

Development and characterization of novel SSR markers in *Siniperca kneri* Garman

M. Yang^{1,2*}, H.Z. Zheng^{1,2*}, X.-F. Liang^{1,2}, C.X. Tian^{1,2}, Y.Q. Dou^{1,2}, K.C. Zhu^{1,2} and Y.C. Yuan^{1,2}

¹Key Lab of Freshwater Animal Breeding, College of Fisheries, Huazhong Agricultural University, Ministry of Agriculture, Wuhan, Hubei, China
²Hubei Collaborative Innovation Center for Freshwater Aquaculture, Wuhan, Hubei, China

*These authors contributed equally to this study. Corresponding author: X.F. Liang E-mail: xufang_liang@hotmail.com

Genet. Mol. Res. 13 (3): 7593-7606 (2014) Received June 12, 2013 Accepted September 25, 2013 Published March 24, 2014 DOI http://dx.doi.org/10.4238/2014.March.24.18

ABSTRACT. In this study, 37 transcriptome-derived simple sequence repeat (SSR) markers and 18 genomic SSR markers were developed and characterized in the Chinese perch, *Siniperca kneri* Garman. The average allele number per locus was 5.1 (range: 2-8) for transcriptome-derived SSRs and 3.8 (range: 2-5) for genomic SSRs. The average observed and expected heterozygosities were 0.666 (range: 0.000-1.000) and 0.692 (range: 0.230-0.857) for transcriptome-derived SSRs, respectively. These values were 0.380 (range: 0.000-1.000) and 0.527 (range: 0.201-0.799) for genomic SSRs, respectively. The average polymorphic information content was 0.638 (range: 0.215-0.824) for transcriptome-derived SSRs and 0.477 (range: 0.183-0.752) for genomic SSRs. Seven of these loci exhibited departure from Hardy-Weinberg equilibrium after sequential Bonferroni's correction for multiple tests, and no significant deviation was observed for the linkage disequilibrium. These developed and characterized markers are anticipated to be useful for studies on population genetics,

Genetics and Molecular Research 13 (3): 7593-7606 (2014)

conservation genetics, and the fishery management of this species.

Key words: *Siniperca kneri* Garman; Genome; Simple sequence repeat; Transcriptome

INTRODUCTION

The Chinese perch, *Siniperca kneri* Garman, is an endemic species to East Asia, and is primarily distributed in the Yangtze River drainage system of China. This fish species is one of the most economically and geographically important species in the genus *Siniperca* (Zhou et al., 1988). Unfortunately, the wild stock is declining because of excessive exploitation and environmental pollution (Liang, 1996). Therefore, the rational use of natural resource is urgently required to maintain, and possibly enhance, the quality of brood stock.

SSR markers are used extensively in molecular ecology and conservation genetics, as well as in stock assignment and assessments of genetic diversity for commercial fish (Perez et al., 1999; Hansen et al., 2001a,b). SSR markers have been developed for some *Siniperca* species, such as *Siniperca chuatsi* (Kuang et al., 2009; Liu et al., 2011) and *Siniperca scherzeri* Steindachne (Qu et al., 2012; Yang et al., 2012). However, polymorphic SSRs have not been developed for *S. kneri* because of a lack of sequence information. Thus, sequence information, particularly transcriptomes, of closely related species could be used to reveal the polymorphisms of *S. kneri*.

Transcriptome sequencing, which is the DNA sequencing of the mRNA pool of a given tissue, has allowed sequencing efforts to focus on the protein-coding portion of the genome. As a result, this technique has enabled large numbers of molecular markers to be developed for nonmodel organisms, both quickly and at relatively low cost (Bouck and Vision, 2007). Recently, the transcriptome assemblies of the F_1 interspecies hybrids between *S. chuatsi* (\mathcal{Q}) and *S. scherzeri* Steindachne (\mathcal{J}) were generated using Illumina paired-end sequencing technology (He et al., 2013). In this study, we developed 37 SSR markers from this previously developed transcriptome database. In addition, a further 18 genomic SSRs were also derived from SSR-enriched genomic libraries of *S. kneri*. This study is the first to report the successful use of transcriptome sequences and repeat enriched genomic libraries for SSR marker development in *S. kneri*. These SSR primers are anticipated to be useful for studies on population genetics, conservation genetics, fishery management, and for the construction of genetic linkage maps of *S. kneri*.

MATERIAL AND METHODS

Collection and DNA extraction

Thirty-two wild *S. kneri* individuals were collected from 4 sites (Guangzhou: 23°04'N113°28'E, Nanchang: 23°04'N113°28'E, Wuhan: 30°35'N114°17'E, Changsha 28°13'N112°56'E), and 8 individuals from each site. The distance among them were: Wuhan to Changsha, 290.8 km; Wuhan to Nanchang, 262 km; Changsha to Nanchang, 293 km; Wuhan to Guangzhou, 856.9 km; Changsha to Guangzhou, 563 km; Nanchang to Guangzhou, 705 km. Total genomic DNA was extracted from fin clips using the TIANamp Genomic DNA Kit (Tiangen, Beijing, China), according to manufacturer protocols. The DNA was adjusted to 100 ng/µL and then stored at -20°C until use.

Genetics and Molecular Research 13 (3): 7593-7606 (2014)

SSR mining from transcriptome

The transcriptome assemblies of the F_1 interspecies hybrids between *S. chuatsi* (Q) and *S. scherzeri* (\mathcal{S}) were generated using the Illumina paired-end sequencing technology. Potential SSR markers were detected among the unigenes of this transcriptome using the BatchPrimer3v1.0 software (You et al., 2008). The parameters were adjusted for the identification of perfect di-, tri-, tetra-, penta-, and hexa-nucleotide motifs, with a minimum of 6, 5, 3, 3, and 3 repeats, respectively. Mononucleotide repeats were excluded, because it was difficult to distinguish genuine mononucleotide repeats from polyadenylation products and single nucleotide stretch errors generated by sequencing. The primers for these SSR loci were designed using NCBI/Primer-BLAST (http://www.Ncbi.nlm.Nih.gov/tools/primer-blast/index. cgi?LINKLOC=BlastHome).

Isolation of genomic SSR

SSRs were isolated using a hybridization-based capture methodology, following the protocol described by Billotte et al. (1999). Briefly, the extracted genomic DNA was digested with the restriction enzyme *MseI* (BioLabs). DNA fragments of 300-1000 bp were selected using electrophoresis on agarose gel, and the excised gel was purified using a PBZ0202-1 DNA purification kit (Sangon Biotech, Shanghai, China). Specific adapters (5'-GACGATGAGTCCTGAG-3' and 5'-TACTCAGGACTCAT-3') were then ligated to the digested DNA. Approximately amplified DNA fragments were hybridized with 5'-biotinlabeled oligonucleotides (GA)₂₀ and (CCT)₁₅. Then, streptavidin magnetic beads (Sangon Biotech) were used to capture the target fragments. The captured DNA fragments were eluted from the beads-probe DNA mixture, by treating it with T-Elution buffer at 95°C for 5 min. The enriched DNAs were cloned into the pGEM-T plasmid vector (Promega Beijing Biotech, Beijing, China), and were transformed into competent *Escherichia coli* strain DH-5α (Promega Beijing Biotech). White colonies were randomly selected from the primary transformation plates, and the isolated Plasmid DNA was sequenced by an ABI 3730 Genetic Analyzer (Applied Biosystems). SSR clones were identified by screening with the SSRHUNTER software (Li and Wan, 2005). Then, sequences containing SSRs with 5 or more repeats were selected for primer design using the PRIMER PREMIER 5.0 program (PREMIER Biosoft International, USA).

PCR amplification and genotyping

PCRs were performed in a final volume of 25 μ L containing 50 ng genomic DNA, 2.5 μ L 10X PCR buffer, 1.0-3.0 mM MgCl₂, 0.4 μ M of each primer, 50 μ M of each dNTP, and 1.0 U EasyTaqTM DNA polymerase (Transgen, Beijing, China). PCR amplifications were conducted under the following conditions: 5 min at 94°C, followed by 35 cycles of 30 s at 94°C, 45 s at a primer-specific annealing temperature (Table 1), 1 min at 72°C, with a final extension step of 10 min at 72°C. The PCR products were separated on a sequencing gel containing 8% polyacrylamide, and were visualized by silver staining. The denatured pBR322 DNA/*Msp*I molecular weight marker (Tiangen, Beijing, China) was used as size standard to identify alleles.

