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ABSTRACT. Comprehensive multi-omics data analyses have 
become an important means for understanding cancer incidence and 
progression largely driven by the availability of high-throughput 
sequencing technologies for genomes, proteomes, and transcriptomes. 
However, how tumor cells from the site of origin of the cancer begin 
to grow in other sites of the body is very poorly understood. In order 
to examine potential connections between different cancers and to gain 
an insight into the metastatic process, we conducted a multi-omics data 
analysis using data deposited in The Cancer Genome Atlas database. 
By combining somatic mutation data along with DNA methylation 
level and gene expression level data, we applied a Bayesian network 
analysis to detect the potential association among four distinct cancer 
types namely, Head and neck squamous cell carcinoma (Hnsc), Lung 
adenocarcinoma (Luad), Lung squamous cell carcinoma (Lusc), and 
Skin cutaneous melanoma (Skcm). Further validation based on the 
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‘identification of somatic signatures’ and the ‘association rules analysis’ 
confirmed these associations. Previous investigations have suggested 
that common risk factors and molecular abnormalities in cell-cycle 
regulation and signal transduction predominate among these cancers. 
This evidence indicates that our study provides a rational analysis and 
hopefully will help shed light on the links between different cancers 
and metastasis as a whole.

Key words: Somatic mutation; DNA methylation; TCGA; 
Gene expression

INTRODUCTION

Current large-scale cancer sequencing projects have identified a large number of somatic 
mutations derived from an increasing number of different cancer tissues and patients. These 
studies have enabled comprehensive characterization of somatic mutations in a large number 
of tumor samples, and provide valuable information to aid in increasing the understanding 
of cancer incidence and progression (Watson et al., 2013). For example, lung cancers from 
smokers have ten times as many somatic mutations as those from non-smokers (Vogelstein et 
al., 2013). Experimental evidence has suggested that mitochondrial dysfunction, particularly 
due to mitochondrial DNA somatic mutation, could be a factor determining a cancer cells’ 
susceptibility to anti-cancer drugs that target energy metabolism (Kim, 2014). A recent study 
has found that genes with the highest frequency of somatic mutations can be detected in high-
grade gliomas, T-cell lineage acute lymphoblastic leukemia and medulloblastoma (Huether 
et al., 2014). In addition, some of the most frequently mutated genes have been proven to 
be tractable targets for new anti-cancer drugs. For example, in several solid human tumors, 
recent studies have observed a high frequency of somatic mutation in the gene encoding 
phosphoinositide-3-kinase catalytic alpha (PIK3CA). A specific kinase inhibitor of PIK3CA 
was found to be a potentially effective therapeutic reagent against head and neck squamous cell 
carcinoma (Hnsc) (Qiu et al., 2006). On the other hand, it is well known that the inactivation of 
certain tumor-suppressor genes occurs because of hypermethylation within promoter regions. 
In fact, numerous studies have demonstrated that a broad range of genes are silenced by 
DNA methylation in different cancer types (Kulis and Esteller, 2010). Researchers have identified 
epigenetic patterns that are relevant to carcinogenesis, by analyzing the increasing amount of 
DNA methylation data. In addition, analyses of somatic alterations in some cancers support the 
hypothesis that one alteration can predispose to a subsequent specific alteration (Sweeney et al., 
2009). Most frequently mutated genes in tumor samples may exhibit either DNA hypermethylation 
or hypomethylation. For example, analyses for several independent data sets are in agreement 
that mutations of the BRAF gene are much more frequent among tumors exhibiting CpG island 
methylation phenotype (CIMP) than in tumors without CIMP (Li et al., 2006).

