GMR

Development and validation of the first SSR markers for *Mimosa scabrella* Benth.

F.A. Saiki¹, A.P. Bernardi², M.S. Reis², H. Faoro³, E.M. Souza⁴, F.O. Pedrosa⁴, A. Mantovani⁵ and A.F. Guidolin¹

¹Departamento de Agronomia, Universidade do Estado de Santa Catarina, Lages, SC, Brasil
²Departamento de Fitotecnia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
³Instituto Carlos Chagas-Fundação Oswaldo Cruz, Curitiba, PR, Brasil
⁴Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
⁵Departamento de Engenharia Florestal, Universidade do Estado de Santa Catarina, Lages, SC, Brasil

Corresponding authors: A.F. Guidolin / F.A. Saiki E-mail: altamirguidolin@gmail.com / flaviasaiki@yahoo.com.br

Genet. Mol. Res. 16 (1): gmr16019571 Received December 9, 2016 Accepted January 23, 2017 Published February 16, 2017 DOI http://dx.doi.org/10.4238/gmr16019571

Copyright © 2017 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License.

ABSTRACT. *Mimosa scabrella* Benth., popularly known as "bracatinga", is a pioneer and endemic species of Brazil, occurring in Mixed Ombrophilous Forest associated with Brazilian Atlantic Rainforest biomes. It is a fast-growing tree of the Fabaceae family that facilitates the dynamics of ecological succession. SSR development, when there is no genome sequence, is time and labor intensive and there are no molecular markers for *M. scabrella*. We developed and validated the first microsatellite markers for this tetraploid species, evaluating mother trees and progenies. Using Illumina sequencing, we identified 290 SSR loci and 211 primer pairs. After 31 SSR loci PCR/agarose electrophoresis selection, a subset of 11 primer pairs was synthetized with fluorescence in the forward primer for PCR and

Genetics and Molecular Research 16 (1): gmr16019571

capillary electrophoresis validation with leaf DNA of 33 adult and 411 progeny individuals. Polymorphic locus percentage was 36, 4 in 11 loci, 3 chloroplast SSRs, and 1 nuclear SSR. Allele number of polymorphic loci ranged from 2 to 11 alleles considering all sampling. All 11 primer pairs were also tested for cross-species amplification for five Fabaceae-Mimosoideae species, ranging from 2 loci transferred to *Calliandra tweedii* Benth. and all 11 loci transferred to *Mimosa taimbensis* Burkart. The assessed and validated SSR markers for *M. scabrella* are suitable and useful for analysis and population genetic studies.

Key words: Bracatinga; Next-generation sequencing; NuclearSSR; cpSSR; Polyploidy; Transferability

INTRODUCTION

Bracatinga (*Mimosa scabrela* Benth.) is a multipurpose forest species, native and endemic of South Brazil. It is a pioneer leguminous tree of rapid growth in open fields, after logging (Reitz et al., 1978) especially when burning the litter that breaks dormancy in seeds (Carneiro et al., 1982). Bracatinga is very common in rural settlements of South Brazil (Moreira et al., 2011) and economically important for timber, charcoal, fuel and energy wood, and honey production due to winter flowering (Pegoraro and Carpanezzi, 1995; Machado et al., 2002). *M. scabrella* is also a valuable resource for reforesting and recovering programs of degraded areas (Carneiro et al., 1982; Urbano et al., 2008). Seeds have high levels of galactomannans with great potential for biotechnological applications (Ganter and Reicher, 1999; Ughini et al., 2004; Vendruscolo et al., 2005).

There are a few articles about *M. scabrella* genetics. Sobierajski et al. (2006) and Moreira et al. (2011) investigated mating system using allozyme loci and found mixed mating system, predominantly outcrossing. Dahmer et al. (2011) determined tetraploid nature of the species, with chromosome number 2n = 4x = 52. A major challenge for molecular characterization is the lack of sufficient DNA markers specific to *M. scabrella*.