Genetics and Molecular Research 13 (3): 7593-7606 (2014)

Table 1. Characterization of the polymorphic microsatellite markers in a sample of 32 *Siniperca kneri* Garman individuals including locus name, repeat motif, primer sequences, allele size range, annealing temperature (Ta), locus type, number of observed alleles (N_A), observed (H_O) and expected heterozygosities (H_E), polymorphism information contect (PIC), chi-square tests for Hardy-Weinberg equilibrium (HWE) after Bonferroni's correction (adjusted P value = 0.0009) and Genbank accession number.

Locus name	Repeat motif	Primer sequence (5'-3')	Size range (bp)	Ta (°C)	Locus type	N _A	H_0	$H_{\rm E}$	PIC	$\boldsymbol{P}_{\rm HWE}$	GenBank accession No.
Transcriptor	me-derived SSR										
SK472	(TG) ₆ N	F: GTATTTGGCAGGCTTTTAG	268-373	57	Ι	4	0.781	0.734	0.674	0.090	JX503195
SK473	(CA) ₂₈	F: TTCATCCTGTCTCACCGC	232-289	55	Р	5	1.000	0.796	0.749	0.060	JX503194
SK483	$(AC)_8N$	F: AGGTTGGATTTGGGTCAAT R: AAGGCACTTCGGCTAATG	221-309	55	Ι	5	0.719	0.810	0.765	0.170	JX503184
SK490	$(GT)_{25}N(GA)_7$ N(GAT)	F: CAGCAGGAATTGGGATGAAA R: CAGATGCGGCCAATACAAGA	247-306	55	Ι	7	0.813	0.830	0.794	0.553	JX503177
SK491	$(GT)_{12}$	F: GCTCTTGCTCCCTTTTACTT R: TAGCCGTGGAGATGGGAATA	245-266	55	Р	5	1.000	0.770	0.720	0.000*	JX503176
SK492	(GT) ₆ N (AC)	F: GTGCCAACCGCTAAAAACAT R: AGCGAGGCACTTACACAATC	192-252	55	Ι	4	0.125	0.675	0.607	0.064	JX503175
SK494	$(TG)_{16}^{9}$	F: TGATCTCGTGGTGATGTTTC R: GAGAGGGGTGAGAAGAGTTA	300-340	55	Р	5	0.500	0.720	0.658	0.058	JX503173
SK498	(GT) ₁₇	F: CTTCTCCTTCGACCCACAAC R: GTTGGAGGGGATCTATATGG	228-298	55	Р	6	0.750	0.796	0.750	0.052	JX503169
SK509	(CA) ₁₅	F: AGCACGAAGATAGACCTGTC R: AGTTTGGTTCAGCTCAGCTC	262-323	55	Р	6	1.000	0.715	0.662	0.000*	JX503158
SK516	(GT) ₂₀	F: TTTATTAAGTCTTGTGTTAGC R: ATGTGGCTTCGTTTCTCAGA	260-344	55	Р	4	0.844	0.668	0.602	0.098	JX503151
SK519	(TG) ₂₀	F: TACAGCAGGCAATCAATG R: GGGTGTGCTGTCAGTCAA	245-314	60	Р	8	0.969	0.683	0.616	0.022	JX503372
SK524	(TC) ₆ N(TC) ₉ N (TG) ₆	F: GCTTTCATCACCGCTTCT R: GACGCCATTATTGATGCT	213-306	55	Ι	5	0.500	0.692	0.623	0.107	JX503367
SK530	$(AC)_{12}^{6}$	F: CTGAAGACAAAGACCCGCTA R: CCTTGTGACAGTGTTTCAGTTC	159-246	58	Р	8	0.469	0.759	0.722	0.349	JX503361
SK532	(TG) ₁₂	F: CAACACGGAGAGGAAGGT R: ATCATCGACTATCTGGAGCAC	187-238	55	Р	8	1.000	0.842	0.807	0.004	JX503359
SK533	(TG) ₁₇	F: GCTGGTCTGGCAGGATACA R: GATCCAGGTCACTGACTGTTTC	240-309	60	Р	4	0.813	0.743	0.683	0.056	JX503358
SK534	(TG) ₆	F: TGAATGTACTGCCTTGTCTG R: GCGTGGTAGAGTAAGGTGAA	213-254	58	Р	6	0.781	0.809	0.767	0.615	JX503357
SK538	(CA) ₁₁	F: AGACCTGGGGAAGAATAAGT R: GCGATTACAGCACTATCATC	197-240	58	Р	6	1.000	0.741	0.687	0.324	JX503353
SK541	$(GT)_7 N(AC)_{10} N$ $(AC)_4$	F: AGCCGAACTACATCAACAA R: TCTTCCAACCTCAGAGATAAC	285-314	55	Ι	3	0.000	0.514	0.450	0.163	JX503350
SK543	(CTC) ₆	F: TGCCTGTAGTTGCTGTTGCT R: CGGTGTGAAAACTGAAGGT	282-310	58	Р	3	0.313	0.518	0.457	0.381	JX503348
SK544	(CA) ₁₅	F: TGACGAGGAAGACAGAGACG R: GCAGCAAAGTGGATTGTAGC	170-233	60	Р	7	1.000	0.826	0.787	0.003	JX503347
SK546	(AAT) ₆ N (AAAT) ₃	F: CTGAGGCTGAGCTGGATT R: GAAGGTGTTGTACCAGATGTG	206-258	58	Ι	4	0.594	0.515	0.468	0.575	JX503345
SK559	(GT) ₉	F: GTTCGTTCTTCCCTGATGCT R: AGTTGCTGCCAATCAAACCA	200-236	58	Р	4	0.469	0.709	0.640	0.236	JX503332
SK560	(GT) ₁₅	F: GTAATACTGTTGCACTTCGT R: GTAGGCATCAAGTGAAGC	270-320	55	Р	3	0.375	0.372	0.309	0.546	JX503331
SK565	(GT) ₁₂	F: TAGACGAGGGTATATGTGGA R: GAGGGAAATGATGGACTACTA	171-226 C	58	Р	3	0.031	0.372	0.309	0.381	JX503326
SK567	(TA) ₈ N (CTT)	F: AGCACCCACCTCATTTCAGT R: AGGATTTGCTGTGTGTTCACATAG	282-305	58	Ι	3	0.938	0.600	0.503	0.000*	JX503324
SK569	$(TC)_{14}^{4}$	F: TCTCCTCTTCTTCGTCGTCC R: CGAGATTAGCGGTGAATTGA	262-303	60	Р	5	1.000	0.782	0.732	0.133	JX503322
SK574	$(AC)_8N(AC)_7$ N(AGG)_4N (GCAC),	F: CAGCAAGATCCGTAACGC R: GTCGCTACACCTACCTGGAG	300-345	60	Ι	6	1.000	0.806	0.001	0.761	JX503317

Continued on next page

Genetics and Molecular Research 13 (3): 7593-7606 (2014)

