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ABSTRACT. Microarray gene expression technology provides a 
systematic approach to patient classification. However, microarray data 
pose a great computational challenge owing to their large dimensionality, 
small sample sizes, and potential correlations among genes. A recent 
study has shown that gene-gene correlations have a positive effect on the 
accuracy of classification models, in contrast to some previous results. 
In this study, a recently developed correlation-based classifier, the 
ensemble of random subspace (RS) Fisher linear discriminants (FLDs), 
was utilized. The impact of gene-gene correlations on the performance 
of this classifier and other classifiers was studied using simulated 
datasets and real datasets. A cross-validation framework was used to 
evaluate the performance of each classifier using the simulated datasets 
or real datasets, and misclassification rates (MRs) were computed. 
Using the simulated data, the average MRs of the correlation-based 
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classifiers decreased as the correlations increased when there were 
more correlated genes. Using real data, the correlation-based classifiers 
outperformed the non-correlation-based classifiers, especially when the 
gene-gene correlations were high. The ensemble RS-FLD classifier is a 
potential state-of-the-art computational method. The correlation-based 
ensemble RS-FLD classifier was effective and benefited from gene-
gene correlations, particularly when the correlations were high.

Key words: Classifier; Gene expression; Correlation-based; 
Linear discriminant analysis; Random subspace

INTRODUCTION

Microarray gene expression technology provides a systematic approach to cancer 
classification (Golub et al., 1999; Ross et al., 2000) and continues to be used to clarify the 
mechanisms of human diseases (Novianti et al., 2014). However, microarray data pose a great 
challenge for computational techniques owing to their large dimensionality and small sample 
sizes (Saeys et al., 2007). Correlations among genes present additional challenges and are 
often not incorporated into analyses (Xu et al., 2015).

The classical Fisher linear discriminant analysis (FLDA) deals with multivariate 
(multi-gene) correlations when the sample size exceeds the dimensions. When the dimensions 
are higher than the sample size, the sample covariance matrix is not invertible, and the FLDA 
is not applicable (McLachlan, 2004). Many methods have been proposed to overcome this 
problem (see Slawski et al., 2008 and Kalina, 2014 for a summary). Some of these methods do 
not consider multivariate correlations (i.e., they are not correlation-based), e.g., the diagonal 
linear discriminant analysis (DLDA), which assumes that the within-class covariance matrices 
are diagonal (Slawski et al., 2008). Other methods account for correlations (i.e., they are 
correlation-based), e.g., the ensemble of random subspace (RS) Fisher linear discriminant 
(FLD) classifier, which averages the decisions of the base FLD classifiers in lower-dimensional 
subspaces and gene-gene correlations might be utilized (Durrant and Kabán, 2015).

The performance of classifiers varies among datasets. Gene-gene correlations within 
datasets affect the performance of classifiers (Jong et al., 2014). A previous study (Novianti 
et al., 2015) has shown that the within-class correlation has a positive effect on the accuracy 
of classification models. However, an earlier study (Kim and Simon, 2011) showed that the 
correlation structure has a negative impact on the performance of classifiers, such as the 
PAM (prediction analysis of microarrays) probabilistic classifier, the Bayesian composite 
probabilistic classifier (both of which are non-correlation-based), and the penalized logistic 
regression (PLR) classifier (correlation-based), but the PLR is effective for strong correlations. 
Another study (Dudoit et al., 2002) showed that the DLDA classifier (non-correlation-based) 
performed well compared with FLDA (correlation-based).

In this study, the recently developed ensemble RS-FLD classifier was utilized as 
model correlation-based linear discriminant classifier and was compared with DLDA, PAM, 
and other classifiers. The impact of gene-gene correlations on classifier performance was 
studied using simulated datasets and real datasets.
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MATERIAL AND METHODS

Classifiers

The ensemble RS-FLD classifier (referred as enRS-FLD) was chosen to account for 
gene-gene correlations. It uses all variables and correlations among variables in subspaces 
composed of randomly selected variables. The analysis was conducted in Matlab according 
to the algorithm described in Durrant and Kabán (2015). The same parameters as in Durrant 
and Kabán (2015) were also used. The dimension of the subspaces, k, was set to (N - 2) / 2 to 
optimize the classification, where N was the number of samples in the training dataset. The 
number of subspaces, M, was set to 1000.

