
Genetics and Molecular Research 6 (4): 1178-1189 (2007) FUNPEC-RP www.funpecrp.com.br

Comparative genomics of grasses tolerant  
to aluminum 

S.N. Jardim

Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil 
Corresponding author: S.N. Jardim
E-mail: silvia@icb.ufmg.br

AbStrACt. The family Poaceae includes over 10,000 species, 
among which are the most economically important cereals: maize, sor-
ghum, rice, wheat, rye, barley, and oat. These cereals are very impor-
tant components of human and animal food. Although divergence of 
the members of this family occurred about 40 million years ago, com-
parative genome analyses demonstrated that gene orders among species 
of this family remain largely conserved, which can be very useful for 
understanding their roles and evolution. Even with an intricate evolu-
tionary history in which chromosome fragments, losses and duplica-
tions have to be considered at the ploidy level, grasses present a genetic 
model system for comparative genomics. The availability of mapped 
molecular markers, rice genome sequences and BAC and EST libraries 
from several grass species, such as rice, wheat, sorghum, and maize, fa-
cilitates biology and phylogeny studies of this group. The value of using 
information from different species in modern plant genetics is unques-
tionable, especially in the study of traits such as tolerance to aluminum 
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INtroduCtIoN

The grasses, which belong to the family Poaceae, currently include over 10,000 species 
(Kellogg, 2000); they share a common ancestor between 41 and 47 million years ago (Paterson 
et al., 2004). Among the members of this family are the cereals of highest economic relevance in 
the world, such as maize, sorghum, rice, wheat, barley, rye, and oats, which are responsible for a 
large proportion of human and animal food. These species present great diversity in the number 
of chromosomes (rice, 12; maize, 10; sorghum, 10; barley, rye and diploid wheat, 7; hexaploid 
wheat and oats, 21) and genome size (430 MPB in rice to 15,996 MPB in wheat) (Arumuganathan 
and Earle, 1991). Despite this variation, there is conservation in the content and gene order in 
the grasses (Gale and Devos, 1998), with high collinearity between the genetic maps, and in the 
positioning in regions corresponding to important characteristics controlled by quantitative trait 
loci (QTLs). For such reasons, they have been considered to be a unique genetic system (Ben-
netzen and Freeling, 1993). 

Similarities and differences between the genomes of distinct species may be studied 
through comparative genomics, an area of genetics that allows the comprehension of the func-
tion of such genomes and the evolutionary processes that acted on them. Model organisms 
are widely employed in these studies, especially those with genomes that have already been 
sequenced, because the complete sequence has much of the information necessary to compre-
hend these organisms. Characteristics that are common to two species, from close phyla or not, 
provide useful information that may be explored in these studies. 

Ionic aluminum is highly toxic to plant growth, and there is a wide variation in alumi-
num sensitivity between different species, which means there are differences in the ability to 
resisting the hazardous effects of Al3+. Significant differences have been described, even among 
species of the same genus. Many studies regarding genes involved in aluminum tolerance have 
been conducted with grass species, and some loci of certain species have been related to this 
tolerance. Tolerance to aluminum is a very appropriate trait for comparative genomic studies in 
plants, because it is related to a complex metabolic process that remains unclear, and there are 
great variations in the mechanisms of action between different species. Comparative genomics 
will allow the identification of the best alleles to aid in the development of new cultivars in dif-
ferent species, either by assisted selection programs or by producing transgenic plants.

MACro- ANd MICro-CollINeArIty of grASS geNoMeS

The first consensus genetic map of grasses was published by Moore et al. (1995), who 
described the genome alignment of six species: rice, wheat, maize, sugar cane, sorghum, and 

in soils, which affects plant growth and development. Comparative ge-
nomic approaches to aluminum tolerance can identify genomic regions 
and genes responsible for aluminum tolerance in grasses.

Key words: Comparative genomics, Aluminum tolerance, Grasses



Genetics and Molecular Research 6 (4): 1178-1189 (2007) www.funpecrp.com.br

Genetics of aluminum tolerance in grasses 1180

foxtail millet. This consensus map has been updated (Gale and Devos, 1998; Devos and Gale, 
2000; Devos et al., 2005), including maize, rice, foxtail millet, sorghum, pearl millet, Festusca/
Lolium, oat, and Triticieae genomes in its latest version. 

