: TCGAGCGACTAAGAAGAAGAT P: TGAAGTCAAGGGTCAAATGGAGAT	(TTAA) ₃	64.5	238-263	4	0.440/0.457	0.413	0.5318	Cyclophilin F/3e-14	KF171203
Tg11340	F: TTGAATGCCATACAAGAC P: TGAATGCCATACAAGACC P: TGAATGTTAGAGTTAGCAAA	(TAC) ₅	58.7	140-150	4	0.040/0.456	0.411	0.0000*		KF171204
Tg11476	F: CGGTTGATGGTGGATTTTT P: ACGGAGAACAATGAAACG	$(TA)_{7}$	58.7	195-205	б	0.160/0.417	0.361	0.0001*	Dicarbonyl/L-xylulose reductase/2e-49	KF171205
Tg12190	E: TCATGGAACATGGTGTTGTA P: GCGAGATTAGTCAGGAAGAAGA	(TGT) ₅	58.7	245-287	S	0.840/0.798	0.748	0.0004*	VEGF toxin/6e-19	KF171206
Tg12253	F: GGAATAGAAGCCTGTTA B: CACAAGGCCTGTTA	$(AAAT)_3$	58.7	248-278	3	0.040/0.153	0.143	0.0012		KF171207
Tg12204	F: GAATAAAAAAAAAAGGGGC P: AAAAAAAAAAAAAAGGGGC	$(GT)_{11}(TG)_6$	58.7	120-162	٢	0.783/0.817	0.771	0.0262		KF171208
Tg11971	F: ACGTTTCTGGCATTGTAGAA P: CATTGTTATGGAAGGGGG	(TACA) ₃	58.7	118-132	б	0.600/0.530	0.444	0.0055		KF171209
Tg6284	F: CTTGCTCCTGTAGCCTCTG P: TACACACGA A ACCCCAA	(TTC) ₅	45.3	185-223	S	0.667/0.565	0.508	0.3923		KF171210
Tg11363	F: CGAAACTGCAACAGAAGGA D: ATCTTCATCGCA AACCTGT	(AAC) ₅	61.1	98-110	7	0.120/0.115	0.106	1.0000	Coiled-coil domain-containing protein/4e-55	KF171211
Tg11710	F: ATCCCACTTTCCTCTTCCTCAATA	(TGT) ₅	64.5	208-215	б	0.600/0.571	0.486	0.0013		KF171212
Tg11720	F. ATGACGAGAACCACAAGACG B. GACAA ATTCCACACGAGACG B. GACAA ATTCCACACGACGACG	(GAATT) ₃	58.7	110-125	3	0.227/0.212	0.197	1.0000		KF171213
Tg11681	F: TCCTTTGTAACTTTCTCTCCA	(TTTC) ₃	58.7	140-152	0	0.125/0.120	0.110	1.0000		KF171214
Tg11685-1	R: GGAAGAGI I GCI I CAGAGA F: TCAGGGGTTTGTCCTTTA	(TTCC) ₃	48.5	100-119	б	0.200/0.187	0.172	1.0000	MGC107884 protein/1e-20	KF171215
Tg11700	K: GALAGTGGCAGTGACAATG F: GACAGTGGCAGTGACAAATG	(TGA) ₅	63.1	177-190	З	0.040/0.381	0.317	0.0000*	TPR repeat protein 1/5e-34	KF171216
Tg13652-1	R: CTTCCTCTTCAGCAGACAATA F: GTTTGTCAGTTTCGGCTTACC	$(AAAT)_3$	64.5	170-214	٢	0.480/0.802	0.754	0.0000*		KF171217
Tg6419	R: TGGAGGCAGTTTTTCCTTAGA F: TCAACAGCAACAAAGACTTCAGA	(GGTCAA) ₃	58.7	122-138	7	0.560/0.490	0.365	0.6754	Yes-associated protein/1e-34	KF171218
Tg6144-1	R: GUTIGALLICIALITIGLUUTG F: AGTGATGGTGATTTGGAAT b. executostatecture	$(GAT)_{7}$	61.1	164-199	Г	0.520/0.589	0.548	0.0210		KF171219
Tg6762	F: TACAAGAAATCACAACTCGC	$(TTAT)_4$	61.1	260-290	3	0.040/0.079	0.076	0.0187	Ubiquitin carboxyl-terminal hydrolase 34/2e-09	KF171220
Tg6144-2	R: 100 100 LAGGI IAAAALU F: TGATGAGGACAACGATGA R: CTGCTTGTTTTGTTGCTT	$(GAT)_5$	58.7	215-259	~	0.440/0.709	0.658	0.0000*		KF171219
									Continued on	n next page