Determining the functional impact of genes harboring the more frequent somatic 
mutations is crucial to understanding tumorigenesis and metastasis. Interestingly, it has been 
reported that, in some cases, somatic mutations of certain genes are found to be shared among 
different cancer types. For example, by mapping missense somatic mutations to protein 
domains, Yang et al. found, for twenty-one cancer types, that the vast majority of within-
domain mutational hotspots shared by multiple cancer types occurred at functional sites (Yang 
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et al., 2015). Recent sequencing of DNA derived from several cancers has also provided a 
comprehensive analysis of somatic mutations across entire genomes. For example, somatic 
mutations in the 3' untranslated regions (3'UTRs) of genes identified in four cancers have been 
reported in a new study, and this study computationally predicted how they may alter miRNA 
targeting, potentially resulting in dysregulation of the expression of the genes harboring these 
mutations (Ziebarth et al., 2012). Therefore, the integration of information about multiple 
features of DNA (such as DNA copy number, allelic status, sequence mutations, and DNA 
methylation) with gene expression patterns (Chari et al., 2010) has dramatically improved our 
ability to predict the risk of cancer association or metastasis. In this study, we have conducted 
a multi-omics data analysis to detect the potential risk of cancer association or metastasis for 
four distinct cancers: Head and neck squamous cell carcinoma (Hnsc), Lung adenocarcinoma 
(Luad), Lung squamous cell carcinoma (Lusc) and Skin cutaneous melanoma (Skcm). First, 
we identified the common genes harboring the most somatic mutations shared by the four 
cancers, and then we analyzed the DNA methylation status of these frequently mutated 
genes. Next, we constructed three Bayesian networks, based on DNA methylation levels, 
gene expression levels, and the observed correlation coefficients between DNA methylation 
levels, and the gene expression levels of genes found to be in common (genes-in-common) 
across these four cancers in order to explore potential associations between these four cancers. 
Finally, further validation, based on the ‘identification of somatic signature’ and ‘association 
rules analysis’ confirmed the association between these cancers. Previous investigations have 
reported common risk factors and that molecular abnormalities in cell-cycle regulation and 
signal transduction predominate among these cancers. The new evidence presented here also 
support that our study provides a rationale analysis to help shed light on links between cancers 
and metastasis as a whole.

MATERIAL AND METHODS

Data sources

Somatic mutation data

We searched The Cancer Genome Atlas (TCGA) database (http://cancergenome.nih.
gov) in which somatic mutation data are available. For the purposes of the present study, we 
selected somatic mutation data for four cancers: Head and neck squamous cell carcinoma 
(Hnsc), Lung adenocarcinoma (Luad), Lung squamous cell carcinoma (Lusc) and Skin 
cutaneous melanoma (Skcm). In total, 67,125 somatic mutations across 319 Hnsc cancer 
patients, 208,724 somatic mutations across 519 Luad cancer patients, 61,485 somatic mutations 
across 178 Lusc cancer patients and 200,589 somatic mutations across 264 Skcm patients 
were used. Based on the Illumina GAIIx platform, these mutations were initially captured 
by whole-exome sequencing performed on tumors. All the categories of somatic mutation, 
including, Frame_Shift_Deletion, Frame_Shift_Insertion, In_Frame_Deletion, In_Frame_
Insertion, Missense_Mutation, Nonsense_Mutation, Nonstop_Mutation, Silent, Splice_Site, 
Translation_Start_Site, RNA, 3’ untranslated region (3’UTR), 5’Flank, 5’UTR and Intron were 
all put into the analysis. For each cancer, we used the Somatic Cancer Alterations package of 
R software (http://www.r-project.org) to compute the somatic mutation frequency along with 
the somatic mutation types for genes. Specifically, we selected those genes-in-common (i.e. 
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those that were shared by the four selected cancers and harbored the most somatic mutations) 
for further analysis.

DNA methylation levels and gene expression levels

For those genes-in-common, we used the MethHC database (http://MethHC.mbc.nctu.
edu.tw) (Huang et al., 2015) to obtain their promoter region DNA methylation levels as well 
as the gene expression levels in tumor and normal samples respectively. MethHC currently 
consists of 6,548 DNA methylation data generated using the Illumina HumanMethylation450K 
BeadChip, which includes more than 480,000 CpG sites and 12,567 mRNA/microRNA 
expression data calculated by RNAseq/microRNA-seq. In this paper, the DNA methylation 
levels and gene expression levels were processed by MethHC.

