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ABSTRACT. Genomic selection is a useful technique to assist breeders 
in selecting the best genotypes accurately. Phenotypic selection in the F2 
generation presents with low accuracy as each genotype is represented 
by one individual; thus, genomic selection can increase selection 
accuracy at this stage of the breeding program. This study aimed to 
establish the optimal number of individuals required to compose the 
training population and to establish the amount of markers necessary 
to obtain the maximum accuracy by genomic selection methods in F2 
populations. F2 populations with 1000 individuals were simulated, and 
six traits were simulated with different heritability values (5, 20, 40, 
60, 80 and 99%). Ridge regression best linear unbiased prediction was 
used in all analyses. Genomic selection models were set by varying the 
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number of individuals in the training population (2 to 1000 individuals) 
and markers (2 to 3060 markers). Phenotypic accuracy, genotypic 
accuracy, genetic variance, residual variance, and heritability were 
evaluated. Greater the number of individuals in the training population, 
higher was the accuracy; the values of genotypic and residual variances 
and heritability were close to the optimum value. Higher the heritability 
of the trait, higher is the number of markers necessary to obtain 
maximum accuracy, ranging from 200 for the trait with 5% heritability 
to 900 for the trait with 99% heritability. Therefore, genomic selection 
models for prediction in F2 populations must consist of 200 to 900 
markers of major effect on the trait and more than 600 individuals in 
the training population.

Key words: Genomic prediction; Heritability; Prediction ability; 
Breeding; Quantitative genetics

INTRODUCTION

Plant selection has been carried out by mankind since early history; however, it 
intensified at the beginning of the last century, when breeding programs of major crops were 
established (Allard, 1999). Over the past 100 years, methods and technologies associated 
with plant selection have shown tremendous progress (Borém and Miranda, 2013). Selection 
methods have evolved from mass selection (Borém and Miranda, 2013), which involves 
simple phenotypic selection of individuals; or combined selection (Borém and Miranda, 2013), 
which takes into account the information between and within families; to reciprocal recurrent 
selection (Ordas et al., 2012), which includes a gradual increase in the frequency of favorable 
alleles by repeated selection cycles, without lowering the genetic variability of the population.

With the advent of molecular markers in the 80s, it was possible to improve selection 
accuracy by means of marker assisted selection (MAS) (He et al., 2014). Although MAS 
has led to a significant improvement in plant breeding, this technique is only effective for 
qualitative traits or for traits governed by a few genes, such as in the case of sudden death 
syndrome in soybean (Lightfoot, 2015), wheat rust (Yaniv et al., 2015), tolerance to salinity 
(Ashraf et al., 2012), and rice bacterial blight (Pandey et al., 2013). Within 30 years from 
its advent, techniques involving molecular markers evolved from employing isoenzymes 
(Dirlewanger et al., 1998), RAPD (Lynch and Milligan, 1994), RFLP (Langer and Maixner, 
2004), AFLP (Frascaroli et al., 2013), microsatellites (Soldati et al., 2013) to single nucleotide 
polymorphism (SNP) (Belaj et al., 2012).

Among the variations found in the genome, SNP variations are the most widely 
distributed and abundant in the genome. With the development of SNP genotyping platforms 
and with the improvement of statistical methods, Meuwissen et al. (2001) presented a new 
approach based on multiple regression using markers as covariates, also known as genomic 
selection. The objective of genomic selection is to identify possible markers in linkage 
disequilibrium with the gene regions of interest. Since this pioneering study, several authors 
have used this technique to predict the genetic value in several plant species, such as corn 
(Beyene et al., 2015), soybeans (Zhang et al., 2016), wheat (Bassi et al., 2016), forest species 
(Cros et al., 2015), sugarcane (Gouy et al., 2013), and rice (Spindel et al., 2015).
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Although there are several studies on genomic selection, only a few show the effect 
of different factors affecting prediction accuracy in genomic selection, such as the number of 
markers and individuals in the training population. Isidro et al. (2015) evaluated five criteria to 
determine the optimal number of individuals to compose the training population for five traits 
in wheat. The authors found that greater the number of individuals in the training population, 
greater was the value of prediction accuracy. However, other effects must also be taken into 
account, such as plant architecture and population structure. de Los Campos et al. (2013) 
carried out marker selection based on their importance to the trait as indicated by the results of 
the GWAS analysis, through meta-analysis. They found that marker selection was effective in 
humans, since accuracy was 7.5% higher for genomic selection models using 5k SNPs when 
compared with models using 400k SNPs.