Ortholog markers have been widely used in the construction of genetic maps of grasses. 
The first sorghum genetic map used RFLP probes from maize (Hulbert et al., 1990). Cloned 
fragments of 14 characterized genes and 91 random maize fragments were tested in sorghum 
using RFLPs. Most of the probes detected polymorphisms among the seven sorghum lines 
tested, which allowed the construction of linkage groups and comparison of the same loci with 
maize. Many rearrangements were detected between these two species.

cDNA rice clones corresponding to unique loci in the rice map were evaluated in two 
maize lines and 85% of the clones hybridized with some region of the maize genome. These 
cDNAs were used for the construction of a linkage map based on ortholog rice regions (Ahn 
and Tanksley, 1993).

Through the hybridization with the same cDNA clone collection in wheat and rice, 
a genetic map of rice based on ortholog regions between these two species was constructed, 
which showed that synteny in many loci is highly conserved (Ahn et al., 1993). By combining 
these data and a comparative map of rice and maize (Ahn and Tanksley, 1993) many homolo-
gies were found between chromosomes of these three species. 

The high degree of conservation of position and order of ortholog markers between dif-
ferent grass species revealed by mapping studies is surprising, considering the size differences 
and the long interval since the divergence of the species in this family, 41 to 47 million years ago 
(Devos and Gale, 1997; Gale and Devos, 1998; Keller and Feuillet, 2000; Paterson et al., 2004). 
QTL and genes related to important evolutionary and agronomic characteristics, such as shat-
tering, dwarfing, and flowering time, were also found to have collinearly between grass species 
(Paterson et al., 1995; Pereira and Lee, 1995), reinforcing the macro-collinearity concept. 

Plants height is an example of such behavior. Three QTLs for plant height in sorghum 
were identified in linkage groups A, E and H, orthologs to regions of chromosomes 1, 6 and 9 
of maize, respectively, which also have QTLs for plant height (Pereira and Lee, 1995).

Genes and QTLs related to aluminum tolerance are located in ortholog genomic re-
gions between the grasses. The QTL to the characteristic, located on chromosome 1 of rice is 
ortholog to the AltSB sorghum gene, located on chromosome 3, and the QTL found on chro-
mosome 3 of rice is ortholog to the AltBH wheat genes (chromosome 4DL) and to barley Alp 
(chromosome 4H) (Magalhães et al., 2004).

However, there are many exceptions to collinearity at a molecular level. The first 
comparative studies to evaluate genic organization were developed between genomic regions 
flanking two maize loci, sh2/a1 and Adh1, and homologue regions in sorghum and rice. The 
restriction mapping and the partial sequencing of sh2/a1 demonstrated that gene order and 
composition are conserved among maize, sorghum and rice (Chen et al., 1997), but the non-
codifier regions, such as MITEs and SSRs, are not conserved. 

A comparison of maize, sorghum and rice sequences for locus Adh1 (Tarchini et al., 2000) 
showed that deletions/insertions or translocations of genes occurred during evolution. In maize, nine 
genes were found at this locus, distributed along 225 kb. In a 78-kb space in the sorghum genome, 
nine maize homologues were identified in co-linear order, along with five additional genes. The 
quantity of DNA conserved between maize and sorghum at this locus is 22% for maize and 57% 



Genetics and Molecular Research 6 (4): 1178-1189 (2007) www.funpecrp.com.br

S.N. Jardim 1181

for sorghum. At this locus, most of the maize DNA is composed of LTRs in the intergenic spaces, 
while no LTR was detected in sorghum in this region (Tikhonov et al., 1999). In rice, locus Adh1 is 
connected to locus Adh2, on chromosome 11, whereas in maize and sorghum, these loci are found 
on different chromosomes: Adh1 on chromosome 1 of maize and linkage group C of sorghum; Adh2 
on chromosome 4 of maize (Paterson et al., 1995; Tarchini et al., 2000).

A similar microcollinearity loss was found between stem rust resistance gene rgp1 locus 
in barley and the ortholog region in rice. In barley this locus is found on chromosome 1, with 
considerable synteny with chromosome 6 of rice. However, the insertion of a 10-15-kb fragment 
ruptured collinearity between these chromosomes at the rgp1 gene locus (Kilian et al., 1997). 