Microsatellite markers isolated from Siniperca kneri Garman

Table 1. Continued.											
Locus name	e Repeat motif	Primer sequence (5'-3')	Size range (bp)	Ta (°C)	Locus type	$N_{\rm A}$	H_0	$H_{\rm E}$	PIC	$\mathbf{P}_{\mathrm{HWE}}$	GenBank accession No.
Transcripto	me-derived SSR										
SK578	(TG) ₂₃	F: AGTCTCTGGGCGAAGTGT P: GGATCTGCTAACCTGTAACTGT	196-250	58	Р	6	0.969	0.835	0.797	0.017	JX503313
SK580	(ACTA) ₅	F: TCATCAGCAGTGTTGGTAAT	318-394	55	Р	6	0.781	0.819	0.778	0.619	JX503311
SK592	(TG) ₁₂	F: AGCAACCCAATGTTACTCTT	191-270	55	Р	5	0.250	0.801	0.755	0.035	JX503299
SK603	(GT) ₁₃	F: CCACTTGGTCAATGAAATGT	187-240	58	Р	7	0.875	0.807	0.765	0.840	JX503288
SK607	(ACA) ₅	F: CAAGAACCCACCGAGAAAC	195-231	58	Р	3	0.125	0.230	0.215	0.821	JX503284
SK608	(GT) ₃₄	R: IGCCACCITIAGAITICAGC F: TGGGTAGGCTTCATGTGGTA	125-205	58	Р	5	0.469	0.753	0.698	0.076	JX503283
SK609	(GAG) ₅	R: CACTCCACTGAATTGAATGTAG F: GCATCAGAAGGTGAAGAGA	G 183-294	55	Р	6	0.938	0.765	0.711	0.248	JX503282
SK613	(AC) ₁₂	R: AACCTCCTCAATGTTTGTC F: ACTGCCTTGTCAATAGCGGT	146-211	60	Р	8	0.969	0.857	0.824	0.041	JX503278
SK616	(GAG) _s	R: GGTGATGATGGAGAGAGAGAGTGTA F: GAAGGAGGAGGAGGCGTGTCAT	AG 189-205	60	Р	3	0.000	0.564	0.456	0.032	JX503275
SK624	(AT) ₁₀ N	R: GCCAACAACATCGTCAGAGA F: AGCTCAGTTTCACCTGTCAC	172-205	60	Ι	2	0.500	0.381	0.305	0.081	JX503267
Mean	(TGTT) ₃	R: GCTTGCGGTATAATCCAGTC				5.1	0.666	0.692	0.638		
Genomic S	SR										
FC0572	(TG) ₁₄ N (TG) ₂	F: CTGTTGGGAGGATTTCAGTA R: AACATACCTTCATAACGGTC	129-160	55	Ι	5	0.469	0.521	0.597	0.000*	JX449064
FC0580	$(GT)_{24}^{7}$	F: CTCGTCAGGAAACGGTAAA R: ATTTGAATGTATGAATGAAT	140-154	55	Р	2	0.000	0.347	0.674	0.000*	JX449065
FC0661	(GT) ₂₁	F: AGCCTTGTGTGTTTATCAGACC	156-199	55	Ι	4	0.375	0.721	0.248	0.000*	JX449071
FC070	(CTC) ₆ N	F: ATCTGACACGATAAACCCTC	210-246	58	Ι	4	0.281	0.511	0.631	0.012	JX449076
FC076	$(GGA)_9$	F: TACCCCAGTCGTGTCCCTT	142-217	55	Р	3	0.250	0.587	0.481	0.008	JX449082
FC077	(CCT) ₁₀	F: CAAGACCGACTGAATCCTGA	203-273	58	Р	5	0.406	0.399	0.283	0.021	JX449083
FC0791	(TG) ₂₂	F: GGTATCCATCCAGGTCTAAT	176-211	60	Р	5	0.406	0.487	0.661	0.188	JX449085
FC0820	(TG) ₂₉ N	R: CTCCTCTGAGCCTGTTCTCC F: CACCACCAGGCTACCTCAGT	234-291	60	Ι	5	1.000	0.748	0.462	0.578	JX449087
FC084	(TG) ₆ (GAG) ₈	R: CACTGGGGGAGATACACTACT F: TTTGTGCTCCTCTGCTTGTC	210-224	60	Р	4	0.188	0.701	0.501	0.167	JX449088
FC086	(CTC) ₇	R: TTTCAGGGTCAAGAGGTCAG F: GGAAGAAGACCCACAACATC	109-216	62	Р	4	0.531	0.539	0.369	0.722	JX449090
FC093	(TG) ₁₄ N(CTC) ₆ N	R: GGACCAACGCAACCCAGCAT F: GCCGTGATGTATCCACTCTG	190-207	62	Ι	2	0.000	0.347	0.452	0.013	JX449095
FC094	(TGTGA) ₃ (GT) ₁₆	R: CGTCCACACACCCATCACAT F: TCCCGCATAGAGGAGTCTGT	126-153	58	Р	3	0.031	0.201	0.690	0.010	JX449096
FC095	(CTC) ₁₀	R: AACTCAACGCAAGCAGGC F: TCTGACTACAGTTCAACAGG	149-265	58	Р	3	0.063	0.228	0.635	0.257	JX449097
FC096	(TCC) ₆	R: ATCCCAAGAAATATGGAGGC F: CACGCCTGTTTATCTCTTTG	162-224	58	Р	5	1.000	0.799	0.481	0.379	JX449098
FC102	(TCC)	R: CTCAAGAGTCCTACCATCCA F: GTTTGTGTCGTATATGACGG	121-189	58	Р	4	0.563	0.653	0.283	0.245	JX449104
FC104	(GGA).N	R: CTCCTCCTTGGTCTTGAGAT F: CCAGTTCAGGAGGTGGCG	182-238	58	I	5	0.656	0.729	0.183	0.321	JX449106
	$(GAG)_{5}N$ $(AGC)_{5}N$ $(AGC)_{5}N$	R: TGCAGAAGAGCTATGTAAGG	200	20	÷	2					
FC105	(CTC) ₅ N	F: CAGTTCAACAGGACTATGGG	141-225	58	Ι	3	0.063	0.276	0.210	0.000*	JX449107
FC108	$(TCC)_{7}$	F: TAGTGGCAATCAGGATGAAA	207-288	55	Р	4	0.563	0.696	0.753	0.140	JX449109
Mean		K. UGTUTTTTTAGALIUUTUGU				3.8	0.380	0.527	0.477		

P = pure; I = interrupted. *Show significant deviation from HWE after Bonferroni's correction (P < 0.0009).

Genetics and Molecular Research 13 (3): 7593-7606 (2014)

Data analysis

The number of alleles (N_A) , observed heterozygosities (H_0) , and expected heterozygosities (H_E) were computed by the POPGENE software (Version 3.2) (Yeh and Boyle, 1997). The polymorphic information content (PIC) was calculated by the formula:

$$PIC = 1 - (\sum_{i=1}^{n} q_i^2) - (\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 2q_i^2 q_j^2)$$

where qi and qj is the *i*th and *j*th allele frequency, respectively, while *n* is the number of alleles (Botstein et al., 1980). The exact test for genotypic linkage disequilibrium and the exact tests for conformation to Hardy-Weinberg equilibrium (HWE) at each locus were performed using the GENEPOP version 1.2 program (Raymond and Rousset, 1995). The SSR markers were classified by Weber's rules (1990). Null alleles among loci were detected by the Micro-Checker V.2.2.3 software (Van Oosterhout et al., 2004). All results were adjusted for multiple simultaneous comparisons using sequential Bonferroni's correction (Holm, 1979).

RESULTS

A total of 356 unique candidate sequences containing SSR motifs were selected from the transcriptome of the F_1 interspecies hybrids between *S. chuatsi* (\bigcirc) and *S. scherzeri* (\bigcirc). One hundred and seventy-two SSR-containing sequences (GenBank accession Nos. JX503150-JX503199 and JX503252-JX503373) flanked by suitable priming sites were selected for conversion into SSR markers. From the SSR-enriched gnomic libraries, 576 positive clones were selected and sequenced. Among these clones, 220 sequences were found to contain SSR motifs with 6 or more repeat nucleotide. We designed 60 primer pairs from the sequences with sufficient flanking region (GenBank accession Nos. JX449062-JX449139). One hundred and thirty-six transcriptome primer pairs and 49 genomic primer pairs produced clear amplified products by SSR-PCR amplification. These primers were further examined for polymorphism with *S. kneri* collected from 4 populations across China: Guangdong, Guangxi, Hubei, and Hunan (8 individuals from each population). Finally, 55 SSR markers (37 from transcriptome and 18 from genomic) displayed polymorphisms, while the other markers displayed monomorphisms.