Genetics and Molecular Research 14 (3): 8977-8987 (2015)

©FUNPEC-RP www.funpecrp.com.br

8982

Y.H. Dong et al.

Table 1	1. Continued.									
Locus	Primer sequence (5'-3')	Repeat motif	Ta (°C)	Size (bp)	$\sim^{\!$	$H_0/H_{\rm E}$	PIC	P-HWE	Functional annotations $^{a/E}$ -value	Accession No.
Tg5882	F: AACATCAAGGTCTGGTGC P: CCGCAGTGTCATCAGAAT	$(GAA)_4$	53.4	155-174	3	0.640/0.476	0.400	0.1423	Cat eye syndrome critical region protein 2/9e-50	KF171221
Tg6080	R. CCATCATTAGAATAGGTAACAGC P. CCATCATTAGAATAGGTAACAGC P. GTTTTGACTCCTATGCTGACA	(ATGTA) ₃	58.7	200-221	4	0.125/0.568	0.459	0.0000*	Acetylcholine receptor subunit beta/1e-37	KF171222
Tg6277	F: CACCAGTACAGTTTGTTATTACG P: GAAGAAACTCCAACTGAAC	$(GT)_{10}$	61.1	182-218	9	1.000/0.789	0.737	0.0000*	V-ATPase subunit E/5e-73	KF171223
Tg5736	F: CTATCAGAAAAGCCAGAATG P: GTCACTAGAAAGCCAGAATG	$(AAT)_4$	61.1	265-282	3	0.240/0.389	0.333	0.0079	Na(+)/K(+) ATPase alpha subunit/0	KF171224
Tg11685-2	F: GCGGATTTACAGTAATAGGGA B: ATTTGTC ATCGATTAGTGAGG	(TTTG) ₃	58.7	114-138	5	0.720/0.582	0.519	0.0243	Phenylethanolamine N-methyltransferase/7e-20	KF171215
Tg13667	E: TCTTTGTCAGGTATTGGAGT P: CCA ACTGTAGCAGT	$(AT)_8$	48.5	158-198	4	1.000/0.618	0.525	0.0000*		KF171225
Tg11426	F: TAACATAATGCACTGGCTTG B: ATA ATCTEATCTAGCA ACCC	$(TTA)_4$	48.5	218-227	7	0.320/0.509	0.375	0.1035		KF171226
Tg13681	F: CCAGGAAGTAGCACCACC D: CTTTAGTTGTTGCTGCTTTCT	(CATCAG) ₃	61.1	150-158	7	0.120/0.115	0.106	1.0000		KF171227