Microsatellite markers, or simple sequence repeats (SSRs), unite desirable features for molecular markers: co-dominant, multi-allelic (Varshney et al., 2005) and are widely used because are simple, show high resolution and polymorphism (Squirrell et al., 2003). SSRs, once described and validated, are easily reproducible, abundant and uniformly dispersed in plant genome, so they are effective for population genetic studies, molecular ecology, and for future molecular breeding (Zhao et al., 2013). Chloroplast organelle genome is characterized by uniparental mode of inheritance, so chloroplast SSR (cpSSR) can contribute to check seed and pollen flow by comparing nuclear and chloroplast markers (Provan et al., 2001). Sequence genome knowledge is a barrier to screen SSR loci (Morris et al., 2016). Next-generation sequencing technologies can generate huge sequence data fastly, for genome mining and identification of SSR regions (Abdelkrim et al., 2009) without prior genomic library construction with SSR motif-enriched DNA (Csencsics et al., 2010). It is a promising approach for species with restricted genetic information as many native species like M. scabrella. This current study developed the first primers for *M. scabrella* microsatellites identified by next-generation sequencing, validated as a molecular marker evaluating inheritance pattern between mothers and progenies, and also tested cross-species transferability for Fabaceae-Mimosoideae species.

Genetics and Molecular Research 16 (1): gmr16019571

MATERIAL AND METHODS

Plant materials and DNA extraction

Altogether, leaves of 444 individuals were sampled, 33 adults and 411 progenies. These 33 adult trees are in the University of Santa Catarina State, Campus of Lages. They are originated from a mixture of seedlings of three cities of Santa Catarina State: Atalanta, Urupema, and Bocaina do Sul. Five of these 33 adults were selected as mother trees to provide seeds to generate progenies. For each one of the five mother trees, it was sown 108 seeds. After 2 months of growing, some seeds did not germinate and some seedlings did not survive, the leaves of 411 health progenies were collected and analyzed with the 33 adult leaves for microsatellite validation. For cross-species transferability, leaves of five different individuals of Fabaceae-Mimosoideae species were tested: *Calliandra tweedii* Benth., *Mimosa bimucronata* (DC.) Kuntz, *Mimosa taimbensis* Burkart, and *Parapiptadenia rigida* (Benth.) Brenan. For *Mimosa ramosissima* Benth., leaves of two different individuals were tested.

All samples were extracted as follows: grinding and homogenizing leaves were performed with Precellys Evolution (Bertin, France) and total DNA was isolated from 30 mg of grinded leaves with CTAB method according to Doyle and Doyle (1990). Just for proceeding with sequencing, a single sample of *Mimosa scabrella* DNA was purified with the ZymoTM Purification Kit (ZYMO Research, USA). The voucher specimen of the sequenced sample was included in the Herbarium Lages of Universidade do Estado de Santa Catarina, with the number LUSC 8690.

Sequencing and *de novo* partial assembly

Mimosa scabrella Benth. paired read sequencing was performed from genomic DNA using the MiSeq Illumina platform. Raw high throughput sequencing data and trimmed data were evaluated with FastQC to quality control check (quality value ³33). CLC Genomics Workbench 7.5 (CLC Bio, Denmark) was used to trim data and to form contigs.

SSR identification and primer development

Contigs were screened with SSR Locator (da Maia et al., 2008) to find microsatellite loci and design primers. Microsatellite criteria were at least three repetitions of each motif and minimum of 12 bp (Castoe et al., 2012). Primer criteria were from 18 to 22 bp in size, amplicon size 100-550 bp, average annealing temperature of 55°C, at least 100 bp of gap between microsatellites and 50% of CG. Primer quality was assessed *in silico* with the OligoAnalyzer 3.1 of IDT DNA website (IDT DNA Tech., Coralville, IA, USA; http://www.idtdna.com/ site) and Gene Runner (Hastings Software Inc., Hastings, NY, USA; www.generunner.net). Primer pair approval consisted in Tm difference of less than 1°C, no compound, imperfect and monomer SSR, ΔG higher than -5 kcal/mol and no palindrome (Table 1).

Validation of SSR markers

PCR selection was performed to test 31 primer pairs from 65 *in silico* approved primers (Table 1). Genomic DNA was isolated from 10 adult samples. PCR was carried out separately for each locus in a 12.5- μ L volume reaction with 1.5 ng template DNA, 1X PCR buffer Tris-HCl, 2.5 mM MgCl, 0.2 mM dNTP mix, 0.1 μ M of each primer, and 0.5 U Platinum Taq

Genetics and Molecular Research 16 (1): gmr16019571

F.A. Saiki et al.