The characteristics of the polymorphic and monomorphic SSR markers are shown in Tables 1 and 2, respectively. The average N_A per locus was 5.1 (range: 2-8) for transcriptome-derived SSRs and 3.8 (range: 2-5) for genomic SSRs. The average H_0 and H_E were 0.666 (range: 0.000-1.000) and 0.692 (range: 0.230-0.857) for transcriptome-derived SSRs, respectively. These values were 0.380 (range: 0.000-1.000) and 0.527 (range: 0.201-0.799) for genomic SSRs, respectively. The PIC was 0.638 (range: 0.215-0.824) for transcriptome-derived SSRs and 0.477 (range: 0.183-0.752) for genomic SSRs. There were 72% of di-nucleotide repeats, 16% of trinucleotide and 8% of tetra-nuleotide among EST-SSR markers, and 63% of trinucleotide, 24% of di-nucleotide and 13% of penta-nucleotide among genomic SSR markers. Seven of these loci exhibited departure from HWE after sequential Bonferroni's correction for multiple tests, and no significant deviation was observed for the linkage disequilibrium. Null alleles were not detected among any of the loci in the analysis of the allelic inheritance mode. The results revealed no significant instances of linkage disequilibrium following the Bonferroni correction, indicating the independent behavior of all loci.

Genetics and Molecular Research 13 (3): 7593-7606 (2014)

Locus name	GenBank accession No.	Repeat motif	Ta (°C)	Locus type	Primer sequence (5'-3')
Franscriptome	e-derived SSR				
SK468	JX503199	(CA),,	55	Р	F:AGCAGAGACAGCAGGGAATG
		· · · · · · ·			R:ATACCGCTGCAACCCTAGTG
SK469	JX503198	(AGG) ₇	53.5	Р	F:GAGCATCCAGGAAGTAGACT
K 470	IX 503107	(TCT)	56	р	
K 470	JA303197	$(1C1)_{5}$	50	Г	R:TCCTCTTCGTCCACTGATGA
SK471	JX503196	(AAT) ₁₁	53.5	Р	F:GGCGACGATAGGTGAATAAG
					R:CGAGCCTGTTTACTGCATAG
6K4/4	JX503193	$(GGA)_6$	53.5	Р	F:CAAGAAACAGGCIGIGGI R:GGCTTCCTCATTGTATCAGA
K475	JX503192	(GT), (GC)	56	С	F:AGAATCTACACACAGCAGCAC
		× 15× 79			R:CGTGGAGAGCGTCTTTTCTA
K476	JX503191	(TCC) ₆	57.5	Р	F:TCCCTCACAGTTGGTGTC
K477	IX 503190	(TCA) N(TCA)	53.5	T	FCAGAAATGGTGTGGGATGCT
	01000190	(1011)41 ((1011)9	00.0		R:TAGGCGGAACAGAGGTAATA
K478	JX503189	(ATG) ₉	53.5	Р	F:AACGGACGGAAAGACAGA
V 470	IV 502199	$(\mathbf{T}\mathbf{C})\mathbf{N}(\mathbf{A}\mathbf{C})$	52 5	т	R:TCCAACAGGTGTAAACAGTAG
K4/7	JA303188	$(10)_6 N(AC)_8$	55.5	1	R'TGAATCTCTCAGAATTGCTG
K480	JX503187	(GGA) ₅	53.5	Р	F:TTCACCCAGCAATAATAGAG
		(2.07)			R:CCTCGGTTTATGTGGTAGTA
K481	JX503186	$(GGT)_5$	53.5	Р	F:TGAAGGCAATCTGAGGCAAC R:CCAGACGGAAGAGGAAGTGA
K482	JX503185	(TTG).	53.5	Р	F:CACATTTGACATGACAAGAC
		, , , II			R:ATCCTTGGACAGCATTATAC
K484	JX503183	(GA)10N(TG) ₁₁	53.5	I	F:AAACAGCAGCCCACAGGAAG
K485	JX503182	(TGTT)-	53.5	Р	F:AGATAGGAGGGCAGTAAAGA
		(R:GAATGACCTACCAAGAATGT
K486	JX503181	(ATT) ₅	55.5	Р	F:CATTTCTTCCCGATGTTAGA
K487	IX 503180	(TCC) N(TCC)	55 5	I	R:CGGCAACIAIICICAIAACC F:TCCTCCTTTTTCACATCGG
111-107	376505100	$(100)_{5} \cdot ((100)_{5})$	55.5	1	R:GAAATCTGTCAGGAGCCGTT
K488	JX503179	(CT) ₆ (TCAC) ₃ N(CCT) ₇	55.5	Ι	F:CCCTCTCCCGGACTGACA
V 180	IV 502179	(AC) N(AC)	55 5	т	R:CAGAGTTTCATCCTCTCAGC
K407	JA303178	$(AC)_{7}N(AC)_{11}$	55.5	1	R'TTCCCACCAACCTCTCGCAT
K493	JX503174	(CTT) ₇	55.5	Р	F:TCCACACACGAACATCACAA
17.405	11/2021/22		50 F	T	R:CGTCTGTCTCTCCTCATCTT
K495	JX503172	$(1G)_{10}N(AG)_{6}$	53.5	1	F:AAICAGIAGCCACAGCGIGI R·TTTGAGATTATGGGGTGCGA
K496	JX503171	(GAG)	55	Р	F:GACAGGTCCCTGGTCTCAAC
		6			R:ATGGTGAAGTCAGGAGACGC
K497	JX503170	$(CT)_{7}(CA)_{7}N(CA)_{10}$	53.5	I	F:GTGTGTAAGGCCCTACTCTC
K499	JX503168	(GAT).N(GAC).	53.5	I	F:GATAAGGTGAGGCAAAACAT
		(0111)51 (0110)4			R:GCATCAACCTCGTCCTTACC
K500	JX503167	(GTT) ₆	55.5	Р	F:ATGACGGCCACTGTTCCAAT
K 501	IX 503166	(GT) N(GT)	55.5	I	R:GCCGACCAACCACAICIICI F:CGAAAGATGGGAGGAGGAA
1001	371303100	(G1) ₉ 1(G1) ₁₀	00.0	1	R:GCATGGCTTTGATTTGACC
K502	JX503165	(AAG) ₅	55.5	Р	F:TACTGCCAGGAAGGTGTTA
K 503	IX 502164	(ΛG)	52.5	ъ	R:CTTTGTGGTGACAGGAGTC
1203	JA303104	(AG) ₁₂	55.5	r	R:CTGGGTGCTGTAGGCAGTAG
K504	JX503163	(AATAG) ₃	55	Р	F:CACAGGCTAATGGATAGATA
17 50 5	11/2004 /0	(7)		~	R:GATTCAGCAAATGCCTTCAG
K505	JX503162	$(1G)_{20}$	53.5	Р	F:AAGGGTIAGGGTIAGAGTT R·CCTCATCTCTCCCTCATACT
					Continued on payt pr

T-LL 2 CL 1 1 1 . 1 1

Genetics and Molecular Research 13 (3): 7593-7606 (2014)