The F2 generation is one of the most important stages in a plant breeding program 
because greater genetic variability and heterosis are found at this stage (Tang et al., 1993). 
Moreover, in the F2 generation, it is possible to estimate the allelic frequency for each gene 
by the Mendelian segregation, to evaluate possible deviations from the Hardy-Weinberg 
equilibrium (Falconer and Mackay, 1996), to estimate genotypic and environmental variance, 
and consequently, to estimate heritability (Tang et al., 1996). The use of genomic selection in 
F2 populations is still restricted to a few studies (Ren et al., 2015) and little is known about 
how the factors affecting the prediction accuracy can affect the estimate of genetic parameters 
in F2 populations. Therefore, the objectives of this study were to establish the optimal number 
of individuals and markers required to compose the training population in genomic selection 
models in order to capture maximum genetic variance and consequently achieve greater 
accuracy in F2 populations.

MATERIAL AND METHODS

Data simulation

Simulation of F2 populations was performed using the simulation module of the 
GENES software (Cruz, 2013). This allowed for information on the genome, parents genotypes, 
populations of controlled crossings, and quantitative trait data to be generated.

Genome simulation

The simulated genome comprised 15 linkage groups, similar to a diploid species 2n 
= 2x = 30. Each linkage group was simulated with 200 cM, comprised 200 markers, spaced 
equidistantly (1 cM), totaling 3060 markers. These markers were assumed to be codominant and 
biallelic. Furthermore, 4 markers per linkage group were considered responsible for the control 
of phenotypic expression of quantitative traits, which were randomly inserted into the genome.

Parent simulation

Contrasting homozygous parents were simulated, i.e., parent 1 was coded as carrying 
allele A1 (code 2), and parent 2 was coded as carrying the alternative allele A2 (code 0) for all 
existing markers. Thus, the cross between parent 1 and 2 generated the F1 population with all 
markers being heterozygous and in an approximation stage (A1B1//A2B2).
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Simulation of the mapping population

F2 populations were generated by the selfing of individuals from the F1 population. 
Each individual of the F1 population produced 5000 gametes, and when 2 of these gametes met 
at random, the first individual of the F2 population was generated. This process was repeated 
until the formation of all individuals in each population.

Each gamete was formed based on the following criteria: the allele of the first marker 
was randomly chosen (A1 or A2) to start gamete formation (initialization allele); the allele 
of the second marker was chosen taking into account the distance to the first gene, i.e, the 
crossing-over frequencies were counted, and the choice of which allele (B1 or B2) to constitute 
the gamete was based on the probabilities of each gamete P(A1B1) and P(A2B2), which are 
parental gametes, and P(A1B2) and P(A2B1), which are recombinant gametes. This process 
was carried out for every gene. Null interference, i.e., the crossing-over that occurred between 
genes A and B, was considered to not interfere with the following crossing-over between 
genes B and C. This ensured that all gametes formed were different owing to the random 
choice of the allele in the first gene, and to the probability conditioned to each allele for the 
next genes. Since all genes were simulated equidistantly at 1 cm, the recombination frequency 
was 1% for all genes, i.e., the probability of each gamete was: P(A1B1) = P(A2B2) = 0.49, and 
P(A1B2) = P(A2B1) = 0.005.

The F2 population simulation was encoded with 0, 1 and 2, in which 0 corresponded 
to homozygote individuals (A2A2), 1 corresponded to heterozygote individuals (A1A2), and 2 
corresponded to homozygote individuals (A1A1) for a given locus.

Simulation of quantitative traits

For the simulation of quantitative traits, a value corresponding to the probability 
generated by a binomial distribution, of parameter p = q = 0.5, and n = 59 (generating a 
probability family of 60 elements) was first assigned as the importance of each locus. This 
value, which denominates the proportion of the genetic variance, explained by each QTL 
(PGV/QTL), reflects the importance of the locus to the genotypic mean, and consequently to 
the proportion of genetic variance of the trait explained by each QTL.