Tg12596	F: TTCTGGTGGGGAAAAACGACAA B: TTCCCGTCACCTACCATTCT	$(AAAT)_3$	64.5	198-205	7	0.160/0.150	0.136	1.0000	Glycosyl hydrolase family protein/3e-13	KF171228
Tg11821-1	F. GTTGTGATCTTGGTCAAACTTT B: CTACAAAACTTT	$(TAT)_4$	61.1	148-178	5	0.440/0.656	0.585	0.0043		KF171229
Tg13405	F. CTGAGTTACAGAAGTTCAAACG	$(AAC)_4$	61.1	90-108	4	0.160/0.225	0.213	0.0724		KF171230
Tg11940	F: TGTGTCATTCTATCAUCAU F: TGTGTCATTCTCTACTGCTG	$(GAT)_4$	56.1	178-221	4	0.217/0.277	0.257	0.0687		KF171231
Tg12130-1	R: CLICLICUCIULIAUCIGI F: CAACATGCTGATGTGATGC	$(TGA)_4(GAT)_5$	48.5	168-178	4	0.400/0.444	0.387	0.0016	FK506-binding protein 39/4e-09	KF171232
Tg13652-2	R: CAULI ICAAU IGI I LI LUCA F: ATGTTTCACGGAAGATACCTGT	(AAT) ₅	64.5	198-222	б	0.560/0.749	0.690	0.0004*		KF171217
Tg13652-3	R: GGIAAGCCGAAACIGACAAA F: GTATTTCCTCTGGGGGTTTT	(AATA) ₃	58.7	252-285	5	0.800/0.833	0.792	0.5207		KF171217
Tg7906	R: CGTCTTTGTAGCGACATTTA F: TGTGTTAGTGCTATCGTTC	$(AG)_{7}$	61.1	161-184	5	0.680/0.618	0.553	0.0042	60S ribosomal protein L4/4e-11	KF171233
Tg12178	R: UIGTUCALCAACTACATATA F: ACAGAGGAAGGTGAACAACAA	(CAA) ₅	45.3	142-158	5	0.480/0.629	0.582	0.0000*	E3 ubiquitin-protein ligase Bre1/2e-55	KF171234
Tg13073	R: CACAACAGGI I CAGCAGGC F: ATGCGTTGTAACTTTTGGAG	$(ATG)_4$	64.5	214-223	4	0.400/0.562	0.498	0.0000*		KF171235
Tg13107	F: GTTTGTGGTACTAAATGGACTAC	(TATC) ₃	61.1	132-145	3	0.040/0.079	0.076	0.0219		KF171236
Tg13334	K: ALLIGUACUACALIGAA F: CTATCCTCTTTTTCCTACC R: AAGCAAAAACAGGATTGA	$(TA)_6$	56.1	133-155	4	1.000/0.706	0.635	0.0000*		KF171237
									Continued or	n next page