Loci	Forward primer (5'-3')	Reverse primer (5'-3')	Expected size (bp)	Repeat motif
Msc001 ^a	GGCATGTAACGAATTTCTTC	AATCCTTTGCAGACGACTTA	519	(CCCG) ₃
Asc003 ^b	CAATCCGTGTTTATCTAGGC	CTAGACCCTTGCTTCGTATG	220	(GCC) ₆
1sc009 ^b	TGAGTAAAGGGCCTGATAAA	TACGTTTGGTGTGTTTGTGAGA	521	(ATATAG)3
1sc017	GCAGTTAGCTCTATCGGAGA	GACCCAGTAGATCCAGTTGA	147	(TA)8
Isc020 ^a	TTGCCAACAGAACTTAGGAT	AAATGATGTCATGAAGAGGC	420	(CAAT) ₃
1sc022	AACTTGGTCCAGAGCATCTA	TATCTTGTGAGCAAACATGC	391	(TA)7
Isc023 ^a	GCATGTTTGCTCACAAGATA	AGAATGATGACTTTGGGTTG	505	(AAAT) ₃
[sc030	ACAGAAACGTCGCTATCAAT	TTAACTGGGCTAGCATCTTC	504	(AAG)4
1sc032	AACTTAGCCTGAACCTCTCC	TAGGCTGGCAGAGACTAGAG	415	(TA)6
1sc041 ^b	CTTAGATCAATCTCAACCCG	GAGAATTTATCATGGAAGCG	426	(ATTA)3
Isc045 ^b	ATGATACGTAAGCAAGGCAT	AGTTCAAGTCACACACTCCC	286	(ATTAT)3
Isc063 ^a	ATGACACTGATTTCCTCCAG	CCAATATGGGAGATCAAAGA	269	(GAA) ₆
1sc064	AAATGACTATGGCTTCCTGA	CAAGCTTCTCCTAATCCAAG	288	(AC)6
Isc066 ^a	CAGGAATTCAACAACCATCT	TATTTGAGAATCCTTGAGGG	319	(AAC)5
1sc069	GGAATGATGACTATCGAGGA	GTAAGCTCCAAGAACCACTG	239	(TA) ₆
Isc072 ^b	CGCTCAAGCATCTTCTCTAT	TGTTCGTTGTGTCTTTGTGT	436	(AACT) ₄
Isc075	TACCCATCCTGTATATTGCC	TTTCCATAGAGCTTTCTTGC	507	(TTA) ₄
[sc080 ^a	CTATGAAAGCTTGGGTATGG	TATCTACAACCACCACCTCC	136	(GGT)6
Isc098 ^b	CGGGAATAGAAGAGACTTCA	CTTTGTTCAATCTTTCACCC	117	(GTTG)3
[sc099 ^a	ATGAAGTGTTGATTGCTGGT	CGAATCGCAACCTAATTAAC	504	(GAA)4
sc100	CCATCTTGGAAAGTAGGTTG	TCAACCTTAGGAGTGGAAGA	133	(TCT)4
lsc102	CTACCTGATTGTGTGTGACG	GTAGCTCAATCGCCATAATC	302	(TA)9
[sc105	AGTATATGCGACGTATGGCT	CCTCAATGTTGGAGGAGTAA	476	(TA)7
[sc106	ACAACCAGAGGTTCACAGAC	TTGAGAAAGAAATCCTGGAC	397	(TA)6
[sc108	CACATGTTGCTCACGTTTAC	TCCCATGTGTTCACACTAAA	520	(CT)
1sc120 ^a	TGATGAGTAAGTATGCGTCG	GAAATTCTTCTCCCAGGACT	395	(CCT)5
(sc121 ^a	TGGTAAAGAAGGGAGAATGA	AAATTCTGTCCCTGTTGTTG	426	(TAAA)3
Isc124 ^b	TCTTGCTCAGACCGATAAAT	AGGATGGGTAGATGTCACAG	292	(ATCA) ₃
Isc127 ^a	GTCCGAGTTTCACCAATTTA	TGCACAAACTTAATGGAGAC	235	(TTTA)3
Isc138	CAACGGATCTATTCTAACGG	GAGCATTGAGAGTGGAAGAG	174	(GAT) ₄
Asc151	AATATGGGCACATCAAAGTC	TCTCCTCCTTGTATGCCTAA	131	(CAT)4