Each trait was simulated as being controlled by 60 QTLs distributed equidistantly in 
the genome (4 QTLs per linkage group). The effect of each QTL was defined as: A1A1 = μ + a; 
A1A2 = μ + d; A2A2 = μ - a, in which a is the additive effect of each gene, and d is the dominant 
effect of each gene. Since the value of d was defined as null, the mean degree of dominance 
(d/a) was equal to zero for all loci, i.e., all loci only presented an additive effect.

The genotypic value (GV) of each individual was defined by the equation:

The environmental effect was not correlated with the genotypic value, and was 
estimated following an 2(0, )N σ distribution. The value of 2σ  is calculated from the heritability of 
the trait and by the value of genotypic variance 2( )gσ . It was simulated that traits with heritability 
of 5, 20, 40, 60, 80 and 99%. 2

gσ  was calculated as being the variance of the genotypic value of 
individuals of the F2 population. Thus, the phenotypic value was calculated as:

1
( /     )

n

i i
i

GV PGV QTL x effect of QTL
=

=∑ (Equation 1)
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In which u = 100 is the mean, and PV is the phenotypic value.

Data analysis

After population generation, the mapping process was carried out, starting with the 
analysis of individual loci segregation. Chi-square (c2) tests were used to check if the markers 
were segregated per what is expected for an F2 population. It was verified if Linkage Groups 
were restored, with chromosome size, distance between markers and order of markers, and it 
was concluded that it was an F2 population with the desired simulation properties.

The ridge regression best linear unbiased prediction (RR-BLUP) method of genomic 
selection used in the analysis, which aims at estimating the effect for each of the covariates 
(SNP markers) included in the model. RR-BLUP assumes that all SNPs control phenotypic 
expression of QTL, and assumes homogeneous variance.

Genomic selection models ranging from 2 to 1000 individuals in the training population 
(TP) and in all the available markers, i.e., 3060 markers, were to verify the optimum number 
of individuals required to comprise the TP. The validation population was always composed 
of 200 individuals randomly chosen in the population. Trend graphs were plotted for genetic 
variance, residual variance, heritability, and genotypic and phenotypic accuracy.

To evaluate the number of markers necessary to capture the entire genetic variance, 
and consequently achieve greater accuracy, the number of markers in the genomic selection 
models varied from 2 to 3060. The TP comprised 800 individuals, and the validation population 
consisted of 200 individuals. Marker selection was carried out and the marker with the lowest 
effect was deleted from the original matrix and not used in subsequent analysis, i.e., the 
following model would have one marker less. This marker selection occurred until the model 
comprised only 2 markers. Trend graphs were plotted for genetic variance, residual variance, 
heritability and phenotypic accuracy.

Phenotypic and genotypic accuracies were estimated by the Pearson’s correlation 
between the phenotypic value and the genomic estimate breeding value (GEBV), and between 
the true genotypic value and the GEBV, respectively.

Genetic variance 2( )gσ  was estimated according to Falconer and Mackay (1996):

in which 2
iα  is the allele substitution effect for each locus. Heritability 2( )h  was estimated as:

Software and hardware information

Simulations were carried out using the GENES software (Cruz, 2013), while the 
analyses of segregation and genomic selection tests were performed using the statistical R 
software (R Core Team, 2015). The RR-BLUP package was used to run the RR-BLUP model. 

PV u VG EA= + + (Equation 2)

2 2

1
2

n
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p qσ α

=
= ∗ ∗∑ (Equation 3)
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Two high-performance computers (Intel Xeon, processor E5-26 12° generation 3.30 GHz, 64 
and 96 Gb RAM, 1024 Gb hard drive) were used to perform the genomic selection analysis.

RESULTS

In order to evaluate how the size of the TP and the number of markers influenced the 
genomic estimate breeding value prediction using RR-BLUP, the size of the TP ranged from 2 
to 1000 individuals, and from 2 to 3060 SNP markers.

Marker segregation test

The segregation test was carried out in order to verify whether the simulation process 
established a population with genetic characteristics of an F2 population, as proposed by 
Falconer and Mackay (1996). It was observed that the allelic and genotypic frequencies were 
close to the expected value for an F2 population, for all the markers that control the trait (QTL 
- Table 1) and the other simulated markers (Table S1).

The evaluation of the Hardy-Weinberg equilibrium was carried out using the chi-
square test (c2), which indicated the expected segregation for an F2 population (Table 1; and 
Table S1 shows the P value).

