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ABSTRACT. Drought is a major limiting factor in crop production. 
Rewatering is a process opposite to drought, allowing plants to recover 
to their normal physiological state. To understand more thoroughly the 
set of genes involved in plant response to drought, we comparatively 
and jointly analyzed the microarray data of drought and rewatering 
experiments in Arabidopsis. A total of 3833 differentially expressed 
genes (DEGs) were identified. Among them, ~74% were proven to 
be co-regulated by drought and rewatering. Drought and rewatering 
showed contrary regulatory effects on almost all of these co-regulated 
genes. Only ~6% of the DEGs were significantly regulated by drought 
alone, and the remaining ~20% were significantly regulated by 
rewatering alone. However, gene ontology analysis suggested that those 
“rewatering-only” genes also appeared to be related, either directly or 
indirectly, to drought response.
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INTRODUCTION

The microarray technique can simultaneously assess the transcription levels of tens 
of thousands of genes in a single experiment. Therefore, the technique provides a popular and 
powerful tool for genome-wide analysis of gene expression profiles. One of the most impor-
tant goals in gene expression experiments is to identify differentially expressed genes (DEGs) 
under different biological conditions.

Drought is a major limiting factor in crop production. To improve crop tolerance 
to drought, it is necessary to understand the molecular mechanism of the plant response to 
drought. For this purpose, several studies were conducted to analyze gene expression profile 
changes under drought in the model plant Arabidopsis, using the microarray technology (Seki 
et al., 2001, 2002; Kawaguchi et al., 2004; Swindell, 2006). However, the microarrays used in 
these studies only included part of the genes in Arabidopsis and therefore could not reveal the 
overall expression profile of Arabidopsis. More recently, using dual-labeled whole-genome 
oligonucleotide microarrays, Huang et al. (2008) identified nearly 2000 drought-responsive 
genes in Arabidopsis. Their results suggested that a large number of genes are involved in 
drought response in plant.

Rewatering can relieve drought stress, allowing plants to recover to their normal phys-
iological state. Hence, rewatering may have contrary regulatory effects to drought on gene 
expression. Based on the same microarray platform, Huang et al. (2008) also investigated the 
gene expression profile under rewatering. Although they did not perform statistical analysis of 
the data, they still noticed by simple examination that most of the genes significantly regulated 
by drought (identified in the drought experiment) appeared to be inversely regulated by rewa-
tering, suggesting that gene expression under drought and rewatering is negatively correlated. 
In light of this result, they proposed that rewatering can provide a large-scale validation of the 
identity of drought-responsive genes. However, to understand the exact relationship between 
drought and rewatering on gene expression regulation, statistical evidence is required. 

Meta-analysis is a classical statistical methodology that has been used in the fields of 
medicine and sociology for many years (Egger and Smith, 1997; Egger et al., 1997; Smith et al., 
2000). It has been used to combine useful information from independent microarray studies aim-
ing at the same or similar scientific questions, so as to improve the statistical power and reliability 
of DEG detection. Since Rhodes et al. (2002) offered the first case demonstrating the usefulness of 
meta-analysis in microarray data mining, a number of meta-analysis methods have been proposed 
and applied to practical studies (Choi et al., 2003; Parmigiani et al., 2004; Stevens and Doerge, 
2005; Conlon et al., 2006; Smith et al., 2008). Up to now, however, meta-analysis of microarray 
data has been limited to the experiments conducted under the same or similar conditions. For the 
case of two opposite treatments (e.g., drought and rewatering), if the assumption is true that genes 
responding to one treatment (say, drought) are largely responsive to the other treatment (say, re-
watering) in a converse way, the microarray data of the two treatments will have similar patterns 
as long as the data of one treatment are reversed. Hence, according to its principle, meta-analysis 
might also be applicable to the microarray data of two opposite treatments. 

In this study, we comparatively and jointly analyzed the microarray data of the drought 
and rewatering experiments in Arabidopsis published by Huang et al. (2008), aiming to 1) 
identify rewatering-regulated genes, 2) identify additional drought-regulated genes, and 3) 
clarify the relationship between drought and rewatering on gene expression regulation.
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MATERIAL AND METHODS

Data sources

The microarray data used in this study were from two published experiments on 
Arabidopsis (Huang et al., 2008). The dual-dye hybridization system was adopted for the 
experiments using a microarray containing >26,000 spotted 70-mer oligo-DNA probes 
(GEO Serial No. GPL1911) fabricated by the University of Arizona (http://ag.arizona.edu/
microarray/) in USA or the University of Alberta (http://www.biology.ualberta.ca/facilities/
microarray/) in Canada. The first experiment was the drought treatment (vs control), which had 
four microarrays (dataset 1, denoted as D1); the second experiment was the rewatering treatment 
(vs drought), which had two microarrays (dataset 2, D2). These data had been normalized 
using RobustSplines in Bioconductor (http://www.bioconductor.org/) and were available in the 
format of log ratios. After preprocessing (e.g., removing spike probes and merging duplicated 
probes or spots), 24,132 genes were retained for the subsequent analyses. A mixture of D1 and 
-D2 (denoted as Dm) was used for the meta-analysis. The negative sign before D2 means that 
all the data in D2 were multiplied by -1 so as to make the gene expression ratio reversed in D2.