Asc158	ATTGTAGACGACGGTGAATC	CATCCCTAATTCCTCAATCA	496	(AT)9
Asc159 ^a	TCCGCTGTTTACTCTGAGAT	GTGTTCCTATCTTGCTTTCG	200	(TGCTT)
Asc160 ^b	ATCGTATGAGCTCGCATC	TCTATACAGATTGCCATCCC	101	(TCT)5
Asc161 ^b	AGCTCTCTTCTTCGTCCTTT	GCCATATTCAAACGGATCTA	112	(TCT)
Asc165	CCTCCAACCCTCTTCTAACT	CACAATACGAGATGGTTCAA	247	(TG)7
Asc173	ACGACATTTCATTTCCTGAG	CTCTCCTCAACCTCACTCTG	171	(TGA)/
Asc174 ^a	CAGAGTGAGGTTGAGGAGAG	CCCAATTAAGCTGCAATATC	467	(ATTT)2
Asc175	TCATATGTCTTGAGCATCCA		256	(TTG)
Asc179	TCATCTCATCTCACCACTGA	TTCAACTCAAGTGCATCAAG	194	(TGA)4
Asc184	CCAAGATAATTCCCTCAGACT	CATCCTCCTTATGATTCGAG	1/146	(AAG)4
1sc187	GAAAGGTACCCAGAGGCTAT	ACCTGATTGTTTGTGTGTGGTT	130	(AT) ₀
Asc103	GACCGGAGGGGGGGGGGGGTATTATTT	GGAATTGCGTTACATGAGAT	130	(AT) ₉
Aso106	TAGTTCTGGAAGCTATGGGA	TCCCCTTGAATAGAAACTGT	137	(GCA)
Asc198	AGATGCAATATTAGGGCTCA	GATCTCCTTCTACACCCACA	190	(CCA)4
Aso100a		ATTGTGAAATGGTTAGGTGC	208	(CAAT)a
130177 [sc200	CACATCGGTTCCTAAGACAT	AGGGAGAGTGAGGATAAAGG	315	(ATT).
150200	ATCAGCTCGAATTTAGGGTT	TCAAAGGGATGATGATGATTAGG	121	(TTC):
130204 [sc204	ATGAGTGGGTTAGCAGAGTG	TGAATGCAAGTCTGTGTGAT	121	(AT)o
130200	TGAGTCGGAGCTATCATCTT	AGAGGTCCAGAGATAAAGGG	107	(CTT):
130217 Acc218a	AAAGAAACTCAAGGTCCCTC	TCCTCATCATCCTCAGACTC	170	(AGA)-
130210 [se210a	GATTATGGCTTCCTTCTCTC	CCAATGTTACTCAAGCCAAT	1/9	(CCTT)-
130219		AGAAGATTGTGCTGTCGAT	1/3	(TTC):
150220		GATGACTTAGAACGGGATCA	427	(11C)4 (AT):
sc223		GTTGCTCCGAAATTATAACC	400	(A1)6 (AATA)
150229 [so220			140	(TA)-
150230		ATAATIGACIGATGGGIGU	101	(TA)7
1sc231" (240	GIGGATIGITAGGCATGAAT	AAIGCAAGAGIGAIAIGGGI	504	(CAAAA)3
1sc240	GAAAIGIAGIIGGIIGACCG		259	(CCT)4
1SC248ª	GIGATIGGGATATIGAGGAA	GULCUIGIUIACAAICAGA	166	(CGGC)3
/1sc253*	IGIIGAGAGIGIGCATICAT	GIIGIAIIGAIGGAAAGGCI	321	(CATTC) ₃
1sc255	CAAAGCAAATCAAGTGGC	CCAGCAGIGACTACAACAGA	241	(TGT)4
1sc256 ^a	GATIGATCICATIGGACIGG	TCATTICTICATCCTICACC	493	(AAGA)3
1sc259	TCCCTGATTGAAATGAAGAC	AGTIGAGAGTIGAGAAGGAAGA	219	(TG)6
Isc266 ^a	GUIGUITATUITTUTUTGG	GIGCCIGACACATACCTCTT	219	(GAT)5
Mec267	AGAAGATCAAGGAAAGGAGC	LATAAGTTCAATGGGAGCAGA	256	(AAG) ₄

