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ABSTRACT. In order to ascertain the relationship between gene 
expression and colon cancer localization, a classification method 
based on random gene selection and a self-organizing map network is 
proposed. Different numbers of genes were selected randomly from 
54,675 genes of 53 colon cancer patients in stage union for international 
cancer control II. These patients were then divided into two sets: a 
training set of 36 and a validation set of 17 patients. In this study, we 
randomly selected 1000, 100, 50, 30, 10, 5, and 3 genes, 1000 times, 
respectively. The minimum misclassification ratio of each gene group 
was 3/17 to 4/17, and the percentage of gene groups that were less 
than 0.25 was approximately 1-7%. Moreover, the misclassification 
ratio of most gene groups (about 82-89%) was lower than 0.4. Through 
the analysis of these low misclassification ratio gene groups, we found 
that there were few common genes between them. This revealed that 
colon cancer localization is not associated with a single gene group 
but with many gene groups. Furthermore, K-fold cross validation was 
used to test the reliability of the possible informative genes, and the 
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results indicated that using gene expression to classify colon tumor 
localization was not feasible.
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INTRODUCTION

The incidence of cancer increases annually, and the desire for improved treatments 
and diagnostics is always at the forefront of science. In recent years, studies on the relationship 
between gene expression profiles and different cancer outcomes of cancer have been particu-
larly illuminating (Pomeroy et al., 2002; Vant’t Veer et al., 2002; Ntzani and Ioannidis, 2003; 
Moreaux et al., 2013). However, the challenge in this process is the analysis of a large amount 
of gene expression data. Indeed, there are typically only a small number of key genes that af-
fect cancer classification, while the others are often less significant or irrelevant. Therefore, 
it is necessary that a specific group of genes be identified to classify different types of cancer 
effectively, and these genes are called informative genes. Several methods have been proposed 
for identifying such genes. For instance, neighborhood analysis was used for the classification 
of acute myelocyticleukemia and acute lymphocytic leukemia, by which 1100 genes were 
selected and the accuracy rate was 89.47% (Golub et al., 1999). Moreover, 64 genes selected 
through support vector machine were used for colon cancer classifications, and were 98% 
accurate (Guyon et al., 2002). These studies indicate that the use of gene expression data for 
tumor classification has become an important method.

Conversely, some studies have indicated that random gene sets as predictors of 
prognosis are highly unreliable (Michiels et al., 2005). For instance, most random gene 
expression signatures are significantly associated with breast cancer (Venet et al., 2011). 
These studies, therefore, dispute whether random gene sets allow for adequate classifica-
tion, and whether specific gene groups can be informative genes. The purpose of this paper 
is to explore this issue in further detail by evaluating the accuracy of self-organizing map 
(SOM) neural network in the classification of colon cancer localization. In section 2, with 
the absence of priori information, random 1000, 100, 50, 30, 10, 5, and 3 genes are put 
into the SOM network as possible informative genes, get classification results; section 3 
analyzes the statistical characteristics and stability of the classification results further; and 
section 4 concludes the paper.

MATERIAL AND METHODS

Clinical data

The dataset we used was from National Center for Biotechnology Information (NCBI). 
It consisted of expression profile arrays of 53 colon cancer patients in sporadic stage union for 
international cancer control II . There were 54,675 gene expression features in this group, and 
according to the localization of the tumor, the 53 patients were divided into two groups: 25 
distal colon cancer and 28 proximal colon cancer.
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Research methods

SOM is an effective method for predicting cancer outcomes (Golub et al., 1999; Go-
hari et al., 2011, Biglarian et al., 2012; Valarmathi and Radhakrishna, 2013). In this study, we 
formed a system based on a KohonenSOM neural network to predict the localization of colon 
tumors. KohonenSOM network (Kohonen, 2001) is one of SOM networks, it arranges neurons 
in a two-dimensional grid, and the competitions among neurons make each neuron represents 
a class of input patterns. Competition among neurons of the output layer makes the one with 
the highest value win, and then the winning unit weight is adjusted to make the network rep-
resent those input patterns.

Figure 1. Structure of Kohonen self-organizing map.

As shown in Figure 1, P = (P1,..., Pn) is a set of training data with size n, and the 
dimension of the input space is m. Wj = (wj1 = wj2... = wjm) (j = 1, 2,..., s) are neuron weights 
connecting neuron j and the components of input vector. The training process for the SOM 
algorithm is given in the following four steps:

Step 1: Initialize the network. Normalize each input vector Pk into  subject to
,

(Equation 1)

Give neuron weights Wj (j = 1, 2,..., s) equal to a part of the normalized input vector 
(l = 1, 2,..., s), and ||Wj|| = 1.