Therefore, if on one hand macrocollinearity is maintained between the grasses, on the 
other hand different types of rearrangements affect this microcollinearity.

Song et al. (2002) identified ortholog regions in maize, sorghum, and in two subspecies of 
rice that presented microcollinearity; however, the microcollinearity was interrupted between these 
species. Six genes were found in the rice genomic region, 15 genes in sorghum and 13 genes in 
maize. The microcollinearity detours were attributed to micro-rearrangements or genomic changes 
on a small scale, such as insertions, deletions, duplications, and inversions (Bancroft , 2000).

geNoMIC duplICAtIoN

According to Stebbins (1971) all genera and families of grasses are derivatives of lines that 
underwent genome duplication at some time during their evolutionary history. Ancient duplication 
and subsequent diploidization has shaped the genomes of all Poaceae crop species. In maize, the 
most recent duplication of its genome occurred about 11.4 million years ago (Gaut and Doebley, 
1997). With rice, for instance, it has been found that 53-62% of the genome is duplicated (Guyot and 
Keller, 2004; Paterson et al., 2004) and phylogenetic studies of these duplicated genes suggest that 
this occurred before grass line divergence (Vandepoele et al., 2002; Paterson et al., 2004). 

Gene duplication is the main source of new genes in genomes. Sequences of two paral-
ogous genes from a duplication event will become different from each other due to evolutionary 
processes (Wen et al., 2005). Because they have duplicated regions, grass genomes also present 
inconsistency when compared to themselves, which makes studying them much more difficult. 
Loci that are incongruent with the most parsimonious syntenic/colinear relationships among 
rice and sorghum (for example), are located on the homoeologous chromosomal regions that 
resulted from ancient duplication (Paterson et al., 2004). Loss of some DNA sequences after 
polyploidy formation is rapid (Eckhardt, 2001) and the extent to which differential gene loss 
accounts for incongruity in comparative maps should be related to the duration of the period 
between the duplication event and the divergence of the respective lineages. Rapid diploidiza-
tion events that occurred shortly after polyploidization would be expected to affect all Poaceae, 
whereas gene loss after taxon divergence would contribute to incongruities among comparative 
maps of the Poaceae (Paterson et al., 2004). 

MoNoCot ANd dICot dAtA CoMpArISoN

Similar to what is known for grasses, many studies also suggest common content and 
gene orders among evolutionarily close dicots (Lan et al., 2000; Rossberg et al., 2001; Lukens 
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et al., 2003). However, gene order conservation between mono- and dicots is still highly contro-
versial. Paterson et al. (1996) suggested that the collinearity of chromosome segments between 
sorghum and Arabidopsis thaliana includes a distance smaller than 3 cM throughout the entire 
genome. Tikhonov et al. (1999) and Bennetzen et al. (1998) showed that the Adh1 and sh2/a1 
gene regions between maize, sorghum and Arabidopsis did not present sequence collinearity. 
Both genes were mapped in only one region of the genome, both in sorghum and maize; that 
does not occur with Arabidopsis. In this genus, both genes bore similarity to two distinct BACs 
separated by at least 100 kb. Hence, there apparently is a lack of microcollinearity between 
Arabidopsis and maize, and between Arabidopsis and sorghum for these genes. 

Though a comparative analysis of rice and Arabidopsis, model species for monocots 
and dicots, respectively, identified homologue segments between the genomes, only 5 of 24 
genes were conserved between these two genomes (van Dodeweerd et al., 1999). There has 
been considerable controversy regarding the collinearity between these two species. Compari-
son of the Arabidopsis sequence to selected fully sequenced rice BACs or contigs has led to 
conclusions ranging from ‘scant collinearity’ (Gaut and Doebley, 1997; Ming et al., 1998) to 
‘frameworks of conserved genes’ (Kellogg, 2003).

However, as a result of the sequencing of rice and Arabidopsis genomes, more precise 
studies have been developed. Goff et al. (2002) compared all annotated Arabidopsis proteins 
to mapped rice contigs, forming syntenic groups. They found 137 Arabidopsis-rice syntenic 
groups at 75 rice chromosomal locations throughout the genome with 99.9% confidence. How-
ever, within these syntenic groups, several rice blocks map to more than one site in the Arabi-
dopsis genome, supporting previous hypotheses that detectable synteny exists between mono-
cots and dicots even after 200 million years of divergence, although the conservation is less 
extensive than previously predicted (Paterson et al., 1996). The rice and Arabidopsis genomes 
are rearranged to such an extent that constructing a monocot-dicot comparative framework 
based on these two genomes would be difficult (Goff et al., 2002).