Table 1. Sequences of *in silico* approved primer pairs, synthetized unlabeled primers for PCR selection and synthetized primers for polymorphism analysis.

^aSynthetized unlabeled primers for PCR selection; ^bsynthetized unlabeled primers for PCR selection and synthetized primers for polymorphism analysis.

Genetics and Molecular Research 16 (1): gmr16019571

DNA Polymerase (Invitrogen). Amplification program was 95°C for 2 min; 35 cycles of 45 s at 95°C, 1 min at 55°C, and 2 min at 72°C; and a final extension of 5 min at 72°C on Veriti thermocyclers (Applied Biosystems). The PCR products were analyzed on 2% agarose gels. From 31 SSR locus PCR selections, 11 loci were then assessed for polymorphism in 444 samples of *Mimosa scabrella*.

Genotyping using Multiplex Panels and polymorphism analysis validation

The Multiplex Panels were developed with Autodimer (Vallone and Butler, 2004) and Multiplex Manager (Holleley and Geerts, 2009) with up to four loci per panel (Table 2). PCRs were performed in a 12.5- to 25-uL volume reaction with 1 ng template DNA, 1X PCR buffer Tris-HCl, 2.5 mM MgCl, 0.2 mM dNTP mix, 0.05 to 0.12 µM of each primer (Table 2) and 1 U Platinum Tag DNA Polymerase (Invitrogen). DMSO (10%) was added for Msc003 and Msc161. PCR amplification was also performed on Veriti thermocyclers (Applied Biosystems) under the following conditions: 95°C for 10 min; 25 cycles of 45 s at 95°C, 1 min at 55°-56°C, and 2 min at 72°C; and a final extension of 30 min at 72°C. Fluorescent dyes of each forward primer, primer concentration, and annealing temperature are described in Table 2. Fluorescently labeled PCR products were separated by capillary electrophoresis using the ABI 3130 Genetic Analyzer (Applied Biosystems) with internal size standard GeneScan600 LIZ (Applied Biosystems). Peak interpretation, allele size calling and genotyping were performed with the Gene Mapper[®] software ID-X v. 1.2 (Applied Biosystems). Descriptive statistics, for the nuclear SSR marker, like allelic richness, the number of alleles at a locus (N_{λ}) ; genotypic richness, the number of genotypes with four alleles per locus (G); the observed and expected heterozygosities (H_0 and H_E) and fixation index (F) were all calculated using Autotet (Thrall and Young, 2000) assuming autopolyploidy. $H_{\rm E}$ and F were computed under random mating and chromosome segregation $[H_{\rm F}({\rm Ce})]$ and $[F({\rm Ce})]$, and under random mating and some level of chromatid segregation $[H_{\rm E}(Cd)]$ and [F(Cd)], considering maximum double reduction with $\alpha = 1/7$. For cpSSR, haplotype frequencies were calculated using GenAlEx 6.5 (Peakall and Smouse, 2012).

Table 2. Characteristics of 11 SSR labeled primers and panels developed for Mimosa scabrella.								
Locus	Multiplex panel	Forward primer dye	Allele size (bp)	Primer concentration (µM)	Ta (°C)	BLASTn top hit	E value	GenBank accession No.
Msc098*	1	VIC	113	0.05	56	No hit	-	KY082898
Msc045	1	VIC	267-283	0.05	56	Chloroplast genome (Acacia exocarpoides)	3E-114	KY310532
Msc124	1	FAM	286-300	0.05	56	Chloroplast genome (Pararchidendron pruinosum)	2E-136	KY310534
Msc217*	1	FAM	156	0.05	56	No hit	-	KY310536
Msc229*	2	PET	138	0.11	56	No hit	-	KY034416
Msc041*	2	NED	422	0.07	56	Chloroplast genome (Prosopis glandulosa)	3E-100	KY310533
Msc009	2	FAM	499-514	0.12	56	Chloroplast genome (Acacia formidabilis)	1E-40	KY271088
Msc072*	2	VIC	430	0.07	56	No hit	-	KY273304
Msc161*	3	NED	108	0.2	56	No hit	-	KY310537
Msc003	3	NED	195-224	0.1	56	No hit	-	KY310535
Msc160*	Single	FAM	95	0.05	55	No hit	-	KY310538

*Monomorphic loci; Ta = annealing temperature.