Construction of Bayesian networks

To explore the potential association or metastasis among four cancers, for the genes-in-
common we constructed three Bayesian networks based on 1) the DNA methylation levels; 2) the 
gene expression levels of in tumor samples versus normal samples and 3) the relationship between 
DNA methylation levels and the gene expression levels. In the present study, Pearson correlation 
coefficients were computed for the latter analysis. Briefly, the Bayesian network construction 
process was performed as follows: under the assumption of parameter independence, an initial 
Bayesian network structure S was learned from the training data. From this initial network, a 
greedy search algorithm with random restarts was performed to obtain the highest score posterior 
network to avoid local maxima. Finally, an optimized Bayesian network that maximizes the 
Bayesian factor is obtained using a heuristic search of the network space in a specified domain. 
The conditional likelihood of the variables given their parents is represented in a Bayesian network 
by using Gaussian conditional densities. In this study, we used the BNarray package (Chen et al., 
2006) of R software (http://www.r-project.org) to construct the Bayesian networks.

Further validation

To further validate the association between the different cancer types obtained from the 
Bayesian networks, we used another two methods, namely ‘identification of somatic signatures’ 
(Gehring et al., 2015) and ‘association rules analysis’ (Wright et al., 2013), to explore the 
relationships between the four cancer types. As part of this validation process, an additional four 
cancer types were included: Gliobastoma multiforme (Gbm), Kidney renal clear cell carcinoma 
(Kirc), Ovarian cancer (Ov) and Thyroid carcinoma (Thca). These tumors had the following 
numbers of somatic mutations; 19,938 somatic mutations across 291 Gbm patients, 178,142 
somatic mutations across 293 Kirc patients, 5,872 somatic mutations across 142 Ov patients 
and 6,716 somatic mutations across 403 Thca patients were included. The processes used for 
identification of somatic signatures and association rules analysis are described briefly below:

Identification of somatic signatures

The process for identification of somatic signatures was divided into two steps. In the 
first step, each somatic mutation was described in relation of the sequence context in which 
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it occurred. Then a matrix, M, was used to represent the frequency of motifs across multiple 
samples. In the second step, the matrix M was numerically decomposed as M=WH. Where, W 
is the composition of each signature in term of somatic motifs and H indicates the contribution 
of the signature to the alterations for each sample. Principal component analysis (PCA) was 
used to employ the eigenvalue decomposition of M (Stacklies et al., 2007). Finally, cancer 
links were obtained by clustering the somatic signatures of the eight cancer types. We used the 
SomaticSignatures package (Watson et al., 2013) of R software (http://www.r-project.org) to 
perform this analysis.

Association rules analysis

Association rules analysis is a data mining method, and the Apriori algorithm is often 
used to discover the association rules. An association rule is expressed in the form X⇒Y. The 
strength of an association rule in the Apriori algorithm is often determined by its support and 
confidence. A high support indicates that a rule does not simply occur by chance, and thus 
this means that this rule has a higher reliability. Confidence determines how often items in 
Y appear in records that contain X. The higher the confidence, the more likely it is for Y to 
be present in transactions that contain X. In order to perform association rules analysis, we 
constructed a gene-cancer association matrix. For 16,383 genes and 8 types of cancer, the 
element of the matrix aij is defined as 1 if the ith gene has somatic mutations in the jth cancer 
whereas it is defined as 0 if the ith gene has no somatic mutation in the jth cancer. To obtain 
more effective rules, we set 0.8 as both the support and the confidence threshold. We used the 
arulesViz package (http://lyle.smu.edu/~mhahsler) of R software (http://www.r-project.org) 
to implement the analysis and the cancers associations were visualized using the obtained 
association rules. An overview of our study is shown in Figure 1.

Figure 1. Study overview. First, genes harboring the most somatic mutations were identified and those genes that 
were common amongst the initial four different cancer types were selected. Following this, the individual gene’s 
DNA methylation levels and expression levels were identified and a Pearson correlation coefficient calculated 
to reflect the association between the level of DNA methylation level and gene expression. Next, three Bayesian 
networks were constructed based on DNA methylation levels, gene expression levels, and the Pearson correlation 
coefficients, respectively. After then adding in an additional four cancer types, the ‘identification of somatic 
signatures’ and the ‘association rules analysis’ were used to validate the cancer associations obtained from the 
constructed Bayesian networks.
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RESULTS

Identification of the genes-in-common harboring the most mutations shared by 
four cancers