M. Yang et al.

	C D I	D i i i i	T. (00)	T (D : (51.2)
Locus name	GenBank accession No.	Repeat motif	Ta (°C)	Locus type	Primer sequence (5'-3')
Transcriptome	e-derived SSR				
SK506	JX503161	(TGG) ₆	54	Р	F:CAGCGTGTGTTGTTCCGTAG
SV 507	IV 502160	(ACC)	54	D	R:GAACCTCTGCCTACTCCTGC
SK307	JA303100	(A00) ₅	54	г	R:AGCCGTCTTCTGTTTACTTC
SK508	JX503159	(TTC) ₅	55	Р	F:TCGGCGATGCTGAGAAACCA
01/510	13/2021/27			D	R:AACAGGAAGTGACAGAGGAG
5K510	JX503157	$(CAG)_5$	55.5	P	R TCACAGACACCTCCAGGGAT
SK511	JX503156	(CA) ₂₆	55	Р	F:GAAGCCCAGCAAAGAGAACA
GW 512	137502155	(TCC)	54.5	D	R:CACCTACATCTACATTTTGA
SK512	JX503155	$(100)_{14}$	54.5	P	R'ACTCACAATGCTACGACAAG
SK513	JX503154	$(CTG)_4$	54	Р	F:TCCATAGGGTTCGTAGCGTC
01/514	13/502152			D	R:TTTGAAGGTGCTTGACTCGT
SK514	JX503153	$(AIII)_5$	55.5	Р	
SK515	JX503152	(CAG) ₂ N(CAG) ₄	58	Ι	F:GCTGCTCTGGTCCAACAACA
		× 76 × 74			R:CGCCTGTCGTTCTCTCTCCT
SK517	JX503150	(GAG) ₅	53.5	Р	F:TCGTGTGGAGATGTCAACAG
SK518	JX503373	(TG)	60	Р	F:AAGAAGACGCAAGTTGGGAG
		(-)			R:ACCCTGCCATTAGCCATTAG
SK520	JX503371	(CT) ₁₂	58	Р	F:AACAATGACTCAATCCTTCCC
SK521	JX503370	(AC)	58	Р	F:CTGCCAACACTAACCTCTGA
		()24			R:GCAAAGCCAGTACAGCCA
SK522	JX503369	(CTC) ₅	58	Р	F:TCCACCTCACCGATATAAGT
SK 523	IX 503368	(GAG)	58	р	FTCACAGTGAGGAGGTGCT
511025	011000000	(0110)5	20	•	R:TATTCCTGCTGACACTGC
SK525	JX503366	(AC) ₁₂	55	Р	F:CACTGCATTGTAACTTCTTG
SK 526	IX503365	(GT)	55	р	R:AIGGACIAIIGAIGAIGIACIG F:GACCATTCCTCCAGTCAT
01020	571505505	(01)7	55	1	R:TGCACCCTTGCTACTCTA
SK527	JX503364	(GTT) ₅ N(TGT) ₄	55	Ι	F:GTACGACTCCTGCTGTCCT
SK 528	IX503363	(GCT) N(TGT)	55	I	R: IACCUACAACAACAACAGA F·TTGGCAGGCATCATAGGG
51(526	971303303	(001)71((101)3	55	1	R:GTCGGGGGAGCAGTTTCTACC
SK529	JX503362	(CCT) ₅	58	Р	F:CTACCCTCCCTCTCATCACC
SK 531	IX 503360	$(\Delta \Delta \Delta C)$	60	р	R:TCTGCCAGATTCAGTAATGC
510551	311303300	(111110)5	00	1	R:CTTTTGGACTCTGGACTCTG
SK535	JX503356	(TC) ₆ N(CA) ₇	58	Ι	F:CTCCACATAGCACCTTCAAA
SK 536	IX 503355	(GT)	58	р	R:GCAIGACACACAAGGIIACG F:CAGAGGGAACCCATTCTACT
513550	57655555	$(OT)_7$	50	1	R:AAACTCCCCAGAGCAGACAC
SK537	JX503354	(CTG) ₄ N(CTG) ₅ N(CTC) ₆	55	Ι	F:CCTCTTTGTTTCCTCCTCACG
SV 520	IV 502252	(TCC)	59	D	R:GAAGAGAGGAAGCGGTTAGAA
SK337	JA303332	$(1CC)_4$	38	г	R:AATGTCAGACACCAAGCAG
SK540	JX503351	$(AC)_7$	58	Р	F:TCACTTGGTGTTGATGAGGA
SV 542	IV 502240	(AC) (CA)	50	C	R:ATCTTACTGAAGCCGATGAG
SK342	JA303349	$(AC)_{11}(CA)_{6}$	30	C	R:GAGGACATGACTCAGGTGTAC
SK545	JX503346	$(GAG)_5$	60	Р	F:CCTACAGCAAGTTCCAACAC
SV 547	IV502244	(CCA)	60	р	R:GACTTGACCTTGCCACATT
3K34/	JA303344	$(\mathrm{GCA})_8$	00	P	R:GCCACACAGAGTGAAGAGTT
SK548	JX503343	(GTCT) ₅	62	Р	F:TCATGCCGTAACAGAAGTG
CIZ 5 40	13/2022.42	(01)	<i></i>		R:TATGGGGAGAGAGAGCTGACA
58549	JX503342	$(CA)_7$	22	Р	F:AICAUIIGIGGICCAUIIAT R·CTCGTCAATGGAAGACTAGA
					Continued on newt nee

Genetics and Molecular Research 13 (3): 7593-7606 (2014)

Microsatellite markers isolated from Siniperca kneri Garman

r		D			75 1 (MI A))
Locus name	GenBank accession N	b. Repeat motif	Ta (°C)	Locus type	Primer sequence (5'-3')
Transcriptome	-derived SSR				
SK550	JX503341	(GAG) ₅	60	Р	F:TTAGATGACGAGGACTTGGA R:CACAGGTTGGTCTCTCGTTC
SK551	JX503340	(GGA) ₅	55	Р	F:TCAGACCAAACGAACAGAGA R:CCTGCTTCATCCTTGTAATC
SK552	JX503339	(CTC) ₈	55	Р	F:TTACACTGACCGTGAAGAACC R:GGGAAAACCTGTCTGATGAG
SK553	JX503338	(CA) ₁₆ (TC) ₈	60	С	F:CAGATGTTGTCGTCGTAGTTGA R:AGAGAGACGGGCAGGAGGA
SK554	JX503337	$(TG)_{g}N(TA)_{6}$	55	Ι	F:TCTGTTTGATGAATGTGCTC R:CGACGAATCTGAAATCTGAA
SK555	JX503336	(TCC) ₅	55	Р	F:CTGTCAGTCATTTTCCACCA R:GGAAACAGGGAGGTAAACAT
SK556	JX503335	(ACA) ₅	60	Р	F:CATCTCCTCCACCTGCCTC R:CGTGTCCTGTATCTTGCTGA
SK557	JX503334	(TTG) ₄ N(TTG) ₅ N(TGTTC	GC) ₃ 58	Ι	F:GGTGGGATTGATGACTGAG
SK558	JX503333	(CTC) ₅	60	Р	F:GAGAAGATGTGCTAGGGCTG B:CAACTGTCCTAATGGCTGAG
SK561	JX503330	(CTT) ₇ N(TTC) ₆	58	Ι	F:CCAAAGGAAGGGTCAACTCT P:TCCCAAAGGAAGGGTCAACTCT
SK562	JX503329	(CCT) ₆	60	Р	F:GCTCATCACTGTCTCAGTCCAA
SK563	JX503328	(CCT) ₇	60	Р	F:CTGCTGCTGCTCGTAATGG
SK564	JX503327	$(TC)_{6}N(TC)_{13}$	58	Ι	F:GATTATCTGGTGGAGTGGTG
SK566	JX503325	(TGG) ₅	58	Р	F:GGAGCGGTACGAGTCAAT
SK568	JX503323	(AGCT) ₅	60	Р	F:TGTAAGTGTTCACGCAAAGG
SK570	JX503321	(GAG) ₆	60	Р	F:ATCCAATATCTCAGCCCACT
SK571	JX503320	(TC) ₆	54	Р	F:ACTGAGACACAGAGGAGGCT
SK572	JX503319	(GAG) ₅ N(AGG) ₁₀ N(GAG	G) ₅ 56	Ι	F:AAGGCGGCACAGATAGACT
SK573	JX503318	(TG) ₁₁ N(TCA) ₆	58	Ι	F:CTGAGTAAACCTCTGAATTGG
SK575	JX503316	(GCA) ₅	55	Р	F:TACCAACCATTCGGATTCTA
SK576	JX503315	$(GT)_6 N(GT)_6$	60	Ι	F:CTCTCAGTGTGCTGCTTACC
SK577	JX503314	(ACC) ₅	58	Р	F:CAGATGGTGGGGAACAACATT
SK579	JX503312	(AAT) ₆	58	Р	F:AGAGGGCGAGGAATACTGTA
SK581	JX503310	(GCT) ₆	52	Р	R:GICAITCITGAGTGTAGTGAGTG F:GCCTACAGTGTGAGAAGCC
SK582	JX503309	(GGA) ₅ N(GAG) ₄	60	Ι	R: IGGGAAGGT IAAGGIGGA F:GAGGAAGGCTCTGGAAAAAC
SK583	JX503308	$(CA)_6$	58	Р	R:CCACATCACCGTCTTCATCT F:ACTCGTTACCAGGATGAGAC
SK584	JX503307	(GT) ₁₁	58	Р	R:GGGTTTGACATAGGTGTTAGTG F:ACTGTACTCCTCCTCTGCTGT
SK585	JX503306	(CTT) ₅	55	Р	K:GGAAAGGAGCTGAGGAAGTG F:ATCGTCCAGGTCCTCAGCA
SK586	JX503305	(AAG) ₅	58	Р	R:CAGAACAGCCAAAAGAGGIG F:ATGCCAATGGTTCTGATGTC
SK587	JX503304	(TGA) ₅	58	Р	R:GGCAGTTTATCCTTTCCAGC F:AACTGGACGGGACAGGTG
SK588	JX503303	(CTAG) ₆	58	Р	K:GGAGTGAGTGGATGGTCTTTG F:CTGCCAGACGATGAAGCC R:AAACTACGCTCGACAACACG