RESULTS AND DISCUSSION

Characterization of microsatellites and validation for Mimosa scabrella

Illumina paired-end sequencing generated a total of 1,431,034 reads with 237,704,384 bases. After trimming and quality control read checks, 42,546 contigs were assembled.

Genetics and Molecular Research 16 (1): gmr16019571

F.A. Saiki et al.

Contigs screening generated 290 SSR loci, trinucleotide repeats were the most common (32.4%), followed by tetranucleotide (23.15%), dinucleotide (19.0%), mononucleotide (17.6%), pentanucleotide (6.25%), and hexanucleotide (1.7%) repeats. The number of perfect, imperfect, and compound motif repeats corresponds to 252, 2, and 16 loci. From all SSR loci identified, we designed 211 primer pairs, 65 primer pairs were approved after in silico primer quality assessment, and a subset of 31 were synthesized. All 31 primer pairs were tested on agarose, 19 generated amplicons in the expected size, and from these, 11 primer pairs were synthetized with fluorescent dyes in forward primer. All samples successfully amplified and showed at least one allele in common between mother trees and progeny samples in all 11 markers. Based on capillary electrophoresis data for the 444 M. scabrella samples, 4 loci were polymorphic (P = 36%) in adult and progenv individuals: Msc009, Msc045, Msc124, and Msc003, with allele richness (A) of 4, 3, 2, and 11, respectively, considering all sampling. These polymorphic markers are hexa-, penta-, tetra-, and trinucleotide motifs. A similarity search of amplicon contigs was conducted using BLASTn with E value cutoff of 1×10^{-5} (Table 2) Of the 11 markers, Msc009, Msc041, Msc045, and Msc124 sequences showed significant similarity with chloroplast genomes of some Mimosoideae species and all samples of these markers displayed only one allele per sample and the same allele between mother trees and progenies, revealing maternal inheritance of chloroplast genome for M. scabrella. Msc003 displayed from one to four alleles per sample, showing its tetraploid nature, as described by Dahmer et al. (2011). Only identified allele peaks were considered for heterozygote genotype, without considering the allelic dosage for incomplete heterozygotes (Narayan et al., 2015).

Significant departure from Hardy-Weinberg equilibrium was detected at Msc003 locus (P < 0.001) under chromosome and chromatid segregation for adults and progenies. Allele richness, genotypic richness, and H_0 were 5, 4, and 0.394 for adults and for progenies they were 11, 16, and 0.309. For adults, under random mating and chromosome segregation, F(Ce) and H_E (Ce) were 0.478 and 0.175. Considering random mating and some level of chromatid segregation, F(Cd) and H_E (Cd) were 0.446 and 0.116. For progenies, F(Ce) was 0.296, H_E (Ce) 0.438, F(Cd) 0.245, and H_E (Cd) 0.409.

Four different haplotypes were found for Msc009, Msc045, and Msc124 cpSSRs, two in common between adult and progeny groups, and the other two were private to the adult group. The haplotype 1, formed by the alleles 514 bp (Msc009), 283 bp (Msc045), and 286 bp (Msc124), was the most common both for adult and progeny groups with frequencies of 0.788 and 0.762. The haplotype 2, formed by 499, 274, and 300 bp alleles, was the second most common, with frequencies of 0.152 and 0.238 for adult and progeny groups, respectively. Haplotype 3, formed by 507, 267, and 286 bp alleles, and haplotype 4 formed by 502, 267, and 286 bp alleles had only one occurrence in adults, both with frequency of 0.030. Polymorphism detection in chloroplast genome is limited due to low mutation rate and does not recombine (Provan et al., 2001). Informative chloroplast microsatellite of non-model species can be time intensive (McPherson et al., 2013) and first microsatellites developed for *M. scabrella* included three polymorphic cpSSRs.

The 11 SSR markers were 100% cross-amplified in five Mimosoideae species, ranging from two loci in *Calliandra tweedii* Benth. to all 11 loci in *M. taimbensis* Burkart (Table 3). Msc003 marker displayed polymorphism for *M. taimbensis*.