Despite the fact that there are many monocot- and dicot-specific genes, roughly 30% of 
Arabidopsis genes are found in rice ssp japonica, but not in Drosophila, Caenorhabditis elegans, 
Saccharomyces or sequenced bacterial genomes (Goff et al., 2002), which suggests that infor-
mation regarding a group (mono- or dicots) could be used to isolate ortholog genes in the other 
group, just as was done in 2006 by Hoekenga et al., who described the isolation of the AtALMT1 
gene in Arabidopsis thaliana from the sequence of their correlate in wheat; aluminum-activated 
malate transporter (ALMT1), described by Sasaki et al. (2004), and by Ligaba et al. (2006), who 
described the isolation of genes BnALMT1 and BnALMT2 in Brassica napus, involved in the 
aluminum tolerance mechanism of all three species, also from the ALMT1 sequence. 

AluMINuM toxICIty IN plANtS

Many abiotic factors affect plant development and growth, the level of free aluminum 
present in acid soils being one of them; aluminum toxicity is the main soil constraint for food 
and biomass production throughout the world. Because of its pH-dependent solubility, alumi-
num toxicity occurs only at soil pH values below 5.5. It is estimated that 40% of the arable 
soils of the world are acidic and therefore present aluminum toxicity hazards (von Uexküll and 
Mutert, 1995). 
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Soil correction, by neutralizing acidity may be applied to minimize the negative effect 
of aluminum on plants. However, in many agricultural systems its cost is high, especially in 
subsuperficial layers of the soil. 

The ionic aluminum seems to interfere with many biochemical and physiological proc-
esses (Kochian, 1995). Aluminum’s first toxicity symptom is inhibition of root growth, resulting 
in a damaged and reduced radicular system that results in limited absorption of water and mineral 
nutrients (Zheng et al., 2005), with a loss in the quality of the grains (Foy, 1992). Nevertheless, 
the mechanisms of this inhibition are not well comprehended. Roots affected by aluminum be-
come stubby and frequently are darkened. Fine branching and root hairs are reduced. At the root 
apex, cracks can easily be observed in the epidermis. Uneven and radial expansion of cells of the 
cortex cause root thickening and mechanical stress in the epidermis (Ciamprova, 2002).

The primary aluminum toxicity site is the root apex (Ryan et al., 1993; Sivaguru and 
Horst, 1998; Sivaguru et al., 1999), the cell wall being affected, as well as the plasmatic mem-
brane, the cytoskeleton and the cells’ nucleus. Though most of the aluminum associated with 
the root is located in the apoplast, a small fraction rapidly penetrates the symplast and interacts 
with symplast targets (Lazof et al., 1996; Sivaguru and Horst, 1998; Silva et al., 2000), ruptur-
ing the cytoskeleton dynamics and interacting with both microtubules and actin filaments, im-
portant structures for the inhibition of root elongation (Grabski and Schindler, 1995; Blancaflor 
et al., 1998; Sivaguru et al., 2003).

Recently, evidence that the aluminum causes oxidative stress in the cells of plants by 
promoting lipid peroxidation has emerged (Yamamoto et al., 2001), along with expression of 
oxidative-stress genes (Milla et al., 2002). Boscolo et al. (2003) demonstrated that aluminum 
induces the formation of oxygen-reactive species and subsequent protein oxidation in a maize 
line sensitive to aluminum, and not in a tolerant line. However, protein oxidation occurred after 
decreases in relative root growth observed in the sensitive line, indicating that oxidative stress 
is not the main cause of root growth inhibition. 

AluMINuM tolerANCe

Plants possess distinct tolerance mechanisms against aluminum in the soil, which may 
be divided into two categories. One is based on the external detoxification of aluminum, which 
protects the root apex against aluminum penetration, and the other one is based on compart-
mentalization of aluminum ions, once they are in the cytosol.