Detection of DEGs

D1 was analyzed with the popular statistical software Significance Analysis of Mi-
croarray (SAM). D2 was analyzed with the software Linear Models for Microarray Data 
(LIMMA) because its sample size was not large enough for SAM. Dm was analyzed with 
two methods (softwares), SAM and RankProd. SAM is a popular statistical software for 
analysis of microarrays (Tusher et al., 2001) and has been demonstrated to be applicable to 
microarray data meta-analysis (Sims et al., 2008), although it was originally developed for 
independent analysis. LIMMA is a tool for the analysis of gene expression data arising from 
microarray or RNASeq technologies (Smyth, 2004), implemented in R language (http://
www.r-project.org) as a package of the open resource Bioconductor project (Gentleman et 
al., 2004). It has features that make the analyses stable, even for experiments with a small 
number of arrays; this is achieved by borrowing information across genes. RankProd is a 
microarray data meta-analysis tool based on a non-parametric statistical “rank product” 
(Hong et al., 2006), also provided as a package in Bioconductor. A significance level of 
false-discovery rate (FDR) = 0.05 was set in all the analyses. In the analysis with SAM, 
the “one class” model was employed, and missing data were treated with the method of k-
nearest neighbor imputation algorithm normalization (using the default k = 10) implemented 
in the SAM software. The default setting of the other parameters was adopted. Similarly, 
in the analyses with LIMMA and RankProd, the “one class” model was also used, and the 
default setting of the other parameters was adopted. 

Gene Ontology (GO) analysis

GO analysis was performed using the web server agriGO (Du et al., 2010). Signifi-
cantly enriched GO terms were identified by the chi-square test using a significance level of 
FDR = 0.01. The default values for the other parameters were used. 
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RESULTS

The analyses on D1 and D2 detected 1860 DEGs (named as set G1) and 2459 DEGs 
(G2), with 933 and 1186 upregulated and 927 and 1273 downregulated, respectively (Figure 
1). In the analysis on Dm (meta-analysis), 2306 and 1978 DEGs were detected by SAM and 
RankProd, respectively. These two methods together identified 2823 DEGs (Gm), with 1462 
upregulated and 1361 downregulated, respectively (Figure 1). Taken together, a total of 3833 
DEGs were identified in this study (Table S1).

Figure 1. Numbers of DEGs detected by individual analysis and meta-analysis.

There were 1109 DEGs in common between G1 and G2, accounting for 59.62% in 
G1 and 45.10% in G2 (Figure 2). Almost all (1101 DEGs, or 99.28%) of these common DEGs 
were inversely regulated by drought and rewatering, with 614 up/downregulated and 487 
down/upregulated by drought/rewatering, respectively; only 8 (0.72%) of them were regulated 
in the same directions by drought and rewatering. This result indicated that the regulatory ef-
fects of drought and rewatering are generally contrary to each other on the genes that respond 
to both of them.

As expected, all of the genes in Gm showed clear inverse responses to drought and 
rewatering (Figure 3). In addition, Gm covered almost all (1098 DEGs, or 99.73%) of the 
common DEGs between G1 and G2 that were inversely regulated by drought and rewatering, 
accounting for 38.89% of the genes in Gm. This provided a large-scale validation for the result 
of the meta-analysis. Based on these results, we can conclude that all of the DEGs detected by 
the meta-analysis are inversely regulated by drought and rewatering.

It has been mentioned above that only ~60% of the drought-responsive genes (in G1) 
were regulated by rewatering (also contained in G2). However, comparison indicated that 

http://www.geneticsmr.com/year2013/vol12-3/pdf/gmr2649_supplementary.pdf
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1632 (87.74%) of the genes in G1 were included in Gm (Figure 2). This suggested that there 
was a much higher proportion (nearly 90%) of the genes that were regulated by rewatering 
among the drought-responsive genes. Therefore, meta-analysis can reveal more genes that are 
responsive to both drought and rewatering.

Figure 3. Response of DEGs to drought (right panel) and rewatering (left panel) detected by the meta-analysis 
(from Dm). The color is based on the relative expression in drought versus control (left panel): red = upregulated; 
green = downregulated.

Figure 2. Venn diagram analysis between the sets of DEGs detected by the separate analysis (from D1 and D2) and 
the meta-analysis (from Dm).
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In summary, according to the comparison among G1, G2, and Gm (Figure 2), the total 
3833 DEGs identified in this study can be divided into three subsets; namely, 228 (5.95%) 
drought-regulated-only genes (subset S1), 782 (20.40%) rewatering-regulated-only genes 
(S2), and 2823 (73.65%) drought-rewatering co-regulated genes (S3). Obviously, the genes 
in S1 and S3 are all regulated by drought. A question here is whether the genes in S2 are also 
related to drought response. To investigate this issue, we conducted GO analysis on S2. A total 
of 32 GO terms concerning responses to various stimuli or stresses were found to be enriched 
in S2 (Table 1). These GO terms are all related to drought, either directly or indirectly, as many 
studies have shown that cross-talk exists among various abiotic and biotic stresses, probably 
because there are convergence points among different signaling pathways (Fujita et al., 2006). 
Hence, the GO analysis results suggested that at least most of the genes in S2 are also related 
to drought response.