Next-generation sequencing has enabled detection of many SSR loci and marker development for nuclear and chloroplast sequences. The validated SSR set developed in this study has the potential to be applied for population genetic studies, will enhance molecular

Genetics and Molecular Research 16 (1): gmr16019571

research on the species for marker-assisted selection and develop conservation strategies for this highly human managed species. The validated SSR set can also be used in other Fabaceae-Mimosoideae species because of its high cross-amplification and as SSR reference for other polyploidy species. However, most of the microsatellite markers obtained in the present study still need to be further validated.

 Table 3. Cross-species transferability test of Mimosa scabrella microsatellites for five Fabaceae-Mimosoideae family species.

Loci	CTW (N = 5)	MBM (N = 5)	MRM(N=2)	MTB (N = 5)	PTR(N=5)
Msc229	-	-	+	+	-
Msc041	-	-	+	+	-
Msc009	-	+	+	+	+
Msc072	-	-	+	+	-
Msc160	-	-	-	+	-
Msc045	+	+	+	+	+
Msc098	-	-	+	+	+
Msc217	-	-	-	+	+
Msc124	+	+	+	+	+
Msc161	-	-	-	+	-
Msc003	-	-	-	+	-

CTW = Calliandra tweedii Benth.; MBM = Mimosa bimucronata (DC.) Kuntz; MRM = Mimosa ramosissima Benth.; MTB = Mimosa taimbensis Burkart; PTR = Parapiptadenia rigida (Benth.) Brenan; N = number of individuals.

Conflicts of interest

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

The authors thank Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) for financial support.

REFERENCES

- Abdelkrim J, Robertson B, Stanton JAL and Gemmell N (2009). Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. *Biotechniques* 46: 185-192. <u>http://dx.doi.org/10.2144/000113084</u>
- Carneiro RM, Almeida AR, Jr., Kageyama PY and Dias IS (1982). Importância da dormência das sementes na regeneração da bracaatinga *Mimosa scabrella* Benth. *IPEF* 149: 1-9.
- Castoe TA, Poole AW, de Koning AP, Jones KL, et al. (2012). Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake. *PLoS One* 7: e30953. http://dx.doi.org/10.1371/journal.pone.0030953
- Csencsics D, Brodbeck S and Holderegger R (2010). Cost-effective, species-specific microsatellite development for the endangered Dwarf Bulrush (*Typha minima*) using next-generation sequencing technology. J. Hered. 101: 789-793. http://dx.doi.org/10.1093/jhered/esq069
- Dahmer N, Simon MF, Schifino-Wittmann MT, Hughes CE, et al. (2011). Chromosome numbers in the genus *Mimosa* L.: cytotaxonomic and evolutionary implications. *Plant Syst. Evol.* 291: 211-220. <u>http://dx.doi.org/10.1007/s00606-010-0382-2</u>

Doyle JJ and Doyle JL (1990). Isolation of Plant DNA from Fresh Tissue. Focus 12: 13-15.

- Ganter JLMS and Reicher F (1999). Water-soluble galactomannans from seeds of Mimosaceae spp. *Bioresour. Technol.* 68: 55-62. <u>http://dx.doi.org/10.1016/S0960-8524(98)00078-9</u>
- Holleley CE and Geerts PG (2009). Multiplex Manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. *Biotechniques* 46: 511-517. <u>http://dx.doi.org/10.2144/000113156</u>

Genetics and Molecular Research 16 (1): gmr16019571

F.A. Saiki et al.