The proportion of the genetic variance of the trait explained by each QTL followed 
a binomial distribution, as expected in the simulation process (Table 1). The values of the 
additive effects ranged between the QTL, and they were high in QTL located on the median 
chromosomes, and low in the QTL located in the first (chromosome 1 over 5) and in the last 
chromosomes (chromosome 16 over 20) (Table 1).

Evaluation of the training population size

The genotypic variances presented similar behavior regardless of the simulated 
heritability (Figure 1). Similar results were observed for the residual variance. It was observed 
that the higher the number of individuals used in the reference population, the greater was 
the ability of the model to estimate variance components in a manner similar to the simulated 
parameters. It was also observed that heritability influences the number of individuals to 
compose the TP used to estimate accurate variance components (genotypic and residual).

The genotypic and phenotypic accuracies showed higher estimates in the TP with a 
high number of individuals (Figure 2). It was also observed that the higher the heritability of 
the trait, the higher were the estimates of phenotypic and genotypic accuracies (Figure 2). 
However, the TP with more than 600 individuals provided a small gain in phenotypic and 
genotypic accuracies. Genotypic accuracy had lower values than the phenotypic accuracy for 
all the heritabilities evaluated. However, the higher the value of the simulated heritability, the 
closer were the estimates of phenotypic and genotypic accuracies (Figure 2).

The estimated heritability showed similar behavior to the genotypic and residual 
variances, i.e., it presented variable values when few individuals were used in the TP (Figure 
2). With the increase in the number of individuals in the TP, more stable values of the estimated 
heritability were observed, and these values were closer to the values of simulated heritability, 
except for the traits with 80 and 99% heritability, whose estimated heritability values were 
lower than the simulated heritability values (Figure 2).

http://www.geneticsmr.com/year2016/vol15-4/pdf/gmr-15-04-gmr.15048874-su1.pdf
http://www.geneticsmr.com/year2016/vol15-4/pdf/gmr-15-04-gmr.15048874-su1.pdf
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M = marker. The number following the letter M stands for the number of the marker in the original table; PGV/QTL 
= proportion of genetic variance of each trait explained by each QTL; AE = additive effect.

Table 1. Segregation test, minor allele frequency (MAF), P value associated with the 2c  test of the evaluation 
of the Hardy-Weinberg equilibrium (HWE P value), and effect of markers associated with the quantitative 
trait loci (QTL).