Genetics and Molecular Research 13 (3): 7593-7606 (2014)

M. Yang et al.

Loous nome	ConPonk accossion Mo	Papart motif	$T_{0}(^{\circ}C)$	Loous tures	Primar saguanaa (51 31)
Locus name	GenBank accession No.	Repeat motif	1a (°C)	Locus type	rimer sequence (5'-3')
Transcriptome	-derived SSR				
SK589	JX503302	$(ATT)_6$	55	Р	F:GGTTGTTGTATATTGTTCTGC
SV 500	IV 502201	(TC)	55	D	R:CCTGGAGTAGTATTCACAAAG
SK390	JX303301	$(1C)_7$	33	P	R'ATTCCGCTCTCGTCCTATCA
SK591	JX503300	(AC) ₁₀	55	Р	F:AATCAGAAGGACAGAAAGCA
		19			R:GATTCAGTCGAGTTCATTCA
SK593	JX503298	(GCT) ₅ N(TGT) ₇	58	Ι	F:AGTCCGTCAGCTCCTCTTCA
SK 501	IX 503207	(GGA)	58	P	R:UACCATCATCAAGTTCTTCCA
51(5)+	57(5052)7	(0011)5	50	1	R:CCTTCAGTGTCAGATTCAGA
SK595	JX503296	(TC) ₁₆ N(CCT) ₄	58	Ι	F:TCACTTGCCTCTGGTGGTAT
av so c	11/202002	(100) N(001)	50		R:GCACACAACGGAGGTGAAT
SK596	JX503295	$(AGG)_4 N(GGA)_8$	58	1	F:AGGGC1GGGAG1CAAGAG1 R:TGATGTCGAAGAGAATGAAGG
SK597	JX503294	(GT),N(GT),	58	Ι	F:TCCAGATTACTAGAGGCAAA
		× 76 × 76			R:TTGTGCTCACAGACATCACT
SK598	JX503293	(GAG) ₆ (GTG) ₄ N(GTT) ₅	55	Ι	F:TTGAGAGGCAGGACAGTA
SK 500	IX 503202	(TGC) N(TTG) N(TGC)	55	T	R:AGIGUUAAAAIAGAAUAGAG F:TGTGGCTGCTGGAACTGA
SK377	JA303292	$(10C)_7 N(110)_6 N(10C)_4$	55	1	R'ACAGATGGCAAATATCAATCCC
SK600	JX503291	(CA) ₁₀	58	Р	F:TTGGACGGTAAGTGTAATCTC
		19			R:TGCTCAAGTTATGTGTCGTG
SK601	JX503290	(CCT) ₈	58	Р	F:GCAGGGTTTTAATCCGACAAT
SK 602	IX 503280	$(\Lambda \Lambda G) (G \Lambda G)$	58	C	
3K002	JA305287	$(AAO)_7(OAO)_4$	58	C	R:GGGCAGGTAAGTTCTAGCA
SK604	JX503287	(CAT) ₁₁	55	Р	F:CACTACTGTTGCTTGGTTATAC
		(377)			R:TCCTCTGAGTGAAAACTGAT
SK605	JX503286	$(GT)_{31}$	58	Р	F:TTGACAGTCAGATAGACAGCTC P:CCATCTCTTAACACCTCCAT
SK606	IX 503285	(CA) N(AC)	55	T	FGCCACTAGACTGTCAGCATC
		()6- ()7		-	R:TGATATTCCTGTTCAGACACTC
SK610	JX503281	(TG) ₆ N(TTC) ₆	58	Ι	F:TCTCATCATCACTGCTGCC
SV(11	12/202200	$(\mathbf{T} \mathbf{C} \mathbf{A})$	<i></i>	D	R:CCAGAACAGCACCTGTCAC
SKOII	JA303280	$(10A)_7$	33	P	R'AAGCAACACCGTACAACAGT
SK612	JX503279	(GAG),N(GAG),	58	Ι	F:TGAAGTGTCTGAAGGAGTATGT
		· · / · · · ·			R:CGTGATCTCCCTGGGTGT
SK614	JX503277	(AAG) ₅	55	Р	F:GAGCAGCAAACACTGGAGG
SK615	IX 503276	(CAC)	60	р	FCTGCTCCTCTACATGCCAAT
51(015	511505270	(0110)6	00	1	R:CTCATCTCTGCCCTCTAGTG
SK617	JX503274	(GTG) ₅	58	Р	F:GATCTGCTGAGGTGACTCTT
017 (10	11/202072			D	R:ATCAGACAGAGCAACAGAGA
SK618	JX503273	$(AC)_{15}$	22	Р	R'GTCGCCATTCTTTACTCTGT
SK619	JX503272	(GTG) N(GGT)	60	Ι	F:GGTAGTGGTCAGGTTTCAGG
		4 74			R:CTCGGTTACCACCAGCAG
SK620	JX503271	(ATC) ₅	58	Р	F:CCTGCTGGTGGAAGAAGT
SV 621	IV 502270	(CA)	55	D	R:AAACCICCCACAGACCIAGI
SK021	JA303270	$(CA)_{21}$	55	г	R'GCTGGGTAATTTCTGCAT
SK622	JX503269	(TG) ₁₆	58	Р	F:TGATTCACTGATGCTTTCTC
017 (00	11/2000 00	(TOTAL)) (CTTCTL)	~ ~	-	R:GGTGACAAATACTGGTACGG
SK623	JX503268	(TGTA) ₅ N(CTGTA) ₃	55	I	F:CAGATCACATTTCCACTACAC
SK625	IX 503266	(CA) N(CCA)	58	I	K.GGGTAGATAAAGGAGCACAG F·AAGTCATCACTCTGCTCATC
	0.1005200	(0.1)6. ((0.01)5	20	1	R:ACTCTGGACTCCACCTTCT
SK626	JX503265	(AC) ₁₁	60	Р	F:CCTATTTCCTTCCCTCACTT
SV (27	12/2020/4		<i></i>	р	R:CACTCGTGACTCAGCTCAGA
5K02/	JX503264	$(1G)_{21}$	22	Р	r:AAIGUIICAAIGIGIGCICA R:CAGAGGAGGCACTGTCACTA
					n.c. ionoonoocherorenen

Genetics and Molecular Research 13 (3): 7593-7606 (2014)