After computing the mutation frequency of individual genes in the four separate 
cancer types, we then identified the most frequently mutated genes. There were five genes 
showing the most somatic mutations across all four of the different cancer types and these 
were: TTN, MUC16, CSMD3, LRP1B and RYR2 (see Table 1). TTN was found to harbor the 
most mutations across all of the genes examined and this could possibly be explained by the 
fact that larger genes have a greater chance of harboring mutation based on the assumption 
that mutations occur randomly across the genome (Jia and Zhao, 2014). As shown in Table 
1, we noted especially that both TTN and MUC16 harbored a greater number of mutatios 
in Skcm than was observed in the other three cancers: In fact, 83 and 24% of Skcm patients 
have mutations in TTN and MUC16 respectively. Previous studies have identified TTN 
somatic mutations in multiple cancer types including melanoma, glioblastoma and pancreatic 
carcinoma, suggesting that the cellular functions of these molecules could possibly be related 
to a common tumor progression mechanism (Balakrishnan et al., 2007). MUC16 performs 
a number of important biological roles in cancer cell signaling, metastasis, regulation of 
immune responses and in anti-cancer therapeutic strategies (Felder et al., 2014). Also of note, 
we observed that CSMD3 harbored more mutations in Luad than in other types of cancer; in 
fact, 44% of Luad patients were found to have mutations in the CSMD3 region. Interestingly, 
a recent study has found that CSMD3 is the second most frequently mutated gene (next to 
TP53) in lung cancer. This study demonstrated that loss of CSMD3 might be causative for 
increased proliferation of airway epithelial cells (Liu et al., 2012). The finding of a significant 
number of somatic mutations in the LRP1B gene is not simply a result of of its long coding 
region; recently published cancer genome studies have also found its potential association 
with glioblastoma (GBM) and lung adenocarcinoma (Lawrence et al., 2013).

Fraction refers to the proportion of patients that have mutations in these gene regions.

Table 1. Five genes having the highest somatic mutation frequency commonly Found in four distinct cancer types.

Gene Somatic mutation frequency in four cancer types 
Hnsc (Fraction) Luad (Fraction) Lusc (Fraction) Skcm (Fraction) Sum 

TTN 401 (0.52) 945 (0.54) 441 (0.79) 1609 (0.83) 3396 
MUC16 155 (0.07) 643 (0.10) 200 (0.12) 1158 (0.24) 2156 
CSMD3 130 (0.25) 540 (0.44) 145 (0.51) 176 (0.35) 991 
LRP1B 115 (0.24) 450 (0.39) 120 (0.42) 273 (0.44) 958 
RYR2 78 (0.15) 507 (0.44) 142 (0.46) 137 (0.32) 864 

 

For the five most mutated genes, we calculated the frequency of their individual major 
somatic mutation types across the four cancer types. The frequency distribution of somatic 
mutation types is shown in Figure 2. From this, it can be seen that, missense mutations account 
for the highest proportion among all the different somatic mutation types. In fact, many studies 
have shown that missense mutations might play an important role in carcinogenesis. For 
example, missense mutations in oncogenes and tumor suppressors can cause structural effects 
or cause changes in function (Stehr et al., 2011). Moreover, cancer missense mutations can 
alter the binding properties of proteins and their cellular interaction profile (Nishi et al., 2013). 



7Detect cancer association and metastasis

Genetics and Molecular Research 15 (3): gmr.15038987

In addition, we observed that silent mutations were observed for each gene and that their 
frequency for each gene varied across the four different cancer types. Recent studies have 
shown that silent mutations frequently contribute to human cancer (Supek et al., 2014).

In order to filter the appropriate number of genes-in-common, we determined the 
appropriate cut-off by analyzing the relationship between somatic mutation frequency and 
the number of genes in common. As the number of genes-in-common increased, the somatic 
mutation frequency decreased rapidly (See Figure S1). Finally, we selected a somatic 
mutation frequency of 40 as the cut-off to filter genes-in-common across the four cancer types. 
According to this criterion, thirty-two genes with a somatic mutation frequency ≥40 (See 
Table S1) shared by four cancers were filtered for the Bayesian network construction.