QTL AA Aa aa Total maf HWE P value PGV/QTL AE (u+a) 
M42 248 503 249 1000 0.4995 0.849491 0.00000000 0.000000 
M83 220 525 255 1000 0.4825 0.104833 0.00000000 0.000000 
M123 249 488 263 1000 0.4930 0.451512 0.00000000 0.000000 
M165 254 502 244 1000 0.4950 0.896830 0.00000000 0.000000 
M246 253 478 269 1000 0.4920 0.166462 0.00000000 0.000000 
M287 275 480 245 1000 0.4850 0.215878 0.00000000 0.000000 
M327 290 487 223 1000 0.4665 0.494414 0.00000000 0.000000 
M369 255 506 239 1000 0.4920 0.698262 0.00000000 0.000001 
M450 234 491 275 1000 0.4795 0.605211 0.00000000 0.000004 
M491 248 499 253 1000 0.4975 0.950199 0.00000002 0.000022 
M531 245 499 256 1000 0.4945 0.952612 0.00000011 0.000109 
M573 231 507 262 1000 0.4845 0.635811 0.00000049 0.000486 
M654 255 495 250 1000 0.4975 0.752424 0.00000194 0.001942 
M695 238 503 259 1000 0.4895 0.838532 0.00000702 0.007021 
M735 257 502 241 1000 0.4920 0.892912 0.00002310 0.023069 
M777 255 502 243 1000 0.4940 0.895725 0.00006920 0.069208 
M858 234 529 237 1000 0.4985 0.066591 0.00019000 0.190321 
M899 247 520 233 1000 0.4930 0.203601 0.00048100 0.481401 
M939 263 489 248 1000 0.4925 0.490986 0.00112300 1.123269 
M981 253 509 238 1000 0.4925 0.564308 0.00242400 2.423897 
M1062 251 490 259 1000 0.4960 0.528386 0.00484800 4.847794 
M1103 264 494 242 1000 0.4890 0.715601 0.00900300 9.003046 
M1143 232 508 260 1000 0.4860 0.595299 0.01555100 15.55072 
M1185 265 517 218 1000 0.4765 0.251149 0.02501600 25.01637 
M1266 246 491 263 1000 0.4915 0.575321 0.03752500 37.52455 
M1307 269 493 238 1000 0.4845 0.679807 0.05253400 52.53438 
M1347 273 487 240 1000 0.4835 0.430338 0.06869900 68.69880 
M1389 254 498 248 1000 0.4970 0.900241 0.08396500 83.96520 
M1470 248 497 255 1000 0.4965 0.850723 0.09596000 95.96023 
M1511 254 481 265 1000 0.4945 0.230923 0.10257800 102.5782 
M1551 249 501 250 1000 0.4995 0.949546 0.10257800 102.5782 
M1593 275 470 255 1000 0.4900 0.059366 0.09596000 95.96023 
M1674 234 497 269 1000 0.4825 0.879831 0.08396500 83.96520 
M1715 260 499 241 1000 0.4905 0.958649 0.06869900 68.69880 
M1755 239 509 252 1000 0.4935 0.565527 0.05253400 52.53438 
M1797 252 505 243 1000 0.4955 0.749867 0.03752500 37.52455 
M1878 241 501 258 1000 0.4915 0.942279 0.02501600 25.01637 
M1919 239 495 266 1000 0.4865 0.769225 0.01555100 15.55072 
M1959 253 519 228 1000 0.4875 0.221634 0.00900300 9.003046 
M2001 252 508 240 1000 0.4940 0.609637 0.00484800 4.847794 
M2082 238 505 257 1000 0.4905 0.743092 0.00242400 2.423897 
M2123 255 480 265 1000 0.4950 0.206994 0.00112300 1.123269 
M2163 254 504 242 1000 0.4940 0.796736 0.00048100 0.481401 
M2205 229 499 272 1000 0.4785 0.996183 0.00019000 0.190321 
M2286 254 495 251 1000 0.4985 0.752043 0.00006920 0.069208 
M2327 280 501 219 1000 0.4695 0.855905 0.00002310 0.023069 
M2367 268 492 240 1000 0.4860 0.630126 0.00000702 0.007021 
M2409 256 504 240 1000 0.4920 0.793981 0.00000194 0.001942 
M2490 255 508 237 1000 0.4910 0.605591 0.00000049 0.000486 
M2531 244 502 254 1000 0.4950 0.896830 0.00000011 0.000109 
M2571 244 492 264 1000 0.4900 0.621650 0.00000002 0.000022 
M2613 256 502 242 1000 0.4930 0.894419 0.00000000 0.000004 
M2694 242 496 262 1000 0.4900 0.809997 0.00000000 0.000001 
M2735 257 504 239 1000 0.4910 0.792309 0.00000000 0.000000 
M2775 260 501 239 1000 0.4895 0.938444 0.00000000 0.000000 
M2817 261 491 248 1000 0.4935 0.572781 0.00000000 0.000000 
M2898 241 539 220 1000 0.4895 0.013079 0.00000000 0.000000 
M2939 255 499 246 1000 0.4955 0.951607 0.00000000 0.000000 
M2979 232 505 263 1000 0.4845 0.728628 0.00000000 0.000000 
M3021 236 510 254 1000 0.4910 0.520283 0.00000000 0.000000 
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Figure 1. Trend of genotypic variance (blue) and residual variance (red) in function of the number of individuals 
in the training population, for traits with different heritability: A. 5%; B. 20%; C. 40%; D. 60%; E. 80%; F. 99%.

Figure 2. Trend of phenotypic accuracy, genotypic accuracy, and heritability in function of the number of individuals 
in the training population for traits with different heritability: A. 5%; B. 20%; C. 40%; D. 60%; E. 80%; F. 99%.

Evaluation of the number of markers necessary to obtain genomic prediction in an 
F2 population

The genotypic variance was quadratic, i.e., it increased up to a certain number of 
markers, and then it gradually decreased with the increase in the number of markers (Figure 
3). The optimal number of markers ranged according to the heritability of the trait (Table 
2). It was also found that the higher the trait heritability, the greater the number of markers 
necessary to obtain the best genotypic variance estimate.
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Figure 3. Trend of genotypic variance and residual variance in function of the number of markers used for the 
training of the genomic selection model for traits with different heritabilities: A. 5%; B. 20%; C. 40%; D. 60%; E. 
80%; F. 99%.