The DLDA classifiers using all genes (referred to as allDLDA) and filtered genes 
(referred to as filterDLDA) were chosen for comparison. The filtered genes were obtained by 
deleting unrelated genes (false discovery rate multiple testing adjustment P value > 0.05) and 
redundant genes (|correlation coefficient| > 0.8) (Valavanis et al., 2015). The classification 
was conducted in Matlab according to the algorithms described in Dudoit et al. (2002) and 
Valavanis et al. (2015).

PAM is an enhanced nearest prototype (centroid) classifier that uses “nearest shrunken 
centroids” to identify subsets of genes that best characterize each class (Tibshirani et al., 2002). 
Soft thresholding was used to perform variable selection (Slawski et al., 2008), which was 
implemented using the R package pamr (Hastie et al., 2014). The classifier was trained using 
training samples and the threshold parameter was tuned at the training stage. The classifier was 
then applied to the test samples to obtain class predictions.

SVM (support vector machine) classification is a correlation-based binary classification 
that works with selected variables (features) and fits an optimal hyperplane between two classes by 
maximizing the margin between the closest points (Statnikov et al., 2005; Novianti et al., 2015). 
This classification was implemented in Matlab using the functions svmtrain and svmclassify.

Availability of data and materials

The datasets supporting the conclusions of this article are available in (Dataset Colon, 
2016; Dataset ALL-AML, 2016; Dataset Prostate, 2016), and the Gene Expression Omnibus 
website (Gene Expression Omnibus, 2016) under the accession numbers GSE42133, GSE57162, 
GSE49710, GSE4922, and GSE19159. The R package pamr is available in (Hastie et al., 2014).

Classifier performance

Cross-validation (CV) (Durrant and Kabán, 2015; Tan et al., 2015) was used to evaluate 
the performance of each classifier using the simulated datasets and real datasets. In the process 
of CV, the dataset was split into testing set, of which the classes were assumed unknown, 
and training set, by which the classifier was trained. Some classifiers might also carry out 
inner-set cross-validation in training to tune the parameters (e.g., pamr). Being trained by the 
training set, the classifier could predict the classes for the testing set. Misclassification rates 
(MRs) were computed to evaluate the performance of the classifier. For simulated datasets, 
the number of samples was small and leave-one-out CV was used. For real datasets, CV was 
performed according to Durrant and Kabán (2015), in which we ran experiments on 100 
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independent splits, and in each split we took 12 samples for testing and used the remainder for 
training. MRs were averaged over the 100 splits.

Simulated datasets

The Monte Carlo setup was described previously (Kim and Simon, 2011). Simulated 
datasets were generated using multivariate normal distributions with class-specific mean 
vectors and common covariance matrices. Each dataset contained 30 samples that were 
randomly assigned to class 0 or 1. The simulations were performed with p = 1000 genes 
(variables), and the first p1 = 50 were differentially expressed between classes with a mean 
difference of 1. The remaining 950 genes had the same mean for each class. For the common 
covariance matrix, Structures 1-3 as defined in Kim and Simon (2011) were used. In Structure 
1, few genes were correlated; in Structure 3, many genes were correlated. The correlation 
coefficients for the three structures were 0.25, 0.5, and 0.75. The case of full independence was 
also studied. In total, 1000 simulated datasets were generated for each structure.

Real datasets

Three gene expression datasets, Colon (Alon et al., 1999; Dataset Colon, 2016), ALL-
AML (Golub et al., 1999; Dataset ALL-AML, 2016), and Prostate (Singh et al., 2002; Dataset 
Prostate, 2016), which have been extensively studied (Dembélé and Kastner, 2014; Durrant 
and Kabán, 2015), were included in the study. Five Gene Expression Omnibus datasets used 
in recently published studies, GSE42133 (Pramparo et al., 2015), GSE57162 (Gowrishankar 
et al., 2015), GSE49710 (Zhang et al., 2015), GSE4922 (Ivshina et al., 2006; Blagus and 
Lusa, 2015), and GSE19159 (Gravier et al., 2010; Zhang and Pan, 2016), were also included. 
The datesets are summarized in Table 1. Ethics approval was obtained in previous studies and 
accordingly was not required for this study.

Nsample: number of samples; Ngene: number of genes; ALL: acute lymphoblastic leukemia; AML: acute myeloid 
leukemia; ASD: autism spectrum disorder; HR: high risk; ER: estrogen receptor status.

Table 1. Gene expression datasets.