Step 2: Calculate the inner product between the normalized input vector  and each 
neuron weight Wj. Identify the winning neuron Wc:
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where Ɵjk is the angle between  and Wj.
Step 3: Adjust the weights of the winning neuron Wc and its neighbor unit Wj:

(Equation 2)

(Equation 3)

where is a decreasing learning rate as a function of time t, and Ug (t) is a decreasing 
neighborhood kernel with Gaussian function:

(Equation 4)

where r is the locations of the neuron on the two dimensional map grids, rc and rj are the loca-
tions of the winning neuron and neuron j, σ is a smoothing factor.

Step 4: Repeat steps 2 and 3 until the convergence criterion is satisfied.
In practical computation, similarity can be replaced by distance, and thus, the simi-

larity measurement for the expression of two genes is converted to the distance between the 
expressions of two genes. Thus, the smaller the distance, the more similar the expression pat-
terns. Under the assumption that there are informative genes regarding colon cancer localiza-
tion, we formed SOM neural networks to classify gene groups that included different numbers 
of genes. By comparing the results to the classification of colon cancer localization, we can 
test the validity of the classification and prediction. 

According to the training rule of SOM, we used the gene groups of different patients 
as training vectors. When multiple similar gene vectors are put into the network, the final train-
ing results make the network weights similar to the average value of the input vector. Thus, 
the trained network achieves the function of classification. This is suitable for the principle of 
gene classification. If the selected genes are strongly associated with tumor categories, then 
the gene set vectors of the same tumor categories will be similar and fall into one group and the 
error rate of classification would be low. Conversely, weak association will lead to high error 
rates of classification. Given this fact, we aimed to find appropriate gene groups and suitable 
SOM models that can provide low error rates of classification, and thereby produce the most 
possible informative genes for the classification of colon tumor localization.

Two important aspects to finding informative genes are the number and type of genes 
in a gene set. In order to find the possible informative genes, different numbers of genes were 
randomly selected in this study (i.e., 1000, 100, 50, 30, 10, 5, and 3 genes), and this random 
selection was done 1000 times for each grouping. As shown in Figure 2, the components of the 
input vectors are based on a random combination of genes each time. For the 53 patients, 36 
were used as a training set (in which 16 were distal colon tumor and 20 were proximal colon 
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tumor) and 17 (in which 9 were distal colon tumor and 8 were proximal colon tumor) were 
used as the test set. Each combination of random genes is used to train a SOM neural network, 
and each trained SOM gives a test result for the corresponding gene group.

Figure 2. SOM classification cluster, where  is the m random selected gene in the k experiment, and  is the 
corresponding misclassification ratio, k = 1, 2,…, 1000; m = 1000, 100, 50, 30, 10, 5, and 3.

One thousand genes were selected randomly from the 54,675 genes in total. The genes 
selected from the 36 patients of the training set were used as the input vectors of a SOM 
network to train the network and get the classification. The randomly selected genes from 
the other 17 patients were then used to validate the network. At the same time, the misclas-
sification ratio of the 17 patients was recorded together with the 1000 genes. This process of 
selecting 1000 genes randomly, training the network, validating the network, and recording 
the misclassification ratio was performed 1000 times. The process was repeated for sets of 
100, 50, 30, 10, 5, and 3 genes.

RESULTS

By analyzing the misclassification ratio, the gene combinations that make a good clas-
sification effect on colon tumor localization were recorded for further analysis. The results of 
this experiment show that most gene groups were associated with the localization of colon 
cancer, but to different degrees. In each 1000 times simulation, the distributions of the mis-
classification ratios with different numbers of genes were similar. For instance, the percentage 
of groups that were less than 0.25 was about 1-7%, and most gene groups (about 78-89%) 
had a weak association with the colon cancer localization (their misclassification ratios were 
more than 0.4; Figure 3). The best misclassification ratios were 3/17 to 4/17 (Table 1), and the 
percentage of the corresponding gene groups was less than 1%. In this study, the 1000- and the 
30-gene group provided the most accurate classifications.

The general view is that the high classification accuracy gene groups should be (or 
contain) the possible informative genes, and thus, those sets were analyzed according to the-
following methods.