The mechanisms of exclusion are yet to be elucidated. The exudation of phenolic com-
pounds (Ofei-Manu et al., 2001), phosphate efflux (Pellet et al., 1996; Zheng et al., 2005), 
proteins connected to aluminum ion secretion (Basu et al., 1999), selective permeability of the 
plasmatic membrane to reduce capture of aluminum to the cytosol (Archambault et al., 1997), 
and pH control of the rhyzosphere mediated by the roots (Degenhardt et al., 1998) have been 
found to be involved in aluminum tolerance. 

However, the most widely studied means of external detoxification is the exudation of 
organic acids by the root, such as citrate, malate and oxalate acids (Ma et al., 1998; Ma, 2000; 
Ryan et al., 2001; Kochian et al., 2004). Di- and tricarboxylic acids form stable complexes with 
the Al3+ present in the rhyzosphere, reducing, or even annulling its toxic effects, since such 
complexes are incapable of passing the plasmatic membrane (Kochian et al., 2004). 
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Internal aluminum detoxification has been less studied. Both sensitive and tolerant 
plants are capable of accumulating aluminum when they grow in aluminum-rich acid soils 
(Foy, 1992; Watanabe and Osaki, 2002). In the internal mechanism, the aluminum is associated 
with organic binders, such as catequins, phenolic acids, and organic acids, and these complexes 
remain stored in specialized cells, such as the foliar epidermis (Watanabe and Osaki, 2002), 
thus preventing effects on plant metabolic processes. That strategy is used by moorish wheat, 
green tea (Camellia sinensis) and by hydrangea (Hydrangea macrophylla) (Takeda et al., 1985; 
Nagata et al., 1992; Ma et al., 1997a,b). In a tolerant maize variety, aluminum accumulates in 
the root cell vacuoles (Vazquez et al., 1999).

Though exudation of organic acids by the roots is considered the most important toler-
ance strategy, very little is known about the mechanism that unchains organic acid secretion. 
Alteration of organic acid metabolism and ionic channel activation have been investigated in 
the secretion of organic acids induced by aluminum. The organic acids are believed to chelate 
and detoxify the harmful aluminum cations near the root apex, which is the most sensitive re-
gion for aluminum stress (Ryan et al., 1993). However, Parker and Pedler (1998) emphasized 
that in wheat, a multifaceted, more integrative mode of resistance was probably occurring. 
Wenzl et al. (2001) demonstrated that organic acid secretion does not account for the high 
level of aluminum resistance in signal grass (Brachiaria sp), which indicates that organic acid 
secretion is not the only mechanism for aluminum resistance in plants. Recently, Piñeros et al. 
(2005) also reported that citrate efflux could not explain the difference in aluminum resistance 
in some maize cultivars, and Zheng et al. (2005) demonstrated that while aluminum-depend-
ent oxalic acid secretion might contribute to the overall high resistance to aluminum stress of 
buckwheat, this response cannot explain the variation in tolerance between sensitive and toler-
ant cultivars; the greater aluminum resistance in buckwheat is related to immobilization and 
detoxification of aluminum by phosphorus in the root tissues. 

AluMINuM tolerANCe IN grASSeS

Different species vary widely in their ability to tolerate the hazardous effects of alu-
minum and the significant contrasts have been described within a species. Genetic control of 
aluminum tolerance has been widely studied in grasses, especially members of the Triticeae 
tribe. In some wheat cultivars (Triticum aestivum L.), many genes with addition effects seem to 
be involved (Aniol and Gustafson, 1984; Aniol, 1990), being controlled by a single dominant 
gene in other cultivars (Kerridge and Kronstad, 1968; Aniol and Gustafson, 1984; Fisher and 
Scott, 1987; Larkin, 1987). Delhaize et al. (1993) demonstrated that locus Alt1 explains most of 
the differences in aluminum tolerance between isogenic wheat lines. Alt1 seems to be the same 
locus identified as Alt2 4D in chromosome of wheat by Luo and Dvorak (1996), using physi-
cal mapping. In this same 4D chromosome, tolerance gene AltBH was associated by Riede and 
Anderson (1996) with RFLP markers, being the bcd1230 drill, distant 1.1 cM from this gene. 
AltBH explains 85% of phenotypic variation for aluminum tolerance in the RILs generated by 
BH1146 and Anahuac wheat cultivars.