Source Dataset Samples analyzed Nsample Ngene 
Alon et al. (1999) Colon Tumor/Normal 62 (40/22) 2,000 
Golub et al. (1999) ALL-AML ALL/AML 72 (47/25) 7,129 
Singh et al. (2002) Prostate Tumor/Normal 102 (52/50) 12,533 
Pramparo et al. (2015) GSE42133 (Autism) ASD/Control 147 (91/56) 47,231 
Gowrishankar et al. (2015) GSE57162 (Renal cortical neoplasm) Benign/Malignant 191 (36/155) 43,102 
Zhang et al. (2015) GSE49710 (Neuroblastoma) HR, Event yes/no 176 (120/56) 43,291 

Class unfavorable/favorable 272 (91/181) 43,291 
Ivshina et al. (2006) GSE4922 (Breast cancer) ER +/- 245 (211/34) 22,215 

Grade 1&2/3 289 (234/55) 22,215 
Gravier et al. (2010) GSE19159 (Breast carcinoma) Outcome, Good/Poor 168 (111/57) 2,905 
 

RESULTS

Classifier performance using simulated datasets

The MR for each simulated dataset was computed using leave-one-out CV and 
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averaged over 1000 simulation replications to reduce the standard deviation. The results are 
shown in Figure 1.

Figure 1. Average MR (1000 replications) for simulated datasets.

Overall, the average MRs for the classifiers allDLDA, filterDLDA, and PAM (all of 
which are non-correlation-based) increased as the correlation increased. The average MRs of the 
classifiers enRS-FLD and SVM (both of which are correlation-based) increased as the correlation 
increased for Structures 1 and 2 and decreased as the correlation increased for Structure 3.

The average MR for filterDLDA was lower than that of allDLDA for Structures 2 and 
3. For Structure 1, the average MR of filterDLDA was somewhat lower than that of allDLDA 
for low correlations and similar to allDLDA for high correlations.

The average MR for PAM was somewhat lower than that of filterDLDA for Structure 
3. For Structures 1 and 2, it was somewhat lower than that of filterDLDA for low correlations 
and somewhat higher than that of filterDLDA for high correlations.

The average MR for enRS-FLD was similar to that of SVM for Structures 2 and 3, and 
somewhat lower than that of SVM for Structure 1. The average MRs for enRS-FLD and SVM 
were largely lower than those of the three other classifiers at high correlations for Structure 3. 
They were similar to or lower than that of allDLDA and similar to or somewhat higher than 
those of filterDLDA and PAM for Structure 2. They were similar to or somewhat higher than 
those of the three non-correlation-based classifiers for Structure 1.

Classifier performance with real datasets

The MR for each real dataset was computed using CV of splitting and averaged over 
100 splits. The results are shown in Table 2.

Overall, the MRs for filterDLDA were lower than those of allDLDA except for dataset 
‘GSE49710, HR-Event’, the MRs of enRS-FLD were lower than those of filterDLDA, and the 
MRs of PAM and SVM were similar to those of enRS-FLD. However, the MRs of enRS-FLD 
and SVM were significantly lower than that of PAM for dataset GSE42133.

Impact of gene-gene correlations on classifier performance

For each real dataset, within-class correlations (averaged over the two classes) were 
computed for all gene pairs. Distributions of within-class correlations are shown in, Figures 
S1-S10. The average of absolute within-class correlations (denoted withincor) was calculated 
for each dataset and is shown in Table 2 and Table S1.

http://www.geneticsmr.com/year2017/vol16-1/pdf/gmr-16-01-gmr.16019357-su1.pdf
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*Each rate is accompanied with a standard error.

Table 2. Misclassification rate for the classifiers.

 Classifiers 
Dataset withincor allDLDA filterDLDA enRS-FLD PAM SVM 
Colon 0.474 0.289 ± 0.015* 0.202 ± 0.011 0.180 ± 0.009 0.164 ± 0.011 0.184 ± 0.010 
ALL-AML 0.166 0.143 ± 0.011 0.063 ± 0.009 0.034 ± 0.006 0.023 ± 0.004 0.029 ± 0.005 
Prostate 0.331 0.404 ± 0.012 0.278 ± 0.014 0.100 ± 0.008 0.103 ± 0.009 0.091 ± 0.008 
GSE42133 0.095 0.283 ± 0.012 0.278 ± 0.012 0.239 ± 0.012 0.313 ± 0.012 0.228 ± 0.011 
GSE57162 0.182 0.053 ± 0.006 0.044 ± 0.006 0.015 ± 0.003 0.033 ± 0.005 0.015 ± 0.003 
GSE49710, HR-Event 0.353 0.312 ± 0.013 0.366 ± 0.013 0.302 ± 0.010 0.333 ± 0.013 0.308 ± 0.011 
GSE49710, Class 0.305 0.137 ± 0.009 0.099 ± 0.008 0.038 ± 0.006 0.054 ± 0.007 0.038 ± 0.006 
GSE4922, ER 0.110 0.121 ± 0.009 0.117 ± 0.009 0.102 ± 0.008 0.117 ± 0.009 0.115 ± 0.008 
GSE4922, Grade 0.108 0.139 ± 0.010 0.143 ± 0.010 0.140 ± 0.011 0.145 ± 0.010 0.153 ± 0.010 
GSE19159 0.122 0.224 ± 0.011 0.209 ± 0.011 0.214 ± 0.012 0.246 ± 0.013 0.217 ± 0.012 
 