- Machado SA, Tonon AEN, Figueiredo Filho A and Oliveira EB (2002). Evolução da área basal e do volume em bracatingais nativos submetidos a diferentes densidades iniciais e em diferentes sítios. *Floresta* 32: 61-74. <u>http:// dx.doi.org/10.5380/rf.v32i1.2349</u>
- da Maia LC, Palmieri DA, de Souza VQ, Kopp MM, et al. (2008). SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int. J. Plant Genomics 2008: 412696. <u>http://dx.doi.org/10.1155/2008/412696</u>
- McPherson H, van der Merwe M, Delaney SK, Edwards MA, et al. (2013). Capturing chloroplast variation for molecular ecology studies: a simple next generation sequencing approach applied to a rainforest tree. *BMC Ecol.* 13: 8. <u>http:// dx.doi.org/10.1186/1472-6785-13-8</u>
- Moreira PA, Steenbock W, Peroni N and Reis MS (2011). Genetic diversity and mating system of bracatinga (*Mimosa scabrella*) in a re-emergent agroforestry system in southern Brazil. *Agrofor. Syst.* 83: 245-256. <u>http://dx.doi.org/10.1007/s10457-011-9428-x</u>
- Morris AB, Scalf C, Burleyson A, Johnson LT, et al. (2016). Development and characterization of microsatellite primers in the federally endangered Astragalus bibullatus (Fabaceae). Appl. Plant Sci. 4: 1500126. <u>http://dx.doi.org/10.3732/</u> apps.1500126
- Narayan L, Dodd RS and O'Hara KL (2015). A genotyping protocol for multiple tissue types from the polyploid tree species Sequoia sempervirens (Cupressaceae). Appl. Plant Sci. 3: 1400110. <u>http://dx.doi.org/10.3732/apps.1400110</u>
- Peakall R and Smouse PE (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. *Bioinformatics* 28: 2537-2539. <u>http://dx.doi.org/10.1093/bioinformatics/bts460</u>
- Pegoraro A and Carpanezzi AA (1995). Avaliação do potencial melífero da Bracatinga. Ver. Setor de Cienc. Agr. 14: 167-172.
- Provan J, Powell W and Hollingsworth PM (2001). Chloroplast microsatellites: new tools for studies in plant ecology and evolution. *Trends Ecol. Evol. (Amst.)* 16: 142-147. <u>http://dx.doi.org/10.1016/S0169-5347(00)02097-8</u>
- Reitz R, Klein RM and Reis A (1978). Projeto madeira de Santa Catarina. Herbário Barbosa Rodrigues, Itajaí.
- Sobierajski GR, Kageyama PY and Sebbenn AM (2006). Sistema de reprodução em nove populações de Mimosa scabrella Benth. Sci. Forum 71: 37-49.
- Squirrell J, Hollingsworth PM, Woodhead M, Russell J, et al. (2003). How much effort is required to isolate nuclear microsatellites from plants? *Mol. Ecol.* 12: 1339-1348. http://dx.doi.org/10.1046/j.1365-294X.2003.01825.x
- Thrall PH and Young A (2000). AUTOTET: a program for analysis of autotetraploid genotypic data. *J. Hered.* 91: 348-349. <u>http://dx.doi.org/10.1093/jhered/91.4.348</u>
- Ughini F, Andreazza IF, Ganter JLMS and Bresolin TMB (2004). Evaluation of xanthan and highly substituted galactomannan from *M. scabrella* as a sustained release matrix. *Int. J. Pharm.* 271: 197-205. <u>http://dx.doi.org/10.1016/j.ijpharm.2003.11.011</u>
- Urbano E, Machado AS, Figueiredo Filho A and Koehler HS (2008). Equações para estimar o peso de carbono fixado em árvores de *Mimosa scabrella* Bentham (Bracatinga) em povoamentos nativos. *Cerne* 14: 194-203.
- Vallone PM and Butler JM (2004). AutoDimer: a screening tool for primer-dimer and hairpin structures. *Biotechniques* 37: 226-231.
- Varshney RK, Graner A and Sorrells ME (2005). Genic microsatellite markers in plants: features and applications. *Trends Biotechnol.* 23: 48-55. <u>http://dx.doi.org/10.1016/j.tibtech.2004.11.005</u>
- Vendruscolo CW, Andreazza IF, Ganter JLMS, Ferrero C, et al. (2005). Xanthan and galactomannan (from *M. scabrella*) matrix tablets for oral controlled delivery of theophylline. *Int. J. Pharm.* 296: 1-11. <u>http://dx.doi.org/10.1016/j. ijpharm.2005.02.007</u>
- Zhao Y, Williams R, Prakash CS and He G (2012). Identification and characterization of gene-based SSR markers in date palm (*Phoenix dactylifera* L.). *BMC Plant Biol.* 12: 237. <u>http://dx.doi.org/10.1186/1471-2229-12-237</u>

Genetics and Molecular Research 16 (1): gmr16019571