Figure 2. Frequency of different major somatic mutation types across four different cancer types, and summation 
thereof, for the top five genes-in-common identified in this study (namely, TTN, MUC16, CSMD3, LRP1B and 
RYR2). The major somatic mutation types are: Frame_Shift_Deletion, Frame_Shift_Insert, Missense_Mutation, 
Nonsense_Mutation, Silent, and Splice_Site.

Construction of Bayesian networks

DNA methylation levels of genes-in-common across four different cancer types

For the thirty-two genes-in common, we used the MethHC database to obtain 
information regarding their DNA methylation levels specifically in the promoter regions as 
well as their respective gene expression levels in tumor and normal samples. Assessing the 
average DNA methylation levels of the top five genes-in-common, the DNA methylation 

http://www.geneticsmr.com/year2016/vol15-3/pdf/8987-su1.pdf
http://www.geneticsmr.com/year2016/vol15-3/pdf/8987-su2.pdf
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levels of TTN, MUC16, CSMD3 and RYR2 were all significantly different between normal 
tissue and tissue from the four different tumor types (P < 0.05) (See Figure 3). LRP1B did not 
show significant differences in DNA methylation level with the exception of normal versus 
Luad tissue. We observed that TTN displayed the lowest methylation levels in tumor samples 
compared to normal samples (P < 0.005). With the exception of Luad tumor samples, MUC16 
also displayed the lowest methylation levels in the three other tumor samples compared to 
normal samples. In contrast, with the exception of Skcm tumor samples, CSMD3 and RYR2 
exhibited the highest methylation levels in the three other tumor samples versus normal 
samples. It is known that aberrant DNA methylation is strongly associated with human cancer. 
Therefore, the aberrant methylation of these genes in these four distinct cancer types suggests 
the possible association or metastasis among these four cancers.

Figure 3. Average DNA methylation levels for the four genes, harboring the most somatic mutations; a comparison 
in normal versus four different tumor types (Hnsc, Luad, Lusc, and Skcm).

Construction of Bayesian networks

Based on DNA methylation levels, gene expression levels and the Pearson correlation 
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coefficients between DNA methylation levels and gene expression levels for these thirty-two 
genes-in-common we constructed three Bayesian networks respectively (See Figures 4, 5 and 
6). From Figure 4, we can see that DNA methylation levels of these thirty-two genes-in-
common show no significant differences between normal and tumor samples (P > 0.05).

Hnsc, Luad and Skcm are direct causes of Lusc; the correlation coefficients of any 
two cancers based on DNA methylation levels were all ≥0.9 (P < 0.001). It is reported 
that at least 75 percent of head and neck cancers are caused by tobacco and alcohol use. 
Therefore, people who use tobacco and alcohol are at greater risk of Hnsc, and have an 
increased chance of developing new cancers, such as lung cancer (Do et al., 2003). New 
evidence suggests that melanoma metastasis to the lung is not uncommon and carries a poor 
prognosis (Seitelman et al., 2011).

From Figure 5, we observed that the gene expression levels of thirty-two genes-
in-common all displayed significant differences between normal and tumor samples (P < 
0.01). The average gene expression level of these thirty-two genes in tumor samples were 
all found to be higher than in normal samples. It is known that driver mutations can affect 
gene expression by means of aberrant transcription, epigenetic regulation, cell signaling 
and gene dosage effects (Gerstung et al., 2015). Although exactly how driver mutations 
interfere with the transcriptomic state and affect gene expressions is not well known, our 
results suggest that these genes harboring the most somatic mutations shared by four cancers 
also have the highest expression in the tumor samples. In addition, Figure 5 also shows 
the potential association among Hnsc, Luad and Skcm; the correlation coefficients of any 
two cancers based on the gene expression levels were all ≥0.6 (P < 0.001). In particular, as 
shown in Figure 5, we found an association between Hnsc and Skcm. A previous study has 
suggested that the INK4a/p16 germline mutation associated with familial atypical multiple 
mole melanoma syndrome can also be associated with familial head and neck squamous 
cell carcinoma syndrome. Young Hnsc patients, with a family history, may have a germline 
p16 defect that could predispose them to develop other cancers, including melanoma and 
pancreatic cancer (Vinarsky et al., 2009).