To study the impact of gene-gene correlations on classifier performance, we computed 
the MR ratio of enRS-FLD to allDLDA and the MR ratio of enRS-FLD to filterDLDA for 
each real dataset. The relationships between gene-gene correlations and the MR ratios are 
demonstrated in Figure 2. Overall, most of the MR ratios were less than 1, and they decreased 
as the correlations increased. The relationships for simulated datasets are also shown for 
comparison. The relationships between gene-gene correlations and the MR ratios of enRS-
FLD to filterDLDA for real datasets were similar to those of simulated datasets for Structure 3.

Figure 2. MR ratio of classifiers for real datasets and simulated datasets.

Classifier performance with simulated datasets using modified settings

The fold-changes and the number of differentially expressed genes (DEGs) may also 
affect classifier performance (Novianti et al., 2015). These parameters were computed for each 
real dataset and are shown in Figures S1-S10 and Table S1. They differed among datasets; 
DEGs typically represented greater than 5% of genes; the (normalized) fold changes were 
normally less than 1. Accordingly, simulations were performed using modified settings in 
which the first p1 = 200 genes were differentially expressed between classes with a mean 
difference of 0.5. The results are summarized in Figure 3.

http://www.geneticsmr.com/year2017/vol16-1/pdf/gmr-16-01-gmr.16019357-su1.pdf
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Figure 3. Average MR of simulated datasets using modified settings.

Overall, the average MRs of the three non-correlation-based classifiers were similar 
to or higher than those of the two correlation-based classifiers in all cases. For Structure 3, the 
average MRs of the two correlation-based classifiers were largely lower than those of the three 
non-correlation-based classifiers in the case of non-zero correlations.

DISCUSSION

Classifier performance

In this study, the performances of non-correlation-based classifiers (allDLDA, 
filterDLDA, and PAM) and correlation-based classifiers (enRS-FLD and SVM) were studied 
using simulated datasets and real datasets. Using simulated datasets, the correlation-based 
classifiers benefited from high correlations in the case of Structure 3, in which more genes 
were correlated. Using the real datasets, the classifier enRS-FLD outperformed the classifiers 
allDLDA and filterDLDA with respect to prediction accuracy, especially when the correlations 
were high, and outperformed PAM, especially for dataset GSE42133. Additionally, the enRS-
FLD algorithm was simpler and more robust than SVM, and SVM might fail occasionally 
owing to a lack of convergence.

The relationships between gene-gene correlations and the MR ratios of enRS-FLD 
to filterDLDA for real datasets were similar to the relationships for simulated datasets for 
Structure 3, suggesting that Structure 3 was more realistic in this case.

Comparison with previous studies

The MR results for enRS-FLD were consistent with previous results obtained for enRS-
FLD (Durrant and Kabán, 2015) using the shared datasets Colon, ALL-AML, and Prostate. The 
enRS-FLD analysis in this study outperformed previous results using PLR (Kim and Simon, 
2011) with simulated datasets and outperformed FLDA (Dudoit et al., 2002) with the shared 
dataset ALL-AML. They were consistent with results obtained for the module-based classifier 
in (Pramparo et al., 2015) using the dataset GSE42133 and a test dataset and outperformed 
the classification results in (Gowrishankar et al., 2015) using the shared dataset GSE57162. 
They were consistent with the results of the boosting classifiers in (Blagus and Lusa, 2015) 
using the shared datasets ‘GSE4922, ER’ and ‘GSE4922, Grade’ and were consistent with the 
results obtained using the classifiers in (Gravier et al., 2010) with the shared dataset GSE19159. 
Accordingly, the ensemble RS-FLD classifier is an effective new technique.
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CONCLUSION

The correlation-based classifier ensemble RS-FLD was effective and benefited from 
gene-gene correlations, particularly when the correlations were high.
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