Novel polymorphic microsatellite markers for T. granosa

Genetics and Molecular Research 14 (3): 8977-8987 (2015)

©FUNPEC-RP www.funpecrp.com.br

Table	1. Continued.									
Locus	Primer sequence (5'-3')	Repeat motif	Ta (°C)	Size (bp)	$\overset{\mathcal{N}}{\prec}$	$H_0/H_{ m E}$	PIC	P-HWE	Functional annotations ${}^{a/E}$ -value	Accession No.
Tg12173	F: TGTTTTCTTCTCCACG	$(TAA)_4$	58.7	197-208	ŝ	0.040/0.187	0.172	0.0011		KF171238
Tg13253	F: ACACTTCTCAATCAGCATAG D: 6A AGTAGCCA ATACCATCA	$(ATC)_4$	53.4	198-214	4	0.320/0.447	0.393	0.0414	Protein BCCIP homolog/2e-33	KF171239
Tg13145	R: UAAU IAUCAAIACCATTAG F: TGTTACTTTATCGTTTGGC D: CAGTGACAAAATCAGCAGAA	(ATTTT) ₃	56.1	108-114	7	0.360/0.301	0.252	0.5578		KF171240
Tg12849	F: CCAAGTTCAATGTATTCACC B: TTCTTTACTCTCATTCACC	$(TCA)_4$	61.1	218-226	ŝ	0.320/0.287	0.262	1.0000		KF171241
Tg12973	F: ATCCACCTCACCACCTAAAC	(TCAGAA) ₃	63.1	182-192	7	0.680/0.458	0.348	0.0205		KF171242
Tg13411	E: ATCGCTGATAAGATGAAGAGGT D: TGTTGAAGGTGATGAAGAGGT	$(CAA)_4$	45.3	168-199	4	0.667/0.558	0.494	0.3370		KF171243
Tg13550	F: AACTACAGATTCAGGGACAA	(ATAC) ₃	61.1	174-185	ŝ	0.040/0.220	0.199	0.0004^{*}		KF171244
Tg13430	F: GAAACGAACAGGATGATTAG	$(AT)_{7}$	61.1	120-142	4	0.200/0.320	0.295	0.0001*		KF171245
Tg11821-2	F: GAAAATCACGCACAGCAAA b. c. ottot atto accord atto a	$(AT)_7$	63.1	90-125	6	0.880/0.860	0.825	0.0000*		KF171229
Tg11830	F: TATGGCAACAACACAGGGGGAGA b. ccctcccttr attritter	(TCT) ₅	58.7	128-158	7	0.520/0.393	0.311	0.1428	,	KF171246
Tg12991	F: CATTCTGGCTTATGCCTTGA	$(TGAGT)_4$	56.1	133-145	4	0.240/0.396	0.348	0.0196		KF171247
Tg12130-2	F: TCATCTCCACCATCACTGCTG	$(GAT)_{10}(GAT)_4$	48.5	120-148	٢	0.440/0.711	0.651	0.0005	FK506-binding protein/4e-09	KF171232
Tg11854	R: CAACAI GCI GAI GI GAI GC F: TCGGGGTGTAAAAGGAAGTTG	(TTTC) ₃	45.3	244-263	5	0.440/0.385	0.360	1.0000		KF171248
Tg13292	R: AGTGTGACAAATAATGGCAGACCT F: AGAGTTGTCAGGCGGGAATG	(AGAA) ₃	46.6	194-202	7	0.167/0.156	0.141	1.0000	Armadillo repeat-containing protein 3/4e-47	KF171249
Tg13151	R: GCCGATTTACTGCTGCAACTC F: GAAGTTGAAAGATTGCTACAG	$(GT)_{10}$	58.7	228-253	٢	0.400/0.787	0.742	0.0000*		KF171250
Tg13305	R: CCACCTAAAAGGACTCATT F: GTCTCAACCCAGTTCAAT	$(TG)_{l4}(AG)_7$	58.7	175-202	9	0.440/0.830	0.786	0.0004*		KF171251
Tg13614	F: TATCCACAAAGAGTTGAAAA F: TATCCACAAAGAGTTGAAGAAG	$(ATT)_4$	45.3	235-257	4	0.667/0.588	0.517	0.0085		KF171252
Tg11714	K: UUIAAAUI UIAAUCAI I IUAUA F: GGTCACCAGAAAGAGAAGAT b. tc ata cetteceta ccac	$(AT)_6$	58.7	232-248	4	0.880/0.712	0.543	0.0017		KF171253
Tg12108	F: TGAGGAAAATCTTGATGCTGACG	(TGA) ₅	64.5	158-195	4	0.080/0.584	0.481	0.0000*		KF171254
Tg13617	K: ALCTIGIGICICIGCGGIGGATACA F: TTGGTTTGGGATGGATACA R: GTGGTTATCTTGTAGGATTATTGT	$(TA)_6$	61.1	179-228	~	0.520/0.728	0.668	0.0000*		KF171255
									Continued or	n next page

Y.H. Dong et al.

Genetics and Molecular Research 14 (3): 8977-8987 (2015)