GO ID	 GO term	 FDR

GO:0050896	 Response to stimulus	   8.6 x 10-105

GO:0009717	 Response to endogenous stimulus	 1.8 x 10-6

GO:0009753	 Response to jasmonic acid stimulus	 4.9 x 10-5

GO:0009725	 Response to hormone stimulus	   0.00018
GO:0009733	 Response to auxin stimulus	  4.9 x 10-70

GO:0009737	 Response to abscisic acid stimulus	 0.0028
GO:0009739	 Response to gibberellin stimulus	  1.1 x 10-32

GO:0009723	 Response to ethylene stimulus	  1.1 x 10-11

GO:0009755	 Hormone-mediated signaling pathway	  4.7 x 10-12

GO:0009628	 Response to abiotic stimulus	  6.8 x 10-77

GO:0009314	 Response to radiation	 0.0044
GO:0009416	 Response to light stimulus	 0.0028
GO:0009639	 Response to red or far red light	 5.1 x 10-6

GO:0009266	 Response to temperature stimulus	   2.8 x 10-113

GO:0009409	 Response to cold	   2.1 x 10-115

GO:0006970	 Response to osmotic stress	   5.6 x 10-44

GO:0009651	 Response to salt stress	   2.0 x 10-42

GO:0009415	 Response to water	   8.5 x 10-16

GO:0009414	 Response to water deprivation	   1.4 x 10-18

GO:0009605	 Response to external stimulus	   3.0 x 10-18

GO:0009611	 Response to wounding	 5. 5 x 10-25

GO:0048583	 Regulation of response to stimulus	 1.9 x 10-8

GO:0033554	 Cellular response to stress	 0.0042
GO:0070887	 Cellular response to chemical stimulus	  1.2 x 10-22

GO:0006950	 Response to stress	  8.7 x 10-81

GO:0042221	 Response to chemical stimulus	  8.8 x 10-78

GO:0006979	 Response to oxidative stress	  1.3 x 10-11

GO:0010035	 Response to inorganic substance	 1. 3 x 10-85

GO:0010038	 Response to metal ion	  6.6 x 10-64

GO:0010033	 Response to organic substance	  1.0 x 10-79

GO:0009743	 Response to carbohydrate stimulus	  2.7 x 10-19

GO:0010200	 Response to chitin	  6.4 x 10-20

Table 1. Enriched Gene Ontology (GO) terms in the sets of differentially expressed genes detected only from D2 (S2).

DISCUSSION

In this study, although there were two microarrays in the rewatering experiment, we 
still detected as many as 2459 DEGs using an appropriate statistical approach, even more 
than those detected in the drought experiment, and 1350 (~55%) of them were not detected in 
the drought experiment (Figure 2). This suggests that more DEGs can be detected by setting 

FDR = false-discovery rate.
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the rewatering experiment when studying drought. It can be inferred from the relationship 
between drought and rewatering that a large proportion of DEGs detected in the rewatering 
experiment are related to drought response. Hence, rewatering experiments are very useful for 
the study of molecular mechanism of drought response.

Although drought and rewatering are different processes, it is still possible to perform 
joint analysis (or meta-analysis) on the gene expression profiles induced by them, owing to 
their reverse physiological effects. In this study, apart from detecting almost all the genes that 
were significant in both drought and rewatering, the meta-analysis also detected 523 and 568 
genes that were significant only in drought and rewatering, respectively, revealing that these 
genes were actually regulated by both drought and rewatering; meanwhile, meta-analysis also 
detected an extra of 634 genes that were not significant in the separate analyses of drought 
and rewatering (Figure 2). Therefore, the meta-analysis not only could reveal the relationship 
between drought and rewatering, but it could also detect more genes co-regulated by drought 
and rewatering. This indicates the merit of meta-analysis.

In this study, we have found from the genes simultaneously significant in the separate 
analyses of drought and rewatering that drought and rewatering act inversely on almost all 
the genes co-regulated by them (Figure 3). This is consistent with the fact that drought and 
rewatering have opposite physiological effects, and is also the basis for the successful meta-
analysis of drought and rewatering microarray data. We also tried to perform meta-analysis 
using the direct mixture of drought and rewatering microarray data, and only seven genes were 
detected. This also indicates that the regulatory effects of drought and rewatering on gene ex-
pression are basically contrary to each other.

Although most of the DEGs detected in this study were co-regulated by drought and 
rewatering, there were still some genes that were significant only in drought or in rewatering 
(Figure 2). The results of GO analysis suggest that most of the genes that were significant in 
only the rewatering treatment are also related either directly or indirectly to drought response. 
Thus, we can believe that the overwhelming majority of DEGs detected from the rewatering 
experiment are regulated by drought or related to drought response. Whether and how many of 
these genes are specifically regulated by rewatering remains to be investigated further.
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