*The interval corresponds to the 5% best values for each parameter evaluated. C1 to C6 correspond to each trait 
simulated by varying the heritability value (5, 20, 40, 60, 80 and 99%).

Table 2. Number of markers (NM) necessary to obtain the optimal value (OV) of genotypic variance 2( )gσ , 
residual variance 2( )σ , heritability 2( )h , and accuracy in an F2 population.

  2
g  2  

2h  Accuracy 

OV C1 7466 2126 0.77 0.91 
C2 2035 337 0.85 0.94 
C3 897 115 0.88 0.96 
C4 560 50 0.91 0.98 
C5 669 62 0.91 0.98 
C6 557 28 0.95 0.99 

NM* C1 240-397 372-554 307-487 545-739 
C2 258-415 479-634 408-579 589-741 
C3 332-525 518-709 489-647 693-864 
C4 410-573 602-757 522-711 704-870 
C5 428-588 532-685 500-666 639-827 
C6 486-674 585-746 557-710 729-884 

 

Residual variance presented a quadratic trend with positive concavity, i.e., it decreased 
up to a certain number of markers, and then increased with an increase in the number of 
markers (Figure 3). The optimal number of markers for residual variance increased with the 
increase in the heritability of the trait (Table 2).

The value of the estimated heritability increased exponentially up to an optimal number 
of markers, and then decreased linearly (Figure 4). The number of markers for the maximum 
heritability point increased with an increase in the simulated heritability for each trait (Table 
2). The decrease in estimated heritability with an increase in the number of markers was lower 
for traits with higher simulated heritability.
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Figure 4. Trend of phenotypic accuracy and heritability in the function of the number of markers used for genomic 
selection model training for traits with different heritabilities: A. 5%; B. 20%; C. 40%; D. 60%; E. 80%; F. 99%.

Prediction accuracy of the training population presented an exponential increase up 
to a maximum point, and then a slight linear decrease (Figure 4). This decrease was lower for 
traits of high simulated heritability. The optimal number of markers to obtain greater accuracy 
increased with an increase in the heritability value of the trait (Table 2).

DISCUSSION

Marker segregation test

Using the allelic frequency, the gene frequency, and the Hardy-Weinberg equilibrium, it was 
verified that the simulated population indeed represented a population with all the characteristics of 
an F2 population, i.e., (A)p = (a)q = 0.5, (AA)p2 = (aa)q2 = 0.25, and (Aa)2pq = 0.5.

The great importance of recovering all the information from an F2 population using 
the simulation process is that the genetic variance, environmental variance, and heritability are 
easy to estimate in this type of population. According to Falconer and Mackay (1996), genetic 
variance in F2 population is estimated as follows:

in which d value was simulated as 0 for all loci, and thus the genetic variance is equal to the 
additive variance. This is easily calculated, since 2α  is the variance of the markers calculated 
using the RR-BLUP method. Thus, heritability can be estimated from the equation proposed 
by Falconer and Mackay (1996) for an F2 population:

and 2σ  is the residual variance of the markers estimated by the RR-BLUP method.

2 2 22 (2 )g pq pqdσ α= + (Equation 5)

(Equation 6)
2

2
2 2( )

g

g
h σ

σ σ
=

+
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Consequently, all the genetic and environmental parameters were accurately calculated, 
and hence, these parameters were the criteria for choosing the best genomic selection model, 
i.e., the model composed of the ideal number of individuals in the training population, and the 
number of markers required to accurately train the model.

Training population size versus estimated genetic value

Usually, the increase in the number of individuals in the TP increases the prediction 
accuracy of the genetic value (Desta and Ortiz, 2014). However, despite the increase in 
accuracy, when more than 600 individuals was used in the TP, this increment was very low, 
making it almost null for traits with a heritability of 80-99% in the present study.

Besides the number of individuals in the TP, population structure may influence 
the prediction by the genomic selection methods. Studies on oat (Asoro et al., 2011), corn 
(Ogutu et al., 2012), and beet (Würschum et al., 2013) showed that the use of a structured 
population together with large enough TP considerably increases prediction accuracy. 
Therefore, all the results of this study are valid for an F2 population. Other studies are 
required to evaluate other types of populations, such as backcrossing, RILs, half-sib families, 
and full-sib families, since each type of population has a different structure, influencing the 
prediction by genomic selection methods.