Microsatellite markers isolated from Siniperca kneri Garman

Table 2. C	ontinued.				
Locus name	GenBank accession 1	No. Repeat motif	Ta (°C)	Locus type	Primer sequence (5'-3')
Transcriptome-	derived SSR				
SK628	JX503263	(CT) ₈ N(TC) ₁₅	55	Ι	F:GCTGCATACTCTACGTCTCC
SK629	JX503262	(AGAC) ₃	55	Р	F:TCCCTGACGGTGTGTGGT
SK630	JX503261	(AC) ₁₅	55	Р	F:ATAGGCTGAGACATCCGT
SK631	JX503260	$(AC)_6 N(AC)_{23}$	58	Ι	R:AIGGACCICITIAGAAGIACA F:AGACGAGCACTTTGGACCAC
SK632	JX503259	(GAT) ₈	58	Р	R:TCCGAAGCAGTCATTTTACAG F:CAGAGCAAGAGGCACGTACA
SK633	JX503258	(TGG) ₅	55	Р	F:TCAAGTAGAGAGTCCCAAGA
SK634	JX503257	(TCC) ₆	60	Р	F:TGCCACCTCGCTCTTGTCCA
SK635	JX503256	(GAA) ₅	60	Р	R:AGGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
SK636	JX503255	(GGA) ₅	55	Р	F:CAATTTGCATCATGGTGTGTG
SK637	JX503254	(CAG) ₅	55	Р	R:AGCAAACAAACACACATCTCTC F:CCAGATAAGGTGAACCAGA
SK638	JX503253	(AG) ₉	55	Р	R:GGCAAATAAGAAGTCACTCC F:TCTCCAGCATTGAGTCAGAC
SK639	JX503252	(GTG) ₅	60	Р	F:GAGGAAGGGTAGCGAGTGTA
Genomic SSR	IV 440062		55	т	
FC055	JX449002	$(10)_8(01)_{14}(01)_5N(10)_{14}$	55	I D	R:AGAGACTGTGATTGGATTTG
FC056	JX449063	$(UUI)_{10}$	55	P	R:AACAGACTTTCCATTCAGGT
FC057	JX449064	$(GA)_7N(GT)_{12}$	58	Ι	F:ACGGGAAGAGAATCAACTAC R:CTGTCTTGTTTTCCATTCCC
FC059	JX449066	(TCC) ₉	62	Р	F:GGAGGATGAGGATGAGGATG R:CGGTTGACCTTCATTCGGAC
FC060	JX449067	(CCT) ₈	60	Р	F:GTTACAAGGAACTGGGGACC
FC061	JX449068	$(AC)_6 N(GT)_9 N(CA)_7$	55	Ι	F:TCCAGTGTTTTTGAATGAAG R:ACTCGTGGTTGCCTCTGA
FC062	JX449069	(CTC) ₁₀	62	Р	F:CTGAGTAACGCCTTCGCTGT
FC063	JX449071	(GGA) ₇	60	Р	F:TGAGAGGAGTAGGAGGGTGT
FC064	JX449072	(GAG) ₆	60	Р	F:AAGGCTGTGGGGATTGTAG
FC066	JX449073	(GT) ₁₀ N(TG) ₅ N(TG) ₅	58	Ι	F:CTTCCAGGAGTGCTGACTAA
FC068	JX449074	(TG) ₇ N(TG) ₁₃ N(TG) ₁₂ N(TG) ₁₇ N(GT) ₁₁	62	Ι	R:TCACCCACTCTCTGTTAIGT F:CACCCATTCCCGTCTCTCTT
FC069	JX449075	(TG) ₈ N(GT) ₁₄ N(TG) ₁₄ N(CTC) ₉	60	Ι	R:GTGTTTTCCGCTCCGTCCTT F:GTGTTGAAGGTGTGGAGGTG
FC071	JX449077	(TG) ₉ N(TG) ₁₄ N(TG) ₇	55	Ι	R:TGCTCTGATGATGGTCGTTA F:ATCCTGAATAGGGCTGCTAC
FC072	JX449078	(GT) ₂₄	55	Р	R:TAAAGAAATGGAGCAAAGTTAT F:AATAGTAGTGGGGGTCTGGGA
FC073	JX449079	(GAG)7N(GAGGAT)3	52	Ι	R:ATCCATTGTATCTCATTGTC F:TCATCTAAAAGGCAGTCT
FC074	JX449080	(TCC) ₇	55	Р	R:CTCTGCGATGCCATAAAG F:GCAGAATAGTTTGTATGTCA
FC075	JX449081	(CCT) ₆	58	Р	R:AAGAGTTTCAGGGTTTGAGA F:ACATCAACATTAGAGACCCA
FC078	JX449084	(TCC) ₅ N(TCC) ₄	55	Ι	R:CTGACTTTCTGCTCCAGGTT F:AGTAATGTTGTGGAAGTTTG
					R:AACCACCTGCCTTAGCAAGT
					Continued on next page

©FUNPEC-RP www.funpecrp.com.br

Genetics and Molecular Research 13 (3): 7593-7606 (2014)

M. Yang et al.

Table 2. Continued.									
Locus name	GenBank accession No.	Repeat motif	Ta (°C)	Locus type	Primer sequence (5'-3')				
Genomic SSR				2 M					
EC070	137440007		50	D	E COLOGIA COTOCIA CTTOTA CA				
FC0/9	JA449085	(AGG) ₉	38	P					
FC081	TX449086	(GT) N(GT) N(TG)	60	T	Ε.ΟΟΤΑΟΑΤΑΟΑΟΑΑΑΑΑΑΑ				
10001	57447000	$(01)_{21}$ $(01)_{10}$ $(10)_{6}$	00	1	R'AGCCTAATCCAGCAGCCACC				
FC087	JX449091	(CTC),	60	Р	F:GAAATAATCAGTCCTGGAGT				
		× >0			R:GTAGAAGGACAGAGTGCCAG				
FC088	JX449092	(CTC) ₆	60	Р	F:AGGAGACTCTGTAGAAGGAC				
2000	777.4.40.000	(T) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C			R:GTCTGGACTGCTCTGATGGT				
FC089	JX449093	(1CC) ₈	55	Р	F:IGAIAAIACACICCCAAAIG				
EC000	IV 440004	$(C \land C)$	55	р					
FC090	JA449094	$(0A0)_6$	55	P	R.ATTTTGCTGATGGCTTATTG				
FC097	JX449099	(TG) N(AGG)	58	I	F:CTGAGTTGTAGGAATCTGTG				
		(1 2)22 ((1 2 2))			R:ATGATACGAGAAGAGGAAGC				
FC098	JX449100	(CTC) ₈	60	Р	F:GCATCTGTGAGCGTATCTA				
		0			R:TTCAGAGTGTCCCAGAGCGT				
FC099	JX449101	(TCC) ₁₁	58	Р	F:CCTCTGCTGCTGCTCTGA				
50100	13/1/01/02		(2)	Ţ	R:GAGGAGCAATAGCACAATGT				
FC100	JX449102	$(1G)_{29}N(1G)_{6}$	62	1	F:GCTTCTTCCACACCTCCACC				
EC101	IV440102	(ΛGG)	59	D					
reiui	JA449103	(A00) ₇	30	г	R.TGTTGCTATACTGAGGGACG				
FC104	IX449109	(AC)	55	р	FTAGTGGCAATCAGGATGAAA				
10101	011110100	(10)15	00		R:CGTCTTTTTAGATTCCTCGC				
FC122	JX449118	(GAG) ₄ N(GGA) ₅	58	Ι	F:AGGCTATCTGTGTTTTTTCCA				
					R:TTGACTTCTACCCTCCCCGT				
FC126	JX449123	(GAG) ₁₁	58	Р	F:TCTTATTCTGAGGAGCCACA				
FC107	137440104		50	т	R:GGGGCTAAGGAAAGCATTAT				
FC12/	JX449124	$(GGA)_5 N(GAG)_5 N(AGC)_5$	58	1					
FC127	IX449124	(ACA) N(AAAT)	55	I	FTGTGATGTGTGTAACAGGTCAA				
1012/	571119121	$(101)_4$ $(1111)_3$	00	1	R'ACAAATGGGGGTTATTAGCG				
FC133	JX449126	(TCC) ₇	62	Р	F:GAGTCAGCAGAAGGGAACCA				
					R:GGGACTGGGACTAACACTTC				
FC134	JX449127	(CCT) ₁₀	58	Р	F:ATCTGTGGATTAGACGCTCC				
2014	***	(T) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C			R:TGATACGAGAAGAGGAAGCA				
FC135	JX449128	$(1CC)_7$	58	Р	F:CICIGICIGGCACAAIAACA				
EC126	IV440120	$(G \land G)$	55	D	K:GIUCACAIACAUIGUIGUIU				
10130	JA449129	(0A0) ₈	55	г	R·AAATATCAAAAACAT				
FC142	JX449134	(GAG)	58	Р	F:ACTCCCTCCTTTTTTTGTGC				
		(0110)4			R:AAGGATGGAAATGACAGTGG				
FC143	JX449135	(TG) ₂₀	60	Р	F:CTGTGGGAGGTAGAGAAGGG				
					R:TGGACCTGGACAAAGAACAT				
FC148	JX449137	$(GA)_{25}N(GT)_{8}N(GT)_{35}N(GT)_{15}N(GT)_$	58	Ι	F:CCCGCAGGAGGAGAAACAGA				
EC150	IV 440120	(CTT)	<i></i>	D	R:GAAICITCTTCACCTCTG				
FC150	JX449139	$(C11)_{5}$	22	Р	F:UUUAGAGGAGAGAGAI IU R:GGGCTTGAAGTACATTGT				

P = pure; I = interrupted; C = compound.