Recently, the ALMT1 gene, which codes a malate transporter activated by aluminum, 
was cloned by Sasaki et al. (2004); it was found to be related to aluminum tolerance in wheat. 
This gene probably corresponds to the previously described Alt1 locus (Sasaki et al., 2004). 
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The same markers connected to the AltBH gene were connected to the Alp gene of alu-
minum tolerance in barley (Hordeum vulgare L.). In this species, aluminum tolerance inherit-
ance is monogenic, as described by Minella and Sorrells (1992, 2002). The Alp gene is located 
on the 4H chromosome flanked at 2.1 cM by bcd1117, wg464 and cdo1395 markers, the last 
one being also connected to the AltBH wheat gene of tolerance. The bcd1230 marker, strongly 
connected to the AltBH wheat was mapped at 33 cM from the Alp gene, which suggests that a 
collinearity break by structural rearrangement between the chromosomes 4H of barley and 4D 
of wheat may have occurred (Tang et al., 2000). 

Four QTLs for tolerance to aluminum were described in oat (Avena strigosa Schreb.), 
explaining 55% of phenotypic tolerance variation (Wight et al., 2006). The QTL of greatest ef-
fect, responsible for 39% of variation, was associated with the bcd1250 marker, connected to 
the AltBH wheat tolerance gene. Therefore, it is likely that this genomic region contains the gene 
ortholog to the main aluminum tolerance gene found in the Triticeae. 

As for rye (Secale cereale L.), four loci related to aluminum tolerance were described: 
Alt1, located on chromosome 6RS; Alt2, located on chromosome 3RS; Alt3, located on chro-
mosome 4RL, and Alt4, located on chromosome 7RS (Aniol and Gustafson, 1984; Gallego 
et al., 1998; Miftahudin et al., 2002, 2005; Matos et al., 2005). Fontecha et al. (2007) cloned 
the rye ScALMT1 gene, homologue to wheat TaALMT1 and mapped it on chromosome 7RS, 
the same position as the previously identified Alt4 locus. The ScALMT1 gene co-segregates 
with the aluminum tolerance phenotype in rye. Using the same initiators used to clone gene 
ScALMT1 DNA sequences in Triticum urartu, Aegilops speltoides, Avena sativa, Saccharum 
officinarum, Zea mays, and Phaseolus vulgaris, all bore at least 72.3% similarity with the 
TaALMT1 sequences.

In rice, aluminum tolerance is a quantitative trait and QTL studies identified aluminum 
tolerance loci in all 12 rice chromosomes (Wu et al., 2000; Nguyen et al., 2001, 2002, 2003). 
Forty QTL were identified in four different populations, and epistasis was found between some 
of them. Despite the large number of QTLs, some were consistently identified in the four 
populations, one of them with a strong effect was located on chromosome 1 (Wu et al., 2000; 
Nguyen et al., 2001, 2002), and another on chromosome 3 (Nguyen et al., 2003). 

In sorghum (Sorghum bicolor L.), tolerance to aluminum is also controlled by a large 
gene located on chromosome 3, AltSB, whose position is not ortholog to Triticeae chromosomal 
group 4, the region of the AltBH wheat gene. However, sorghum chromosome 3 is homologue 
to chromosome 1 of rice, a region in which QTLs for aluminum tolerance were identified in 
different rice populations (Magalhães et al., 2004).

Tolerance to aluminum in maize also seems to be of quantitative inheritance, although it 
is controlled by a smaller number of genomic regions. Sibov et al. (1999) identified two QTLs as-
sociated with these characteristics on chromosomes 6 and 10 of maize, while Ninamango-Cárde-
nas et al. (2003) mapped 5 QTLs on chromosomes 2, 6, 8. Both groups utilized tropical maize 
populations and only one QTL, located on bin 6.00, a coincidence between the studies. 

CoNCluSIoNS

Despite the large amount of information available, comparative genomics is compli-
cated by evolutionary history, which includes changes in ploidy level, gene loss, and gene du-
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plication. Because grasses comprise a very cohesive genetic system, they are good candidates 
for comparative genomic studies. The current availability of mapped molecular markers and 
rice genome sequences, as well as BAC and EST for many species of the group, including 
rice, wheat, sorghum, and maize, will permit advances in the biological and phylogenic study 
of this group. Comparative genomic approaches to aluminum tolerance can now identify and 
appropriately utilize genomic regions and genes responsible for aluminum tolerance in grasses, 
regardless of source, for crop improvement.
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