Isidro et al. (2015), when evaluating several methods to optimize the choice of 
individuals to compose the TP, found that the population structure and the trait architecture 
are the factors that most influence the TP performance. Thus, it is difficult to verify a standard 
size of the TP for the several possible heritabilities and different population types. Using the 
current study with an F2 population, it can be concluded that 600 individuals are enough, 
regardless of the trait architecture. However, for traits with low heritability, accuracy values 
are less stable, i.e., depending on the individuals of the TP, accuracy is higher or lower, 
and when heritability increases, the accuracy value is constant, regardless of the number of 
individuals of the TP. This was verified in this study, since the analyses were repeated 50 
times for each TP size. Thus, prior knowledge of the trait under study may help researchers 
to design the experiment in order to obtain accurate results through genomic selection, and 
consequently reduce the cost of the breeding program.

Markers density versus estimated breeding value

It was found that a number of markers ranging from 200 to 900 is enough to capture 
all the genotypic variance of an F2 population, and consequently achieve maximum accuracy. 
This value varies depending on the trait heritability, since the higher the heritability, the greater 
is the number of markers necessary to obtain maximum accuracy. This fact can be explained 
by the effect of each QTL and their influence on the genomic selection methods. All traits were 
simulated with 60 QTL; however, the higher the heritability of the trait, the higher is the effect 
of each QTL. One of the characteristics of genomic selection methods is the capture of minor 
effect markers, mainly because the RR-BLUP method uses the same variance for all markers. 
This means that RR-BLUP cannot capture the full effect of major effect QTL, which thereby 
requires more markers to explain the genotypic variance of the trait. An alternative to improve 
the variance capture of QTL for major effects is the use of Bayesian methods, which assume 
specific variance for each marker, such as Bayes A and Bayes B (Gianola et al., 2009).
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Erbe et al. (2013) evaluated Brown Swiss cattle by genotyping the animals using 
777k chips, and observed that the genetic variance estimated via genomic selection models 
increased to 20k, becoming constant after this number of markers. They concluded that 
even with a population of infinite individuals for training and a large number of markers, 
it would not be possible to increase the accuracy for this population. Poland et al. (2012) 
found that 1827 SNPs were enough to capture all the genetic variance in wheat populations. 
In our study, the marker of lower effect was deleted in each iteration, and was observed 
that it was not necessary to use several markers to explain the genotypic variance of the 
trait, since by the simulation process, only 60 markers explained all the variation of the 
trait. Thus, prior knowledge of the trait may be important for the development of low 
density chips specific for a given trait or species. The development of this type of chip 
is important to reduce genotyping costs. In animal breeding, low density chips for cattle 
(Heaton et al., 2002; Boichard et al., 2012) and pigs (Wellmann et al., 2013) have been 
developed. Moreover, the genotyping cost of a low density chip is much lower than that 
of a high density chip (Habier et al., 2009).

In addition, the high accuracy for models using a small number of markers (200 to 
900 SNPs), which was verified in this study, can be explained by the fact that individuals 
of the training population are highly correlated, since all of them are descended from the 
same parent, i.e., the individuals of the F2 population share alleles identical by descent 
(Poland et al., 2012). However, despite the reduced number of markers for each studied 
trait, these markers are different for each trait, making the construction of a multi-trait 
low-density chip very difficult (Habier et al., 2009). Therefore, in further studies, it is 
necessary to seek strategies that enable simultaneous marker selection for several traits, 
and thus build a multi-trait low-density chip.

The number of markers used in this study were low. However, several studies have 
shown that a small number of markers can be used for high-accuracy genomic selection for 
many traits (Bhering et al., 2015; Spindel et al., 2015). In the future, it is necessary to test the 
optimal number of markers and individuals, using a large number of markers.

CONCLUSION

The ideal number of individuals to compose the training population is strongly 
correlated with the heritability of the trait. However, a training population comprising 
more than 600 individuals ensures maximum accuracy, regardless of the heritability for 
an F2 population.

A genomic selection model that uses 300-800 markers is enough to capture all the 
genetic variance, and to decrease the residual variance, in order to obtain the maximum 
prediction accuracy of an F2 population.
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