©FUNPEC-RP www.funpecrp.com.br

Table 1	1. Continued.									
Locus	Primer sequence (5'-3')	Repeat motif	Ta (°C)	Size (bp)	$^N_{\scriptscriptstyle A}$	$H_0/H_{\rm E}$	PIC	P-HWE	Functional annotations ^a /E-value	Accession No.
Tg13575	F: TGCCCCTATTCTTTTGCCT P: ATCCTCATCTTGACATCTTACAGC	(AAGTC) ₃	64.5	258-284	~	0.360/0.650	0.604	0.0000*	Disco-interacting protein 2/4e-22	KF171256
Tg12309	R: TTCACA ACA GGT GGT GGT AT GGA	$(ATA)_4$	63.1	160-168	7	0.320/0.274	0.233	1.0000	Kv-beta-2/7e-59	KF171257
Tg13106	F: ATGTAGGAAGACTACTGTATG R: GTGCTACAGTATTTGCTCTT	$(TTAA)_4$	61.1	198-218	7	0.200/0.184	0.164	1.0000	Atlastin-3/1e-41	KF171258
Tg13173	F: GCATCCGAAAAACTGGTA P: CATCAGGCTGATAATGGC	(TTTA) ₃	58.7	214-230	З	0.200/0.489	0.424	0.0000*	•	KF171259
Tg12324	F: CCTTTTCCGACAACAATAA P: ATGTA ATCTCTA GAGTGTACGC	(CAAA) ₃	61.1	168-190	0	0.560/0.411	0.322	0.1319		KF171260
Tg12781	F: CCAAAGCAAGAGGAAAT	(TTAA) ₃	58.7	185-210	ŝ	0.080/0.079	0.076	1.0000		KF171261
Tg12479	F: CCAAGTTGATTTGATAGAC B: CAAGTTGATTTA A ACA CACC	$(TTA)_4$	53.4	92-108	3	0.080/0.222	0.205	0.0002*		KF171262
Tg12347-3	F: CACCACAAGCATCGCAC	$(CAA)_4$	64.5	132-132	7	1.000/0.510	0.375	0.0000*	NimA-related protein kinase 7/7e-83	KF171263
Tg12657	E: TTAGAAGCAAGAAAACCTCAGC B: TTATGAAGCAAGAAAACCTCAGC B: TTCTCTCAGAAAACCTCATATG	$(ACA)_4$	64.5	107-126	7	0.040/0.040	0.038	1.0000		KF171264
Tg12464	F: CAACCTGACAATCATACA P: CAACCTGACAATCATACA	(AACA) ₃	58.7	248-261	Э	0.200/0.189	0.176	1.0000		KF171265
Tg12328	F: ATGGCACTTATGTGAAAAA B: TGACACACTATGTGAGAAAA	$(AT)_6$	58.7	96-108	4	0.080/0.118	0.113	0.0672		KF171266
Tg12347-1	F: AGTACCTGAACAAAGACCTGACATT b. ctcccc atccttctctc	(ACA) ₅	64.5	178-202	4	0.040/0.190	0.181	0.0007	NimA-related protein kinase 7/7e-83	KF171263
Tg12412	F: TGGTCGTGGTTGTAGTCGGCTTT	$(GTT)_4$	64.5	148-164	7	0.160/0.150	0.136	1.0000		KF171267
Tg12543	R: GAAAGAGACIGICCCCCCICCAAI F: ATCCACGCAAATGTATTCTGT	(CCAT) ₃	53.4	178-198	7	0.720/0.470	0.355	0.0088		KF171268
Tg12806	R: CCAGAGTAAACTTAGGTACAGCA F: CATGATGGAAAGTGGAAAA	(GATT) ₃	61.1	218-238	7	0.080/0.150	0.136	0.1224	,	KF171269
Tg11732	F: AAAAUUAIUUUUIUIUI F: AAACAACTTCTGACCCATCTA B: 674444460000000000000000000000000000000	(AAAT) ₃	64.5	189-208	4	0.000/0.349	0.320	0.0000*	ı	KF171270
Tg12347-2	E: TACCTGAACAAAGACCTGACAT B: TACCTGAACAAAGACCTGACATT B: TACCTGAACAAAGACCTGACATT	$(AAC)_4$	64.5	168-201	ŝ	0.040/0.528	0.403	0.0000*	NimA-related protein kinase 7/7e-83	KF171263
Tg12638	E: TTCACCTGCCTCATCTCC	(AACACC) ₃	61.1	202-208	7	0.125/0.403	0.317	0.0017	Peptidyl-tRNA hydrolase 2/3e-30	KF171271
Tg12924	E: GCCAACACCAACTACATTIGIAG B: ATCTCTC ACCCAACTACATCTACAA B: ATCTCTC ACCCTC ATA CTTTCC A	$(ACA)_4$	45.3	199-211	ŝ	0.200/0.187	0.172	1.0000	ı	KF171272
Tg11742	E: ACTGACGCCTGTGAAGAACTG R: AACATCAAGATTTTGCCAGCC	$(GTT)_4$	45.3	109-128	ŝ	0.818/0.563	0.478	0.0177	Calcium homeostasis endoplasmic reticulum protein/4e-49	KF171273
									Continued on	next page