DISCUSSION AND CONCLUSIONS

These loci departure from HWE might have been caused by the recent dramatic decline in spawning populations, and consequent non-random mating and genetic bottlenecks (Zhang and Zhao, 1999). The genomic SSRs of many aquatic species show generally more polymorphism compared to transcriptome-derived SSRs (Zhan et al., 2009; Li et al., 2010). In contrast, in this study, transcriptome-derived SSRs displayed a greater mean PIC value (0.638) compared to genomic SSRs (0.477) among the individuals sampled. One possible explanation

Genetics and Molecular Research 13 (3): 7593-7606 (2014)

for this difference is that tri-nucleotide repeats were the most abundant (63%) in genomic SSRs, whereas di-nucleotide repeats were the most abundant (72%) in EST-SSR. SSR markers with di-nucleotide repeats generally had higher polymorphism compared to those with tri-nucleotide repeats (Blair et al., 1999; Celton et al., 2009). Because we only used a small sample size from each population, it was difficult to obtain accurate data about genetic difference or genetic structure among populations. SSR markers have been extensively used to evaluate the genetic diversity and structure of farmed food fish species, such as salmon (Norris et al., 1999), rainbow trout (Thrower et al., 2004), and tilapia (Rutten et al., 2004). However, relevant reports about *Siniperca* species remain limited (Wang et al., 2006; Yang et al., 2010), particularly for *S. kneri*. Therefore, we intend to focus future research on *S. kneri* in these areas.

The 55 loci (37 transcriptome-derived SSRs and 18 genomic SSRs) developed and characterized by this study for *S. kneri* are the first on record. The transcriptome data provide an excellent source for the mining and development of SSR markers. Moreover, the transcriptome-derived SSRs directly reflect the variation in gene transcriptional regions, which are closely associated with phenotypic, physiological, and biochemical indices, as well as with metabolic features (Song et al., 2012). Furthermore, utilization of the SSR markers developed from various sources may be more precise and objective for the construction of genetic linkage maps, QTL analysis of phenotypic traits, high-throughput genotyping of marker-assisted selection, and association genetics.

ACKNOWLEDGMENTS

Research supported by the National Natural Science Foundation of China (#31172420), the National Basic Research Program of China (#2009CB118702), the Fundamental Research Funds for the Central Universities (#2010PY010, #2011PY030), and the Huazhong Agricultural University Scientific & Technological Self-innovation Foundation (#2012SC24).

REFERENCES

- Billotte N, Lagoda PJL, Risterucci AM and Baurens FC (1999). Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. *Fruits* 54: 277-288.
- Blair MW, Panaud O and McCouch SR (1999). Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (*Oryza sativa* L.). *TAG Theor. Appl. Genet.* 98: 780-792.
- Botstein D, White RL, Skolnick M and Davis RW (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. *Am. J. Hum. Genet.* 32: 314-331.
- Bouck A and Vision T (2007). The molecular ecologist's guide to expressed sequence tags. Mol. Ecol. 16: 907-924.
- Celton JM, Tustin DS, Chagne D and Gardiner SE (2009). Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from *Malus* ESTs and *Pyrus* genomic sequences. *Tree Genet. Genomes* 5: 93-107.
- Hansen MM, Kenchington E and Nielsen EE (2001a). Assigning individual fish to populations using microsatellite DNA markers. *Fish Fish.* 2: 93-112.
- Hansen MM, Ruzzante DE, Nielsen EE and Mensberg KLD (2001b). Brown trout (Salmo trutta) stocking impact assessment using microsatellite DNA markers. Ecol. Appl. 11: 148-160.
- He S, Liang XF, Sun J, Li L, et al. (2013). Insights into food preference in hybrid F1 of *Siniperca chuatsi* (♀) x *Siniperca scherzeri* (♂) mandarin fish through transcriptome analysis. *BMC Genomics* 14: 601.
- Holm S (1979). A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6: 65-70.
- Kuang G, Lu S, Zheng S and Wu Q (2009). Isolation and evaluation of 18 microsatellite markers in *Siniperca chuatsi* (Basilewsky). *Mol. Ecol. Resour.* 9: 1473-1475.

Genetics and Molecular Research 13 (3): 7593-7606 (2014)

- Li Q and Wan JM (2005). SSRHunter: development of a local searching software for SSR sites. *Yi Chuan* 27: 808-810. Li Q, Shu J, Zhao C, Liu S, et al. (2010). Characterization of genic microsatellite markers derived from expressed sequence
- tags in Pacific abalone (Haliotis discus hannai). Chin. J. Ocean. Limnol. 28: 46-54.
- Liang XF (1996). Study on Mandarin fish and its culture home and abroad. Sci. Tech. Inf. 23: 13-17.
- Liu X, Luo W, Zeng C, Wang W, et al. (2011). Isolation of new 40 microsatellite markers in Mandarin fish (*Siniperca chuatsi*). *Int. J. Mol. Sci.* 12: 4180-4189.
- Norris AT, Bradley DG and Cunningham EP (1999). Microsatellite genetic variation between and within farmed and wild Atlantic salmon (*Salmo salar*) populations. *Aquaculture* 180: 247-264.
- Perez RE, Takagi M and Taniguchi N (1999). Genetic variability and pedigree tracing of a hatchery-reared stock of red sea bream (*Pagrus major*) used for stock enhancement, based on microsatellite DNA markers. *Aquaculture* 173: 413-423.
- Qu C, Liang X, Huang W and Cao L (2012). Isolation and characterization of 46 novel polymorphic EST-simple sequence repeats (SSR) markers in two sinipercine fishes (*Siniperca*) and cross-species amplification. *Int. J. Mol. Sci.* 13: 9534-9544.
- Raymond M and Rousset F (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. *J. Hered.* 86: 248-249.
- Rutten MJ, Komen H, Deerenberg RM, Siwek M, et al. (2004). Genetic characterization of four strains of Nile tilapia (*Oreochromis niloticus* L.) using microsatellite markers. *Anim. Genet.* 35: 93-97.
- Song YP, Jiang XB, Zhang M, Wang ZL, et al. (2012). Differences of EST-SSR and genomic-SSR markers in assessing genetic diversity in poplar. *Forest. Stud. China* 14: 1-7.
- Thrower F, Guthrie C III, Nielsen J and Joyce J (2004). A comparison of genetic variation between an anadromous steelhead, *Oncorhynchus mykiss*, population and seven derived populations sequestered in freshwater for 70 years. *Environ. Biol. Fish.* 69: 111-125.
- Van Oosterhout C, Hutchinson WF, Wills DPM and Shipley P (2004). Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. *Mol. Ecol. Notes* 4: 535-538.
- Wang WW, Zhao JL and Li SF (2006). Genetic variation of the mitochondrial DNA control region among 5 populations of *Siniperca scherzeri* Steindachner in China. J. Shanghai Fish. Univ. 4: 398-402.
- Weber JL (1990). Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics 7: 524-530.
- Yang M, Liang XF, Tian CX, Gul Y, et al. (2012). Isolation and characterization of fifteen novel microsatellite loci in golden mandarin fish (*Siniperca scherzeri*) Steindachne. *Conservat. Genet. Resour.* 4: 599-601.
- Yang Y, Liang X, Lin Q, Li J, et al. (2010). Cultivated and natural populations of *Siniperca chuatsi* in Guangdong and Jiangxi: sequence polymorphism of the mitochondrial DNA control region and population genetic diversity analysis. *J. Fish. China* 4: 515-520.
- Yeh FC and Boyle TJB (1997). Population genetic analysis of codominant and dominant markers and quantitative traits. *Belg. J. Bot.* 129: 157.
- You FM, Huo N, Gu YQ, Luo MC, et al. (2008). BatchPrimer3: a high throughput web application for PCR and sequencing primer design. *BMC Bioinformatics* 9: 253.
- Zhan A, Wang Y, Brown B and Wang HP (2009). Isolation and characterization of novel microsatellite markers for yellow perch (*Perca flavescens*). Int. J. Mol. Sci. 10: 18-27.
- Zhang CG and Zhao YH (1999). The resource status of *Siniperca chuatsi* in China and methods for its recover. *Bull. Biol.* 34: 9-11.
- Zhou CW, Yang Q and Cai DL (1988). On the classification and distribution of the Sinipercinae fishes (family Serranidae). Zool. Res. 9: 113-125.

Genetics and Molecular Research 13 (3): 7593-7606 (2014)