Based on the Pearson correlation coefficients comparing DNA methylation levels 
and and gene expression levels for these thirty-two genes in common, it is apparent from 
Figure 6 that similar results were obtained as for the gene expression analysis data shown 
in Figure 5. There was no significant difference in the Pearson correlation coefficients 
between normal and tumor samples (P > 0.05). The potential associations among Hnsc, 
Luad and Lusc were also observed; the correlation coefficients of any two cancers based 
on the Pearson correlation coefficients between the DNA methylation levels and the gene 
expression levels were all >0.4 (P < 0.05). Newly published evidence supports these results; 
performing a review of thirty-four lung cancer patients and twenty five autopsies of lung 
cancer with skin metastasis, a previous study concluded that the incidence of cutaneous 
metastasis is high for large-cell carcinoma and low for squamous and small-cell carcinoma 
(Terashima and Kanazawa, 1994). A recent Lung Screening Study from Pittsburgh observed 
that subjects with incidence of head and neck squamous cell carcinoma are at high risk of 
lung cancer. This study provided a rationale for offering head and neck cancer screening 
along with computed tomography screening for lung cancer. Randomized controlled trials 
that assess the effectiveness of adding the examination of the head and neck area to lung 
cancer screening programs are therefore warranted (Dixit et al., 2015).
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Figure 4. Constructed Bayesian network based on the DNA methylation levels of the thirty-two genes-in-common 
identified in tumor samples. The scatter dot plots show the average DNA methylation levels of the thirty-two genes-
in-common. In each scatter dot plot, the red color indicates the normal sample and the green color indicates the tumor 
sample. The horizontal lines indicate the median DNA methylation levels. The scatter plots display the correlation, 
based on DNA methylation levels in tumor samples, between two cancers along with the linear regression lines.

Figure 5. Constructed Bayesian network based on the gene expression levels of the thirty-two genes-in-common 
from tumor samples. The scatter dot plots show the average gene expression levels for thirty-two genes-in-common. 
In each scatter dot plot, the red color indicates the normal sample and the green color indicates the tumor sample. 
The horizontal lines indicate the median gene expression levels. The scatter plots display the correlation, based on 
tumor sample gene expression levels, between two cancers along with the linear regression lines.
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Figure 6. Constructed Bayesian network based on the Pearson correlation coefficients between DNA methylation 
levels and gene expression levels for thirty-two genes-in-common identified in tumor samples. The scatter dot 
plots show the Pearson correlation coefficients for the thirty-two common genes. In each scatter dot plot, the red 
color indicates the normal sample and the green color indicates the tumor sample. The horizontal lines indicate the 
median Pearson correlation coefficients. The scatter plots display the correlation, based on the Pearson correlation 
coefficients in tumor samples, between two cancers along with the linear regression lines.

Further validation

Further validation based on the identification of somatic signatures

By identifying the somatic signatures of eight distinct cancer types, there was an 
obvious difference in distribution of the somatic motifs between them. We noted that the 
contribution of C>T was higher in Gbm and Skcm than in other cancers. After the somatic 
signatures were clustered, we observed that Thca, Ov, Kirc and Gbm were clustered into one 
group whereas Lusc, Luad, Hnsc and Skcm were clustered into another separate group (See 
Figure 7A). This result supports our above conclusion in which the associations exist among 
these selected four cancers.

Further validation based on the association rules analysis

Applying the Apriori algorithm, with a cut-off of support of 0.8 and confidence of 0.8, 
we obtained twelve association rules. By analyzing these association rules, we found that Hnsc, 
Skcm and Luad are potentially associated. We used a graph-based technique (http://lyle.smu.
edu/~mhahsler) which offers a very clear representation to visualize the twelve association 
rules we obtained (See Figure 7B). In this graph, the vertices represent items or item sets and 
the edges indicate the relationship in rules. From Figure 7B, we can see that Luad, Skcm and 
Hnsc are linked indirectly by sharing some common items. This result therefore also supports 
our above conclusion.
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Figure 7. Further validation based on two different methodologies. A. Further validation based on the identification 
of somatic signatures. Following clustering of the somatic signatures, Thca, Ov, Kirc, and Gbm were clustered into 
one group whereas Lusc, Luad, Hnsc, and Skcm were clustered into another separate group. B. Further validation 
based on the association rules analysis. This graph visualizes the twelve association rules. The vertices represent 
items or item sets and the edges indicate the relationship in rules. Luad, Skcm and Hnsc are linked indirectly by 
sharing common items.