Novel polymorphic microsatellite markers for T. granosa

Genetics and Molecular Research 14 (3): 8977-8987 (2015)

©FUNPEC-RP www.funpecrp.com.br

Table	1. Continued.									
Locus	Primer sequence (5'-3')	Repeat motif	Ta (°C)	Size (bp)	$\sim^{\!$	$H_0/H_{\rm E}$	PIC	P-HWE	Functional annotations ^a /E-value	Accession No.
Tg12592	F: TAACTCTGCCTGTAGTCCGTATTT D: CTTCATCATCACCTE A AC ATTTC	$(TGG)_{\gamma}$	64.5	140-161	4	0.080/0.520	0.416	*0000.0		KF171274
Tg7970	F: GGAACAATAGACTCCACATAAACC P: TACCAAGAGACAACAAACC	$(\mathrm{TA})_{7}$	63.1	178-211	9	0.800/0.805	0.760	0.0000*	Collagen alpha-6(V1) chain/4e-47	KF171275
Tg11314	F: GCTGTTATGTGTGTTTCAAGA	(TGT) ₅	63.1	152-158	7	0.000/0.327	0.269	0.0000*	MCM-binding protein/9e-59	KF171276
Tg12879	F: CTGCCACTTCCCAACCCAT	$(CAA)_{7}$	64.5	189-202	ŝ	0.528/0.403	0.403	0.0000*	Histone deacetylase 4/3e-17	KF171277
Tg11368	R: GGACITACI ICCIGCICGCIG F: CCACTTGGATTTTCACACG B: CCTCTCACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	(ATAA) ₃	64.5	254-268	7	0.040/0.038	0.038	1.0000		KF171278
Tg3934	F. AATGCTGAGACCTTGTGAAC	$(\mathrm{GT})_{17}$	59.5	238-278	10	0.600/0.841	0.801	0.0000*	Glutaredoxin-3/e-117	KF171279
Tg8139	R: UTITUTATUCAAUAUUTAUAU F: AAGTTGGTACAAAGAAGTGCTG	$(TG)_{21}$	61.1	227-258	Г	0.600/0.804	0.759	0.0319	Syntaxin-5/3e-94	KF171280
Tg8561	K: UUTGIAIGUUTAAUAT IAUAU F: GTTGGGCATTGTTTTTAGC	$(AG)_7$	58.7	190-201	3	0.160/0.389	0.333	0.0009	Ribose-phosphate pyrophosphokinase 4/2e-71	KF171281
Tg8268-1	R: CATTATCCGAAGATGTGTGG F: TTCAAACTCCCAGTCTTCAC	(TCA) ₈	53.4	268-279	Э	0.080/0.287	0.263	*0000.0		KF171282
Tg8772	R: AAAGGTTGCTATGGAAACTG F: AAGAACCTCCTTTGGCTAA	$(AAG)_4$	50.8	214-242	4	0.480/0.408	0.374	1.0000	SH3 domain-containing kinase-binding protein 1/9e-42	JW036061
Tg8268-2	R: CCTTTGTCTTCAGGTGTTGTA F: CACTGGTGATGTGACTAAT	(CTT),	53.4	145-188	5	0.520/0.431	0.389	0.8761		KF171282
Tg8157	R: TGAAGATGTGGAAGGAGA F: GATGAGAGAGACAAGATAGGAAG	(AT)。	61.1	264-288	Ś	0.680/0.767	0.708	0.0155	Di-N-acetylchitobiase/2e-59	JW036063
с Тg7961	R: CTCTGTTAGAAGTTGTGCCATA F: TATGGACACATCCCTGGGTTCTAA	(AGT) ₅	48.5	192-228	4	0.160/0.154	0.147	1.0000	Transcriptional regulator ATRX/0	KF171283
Tg8197	R: CCCITATI TGAGICACTITICGCIG F: CTCTGGTCCGTATGGAATGC	(TTTC) ₃	45.3	168-188	4	0.320/0.288	0.265	1.0000	Poly [ADP-ribose] polymerase 12/3e-21	KF171284
Tg8648	R: GAAAGGTCCTGTCCGAATC F: TTAGCACAGTTGGAATCAT B: CTCTATCAGAACTTCTTCTTCTTC	(AGAA) ₃	58.7	110-122	3	0.040/0.079	0.076	0.0186	M phase phosphoprotein 10/9e-29	KF171285
Mean			,	,	3.78	0.3885/0.4338	0.3834	ı		
Ta = an P-HWE [:] using Bl	nealing temperature; N_A = number * = significant deviation from the Hi astX against Nr or the Swiss-Prot d	of alleles; <i>H</i> ardy-Weinber atabase, with	$H_0/H_{\rm E}$	= observ librium (alue cuto	ed h HWH off of	eterozygosit 3) after sequ 7 le-6.	y/expec ential E	cted hete Sonferroi	rozygosity; PIC = polymorphic information ii corrections. ^a SSR-containing contigs were a	n content; annotated