Remove interference with nonlinear principal component analysis (NLPCA)

The dataset used in this study was from 53 colon cancer patients, and the samples 
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used to train the SOM network was 37. The number of genes was large, and this will cause an 
outlier disturbance on the classification results. Principal component analysis (PCA) is an ef-
fective method for feature extraction and dimensionality reduction of data sets, and it has been 
used to discover the association between genes and cancer (Venet et al., 2011). However, this 
method is very sensitive to outliers in the data, and may be replaced by NLPCA, which is less 
sensitive to outliers (Verboon, 1991; Scholz et al., 2002). For instance, in the 30-gene group, 
for example, NLPCA was used to reduce the dimension of the data from 30 to 10 and then, 
the 10-dimensional data was used to train and test the SOM network. The results indicate that 
NLPCA was an effective method for feature extraction of a gene set, and the ratio of misclas-
sification was reduced from 3/17 to 2/17. This suggests that the accuracy of classificationcan 
be improved by using NLPCA.

Figure 3. Distributions of misclassification ratio in 1000 experiments. A. B. C. D. E. F. G. correspond to 3, 
5, 10, 30, 50, 100, 1000 gene groups, respectively, and the distributions of misclassification ratio in each 1000 
experiments.

 1000 genes 100 genes 50 genes 30 genes 10 genes 5 genes 3 genes

Minimum misclassification ratio 3/17 4/17 4/17 3/17 4/17 4/17 4/17
Percentage of misclassification ratio <0.25 5.9% 1.8% 1.0% 6.8% 3.5% 4.1% 1.9%

Table 1. Minimum misclassification results of different gene groups and their percentage in 1000 times.

Search for informative genes

According to the SOM results, there were many gene groups that were strongly as-
sociated with colon cancer localization. To further explore these relationships, the gene groups 
whose misclassification ratios reached 3/17 were taken for further analysis. Specifically, there 
were four groups of 1000 genes (A1, A2, A3, A4) and four groups of 30 genes (B1, B2, B3, B4) 
that were taken for further study. In order to study the similarities between them, their intersec-
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tions were calculated. The intersection between two groups of 1000 genes contained approxi-
mately 20-30 genes, but there was no common gene when three groups of genes were com-
pared. The six intersections found were used to train a SOM network, and the results indicate 
that the misclassification ratio was similar to the individual groups. Similar to the 1000-gene 
groups, intersections between groups of 30 genes contained, at most, only one gene in com-
mon, and no common genes between three groups of 30 genes. Moreover, there were very few 
genes contained in the intersection between 1000- and 30-gene groups (Figure 4). This reveals 
that although there are many gene groups associated with colon cancer localization, there are 
few common genes among them. Thus, the potential gene groups that can be used to classify 
the colon cancer localization are not unique.

Figure 4. Number of genes in the intersection of 1000- and 30-gene groups.

K-fold cross validation

To determine how reasonable the above method was for determining gene associations 
with colon cancer localization, we utilized k-fold cross validation (K-CV) to further analyze the 
data. K-CV can avoid over-training and under-training a network. Specifically, we divided the 
raw data into k groups, and made each subset of data a validation set, and the rest k-1 subsets 
of data were used as training sets. From these sets of data k SOM networks were developed. 
The average ratio of misclassification for the k validation set using this k model was used as the 
performance index of the K-CV classifier. If the gene groups are strongly associated with colon 
cancer localization, the average ratio of misclassification will be low, and the networks perform 
good stability at the same time. In this study, six gene groups that had good classification effects 
(misclassification ratios less than 0.2) were chosen for K-CV. Fifty-three patients were divided 
into three groups (18, 18, and 17), the validation results indicated that the results changed sub-
stantially with the change in gene array. For the six gene groups the 6 average misclassification 
ratios were above 0.2 and less than 0.4, worse than original experiment.

Gene groups Ratio of misclassification 3-fold cross validation Average ratio of misclassification
  Ratio of misclassification

1 0.177 0.333, 0.389 0.300
2 0.177 0.333, 0.444 0.318
3 0.226 0.222, 0.278 0.242
4 0.226 0.389, 0.444 0.353
5 0.235 0.111, 0.333 0.226
6 0.235 0.167, 0.333 0.245

Table 2. K-CV of some gene groups.
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DISCUSSION

In this study, we proposed a method to find informative genes that were strongly “as-
sociated” with colon tumor localization. The randomly selected gene groups were first trained 
by the SOM network, and from this, the gene groups with low error classifications were cho-
sen for further improvement by NLPCA. Analysis of these select gene groups indicated that 
there were few common genes between them, and the result of K-CV shows weak association 
between the six gene groups and colon tumor localization. Overall, the results indicate that 
utilizing gene expression to classify colon tumor localization is not feasible.

Due to the data limitations, this study involved only 53 patients, all of which had co-
lon cancer. Future research should concentrate on utilizing a higher number of samples across 
a range of different outcomes and tumors.
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