DISCUSSION

Cancer metastasis results from several interconnected processes such as cell 
proliferation, cell adhesion, migration, and invasion into the surrounding tissue. Metastasis 
is the leading reason for the resulting mortality of cancer patients (Khan and Mukhtar, 2010). 
Therefore, it is important to study cancer associations or metastasis from multiple molecular 
biology levels. The identification of clinically relevant biomarkers will help achieve a more 
effective diagnosis and prognosis contributing to personalized or precision cancer therapy. In 
practice, many studies involved in the somatic mutation analysis of cancers have provided 
valuable information for understanding cancer development or metastasis. However, 
characterizing somatic mutations and their functional consequences in tumor tissues remains 
a challenge. With the rapid technological advances in acquiring data from diverse platforms 
in cancer research, numerous large scale datasets have become available, providing high 
resolution views and multi-faceted descriptions of biological systems (Kong et al., 2011). 
Accordingly, multilevel -omics data integration approaches will help researchers to uncover 
further systemic information about cancer associations and metastasis. In the current study, we 
conducted a multi-omics data analysis to detect the potential risk of association or metastasis 
for four cancers. We identified thirty-two genes-in-common that harbored the greatest number 
of somatic mutations and these genes were shared by four distinct cancer types. Data was 
obtained on these genes-in-common concerning their DNA methylation status and levels 
of gene expression and a Pearson correlation coefficient calculated to assess the correlation 
between DNA methylation level and gene expression. Based on these three parameters, we 
constructed three individual Bayesian networks, and from these networks, we observed that 
there was a significant association betwen these four cancers. Further validation, based on 
the ‘identification of somatic signatures’ and the ‘association rules analysis’ confirmed these 
associations. Our analysis will not only help understand the potential links between different 
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cancers as a whole, but can also help prioritize candidate cancer-causing mutations or genes 
and to elucidate potential cancer-type-dependent functional effects.

The limitations of our study should however be addressed. Among the thirty-two 
gene-in-common, TP53 was excluded based on its lower mutation frequency in Skcm cancer. 
A previous study has reported that p53 mutations in human cutaneous melanoma correlate 
with sun exposure but do not contribute to melanomagenesis (Zerp et al., 1999). However, 
it is known that somatic mutations in the TP53 gene are one of the most frequent alterations 
in human cancers (Olivier et al., 2010). In our analysis, TP53 displayed the greatest mutation 
frequency in Hnsc (Mutation frequency = 323, ranked 2nd in the mutation frequency list), as 
well as in Luad (Mutation frequency = 361, ranked 9th in the mutation frequency list) and 
in Lusc (Mutation frequency = 154, ranked 3rd in the mutation frequency list). Therefore, 
the use of a cut-off to eliminate genes such as TP53, which are not be shared all four cancer 
types, shows that important genes may be inadvertently eliminated from the analysis. Another 
limitation is that although our studies are supported by previous studies, this may not be 
sufficient supporting evidence. The integration of other available data, such as somatic copy 
number alterations (SCNAs) which affect a larger fraction of the genome in cancers than do 
any other type of somatic mutation, will be needed to validate these results. In addition, both 
network context and pathway information will help improve the power of data integration 
analysis and aid in finding those driver mutations which can confer metastatic potential. 
However, our current studies did not include any of this type of information. In the future 
we expect that the integration of more available data types along with biological context 
will allow a greater ability to detect and to find the potential cancer associations or predict 
metastasis in future studies
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Table S1. Thirty-two genes-in-common harboring the most somatic mutations across four different cancer types. 

Figure S1. Determination of the cut off for somatic mutation frequency. In order to filter the appropriate number 
of genes in common across the four different cancer types based on somatic mutation frequency, the cut off was 
determined by analyzing the relationship between somatic mutation frequency and the number of genes in common. 
As the number of genes in common increased, the somatic mutation frequency decreased rapidly. The somatic 
mutation frequency of 40 was taken as the cut off to filter genes in common across the four different cancer types. 
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