Y.H. Dong et al.

Genetics and Molecular Research 14 (3): 8977-8987 (2015)

ACKNOWLEDGMENTS

Research supported by the National High-Tech "863" Project of China (#2012AA10A400), the Zhejiang Major Program of Science and Technology (#2012C12907-4), the Modern Agro-Industry Technology Research System (#CARS-48), and Key Science Foundation of Zhejiang Province (#LZ12C19001).

REFERENCES

Dong YH, Yao HH, Lin ZH, Zhang LL, et al. (2012). Characterization of 62 polymorphic EST-SSR markers in the blood clam (*Tegillarca granosa*) and their cross-amplification in *Scapharca subcrenata*. Conserv. Genet. Resour. 4: 991-997.

Dong YH, Wu GX, Yao HH, Lin ZH, et al. (2013). Characterization of 34 polymorphic EST-SSR markers in *Tegillarca* granosa and their transferability in *Anadara craticulata*. J. Fish. China 37: 70-77.

- Duran C, Appleby N, Edwards D and Batley J (2009). Molecular genetic markers: discovery, applications, data storage and visualisation. *Curr. Bioinformatics* 4: 16-27
- Gu XY, Zeng QG, You ZJ and Lin ZH (2008). Isolation and characterization of six microsatellite primers of *Tegillarca* granosa. Oceanol. Limnol. Sin. 39: 661-664.

Kalinowski ST, Taper ML and Marshall TC (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. *Mol. Ecol.* 16: 1099-1106.

Lawson MJ and Zhang L (2008). Housekeeping and tissue-specific genes differ in simple sequence repeats in the 5'-UTR region. *Gene* 407: 54-62.

Li Q and Wan JM (2005). SSRHUNTER: Development of a local searching software for SSR sites. Yichuan 27: 808-810.

Li YC, Korol AB, Fahima T and Nevo E (2004). Microsatellites within genes: structure, function, and evolution. *Mol. Biol. Evol.* 21: 991-1007.

Liu B, Teng SS, Shao YQ, Chai XL, et al. (2012). Isolation and characterization of 39 novel polymorphic EST-SSR loci for the blood clam, *Tegillarca granosa. Conserv. Genet. Resour.* 4: 375-378.

Rice WR (1989). Analyzing tables of statistical tests. Evolution 43: 223-225.

Rousset F (2008). Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. *Mol. Ecol. Resour.* 8: 103-106.

- Varshney RK, Graner A and Sorrells ME (2005). Genetic microsatellite markers in plants: features and applications. *Trends Biotechnol.* 23: 48-55.
- Zhou XL, Zhu JH, Dong YH, Lin ZH, et al. (2013). Development and comparative study of genomic-SSR and EST-SSR in *Tegillarca granosa*. Oceanol. Limnol. Sin. 44: 467-475.

Genetics and Molecular Research 14 (3): 8977-8987 (2015)