

Chloroplast DNA polymorphism and evolutional relationships between Asian cultivated rice (*Oryza sativa*) and its wild relatives (*O. rufipogon*)

W.J. Li, B. Zhang, G.W. Huang, G.P. Kang, M.Z. Liang and L.B. Chen

College of Life Science, Hunan Normal University, Changsha, Hunan, China

Corresponding authors: M.Z. Liang / L.B. Chen E-mail: 1962liang@163.com / liwenjia0529@163.com

Genet. Mol. Res. 11 (4): 4418-4431 (2012) Received March 12, 2012 Accepted June 6, 2012 Published October 9, 2012 DOI http://dx.doi.org/10.4238/2012.October.9.8

ABSTRACT. We analyzed chloroplast DNA (cpDNA) polymorphism and phylogenic relationships between 6 typical indica rice, 4 *japonica* rice, 8 *javanica* rice, and 12 Asian common wild rice (Oryza) *rufipogon*) strains collected from different latitudes in China by comparing polymorphism at 9 highly variable regions. One hundred and forty-four polymorphic bases were detected. The O. rufipogon samples had 117 polymorphic bases, showing rich genetic diversity. One hundred and thirty-one bases at 13 sites were identified with indica/japonica characteristics; they showed differences between the indica and japonica subspecies at these sites. The javanica strains and *japonica* shared similar bases at these 131 polymorphic sites, suggesting that *javanica* is closely related to *japonica*. On the basis of length analyses of the open reading frame (ORF)100 and (ORF)29tRNA-Cys(GCA) (TrnC^{GCA}) fragments, the O. rufipogon strains were classified into *indica/japonica* subgroups, which was consistent with the results of the phylogenic tree assay based on concatenated datasets. These results indicated that differences in *indica* and *japonica* also exist in the cpDNA genome of the O. rufipogon strains. However,

Genetics and Molecular Research 11 (4): 4418-4431 (2012)

these differences demonstrated a certain degree of primitiveness and incompleteness, as an *O. rufipogon* line may show different *indica/japonica* attributes at different sites. Consequently, *O. rufipogon* cannot be simply classified into the *indica/japonica* types as *O. sativa*. Our data support the hypothesis that Asian cultivated rice, *O. indica* and *O. japonica*, separately evolved from Asian common wild rice (*O. rufipogon*) strains, which have different *indica-japonica* differentiation trends.

Key words: Genetic diversity; Evolutionary relationship; Dual origin; Chloroplast DNA; *Indica-japonica* differentiation

INTRODUCTION

Asian cultivated rice (*Oryza sativa* L.) is a major source of nutrition for more than half of the global population (Vaughan et al., 2003). Asian common wild rice (*O. rufipogon* Griff.) has long been believed to be the direct ancestor of Asian cultivated rice. It serves as a valuable gene pool for the improvement of cultivated rice due to its many extraordinary traits, such as disease and insect resistance, stress tolerance, cytoplasmic male sterility, and others (Khush, 1997). Therefore, a better understanding of the genetic diversity and phylogenic relationships between Asian cultivated rice and Asian common wild rice will be beneficial for the efficient use of the *Oryza* gene pool, and will certainly have a significant impact on rice production (Sun et al., 2001; Vaughan et al., 2003; Garris et al., 2005).

In the past decades, various phylogenetic tools have been used to investigate the evolutionary relationships between closely related Orvza species, such as morphological characteristics (Morishima and Oka, 1960), isoenzymes (Cai and Wang, 1992; Wang et al., 1994), rDNA (Fukui et al., 1994), random amplified polymorphic DNA (Sun et al., 1995), restriction fragment length polymorphism (Wang and Tanksley, 1989; Nakano et al., 1992; Sun et al., 1997, 2001), simple sequence repeats (Nishikawa et al., 2005), inter-simple sequence repeats (Joshi et al., 2000), nuclear coding sequences (Chen et al., 1994; Sun et al., 1997), single nucleotide polymorphism (SNP; Caicedo et al., 2007), and combined chloroplast, mitochondrial, and nuclear data analyses (Duan et al., 2007). Nevertheless, due to the differences in methodologies and resulting data, some reports suggested that the *indica*japonica differentiation occurred not only in cultivated rice but also in its wild relatives, which provided theoretical support for the dual origin of cultivated rice. This hypothesis states that the *indica* and *japonica* subspecies separately evolved from O. rufipogon. On the other hand, other studies supported the monophyletic origin of cultivated rice, which indicates that *indica* descended first from O. rufipogon, and the japonica subspecies in turn evolved from *indica*. Hence, the genetic diversity and evolutionary relationships between O. sativa and O. rufipogon remain controversial.

The DNA of organelles has been used in phylogenetic studies due to its maternal inheritance, higher genetic stability, and lower mutation frequencies compared with nuclear DNA. In rice, the evolutionary rate of chloroplast DNA (cpDNA) is 3 times higher than that of mitochondrial DNA (mtDNA; Tian et al., 2006). Hence, its maternal inheri-

Genetics and Molecular Research 11 (4): 4418-4431 (2012)

tance and relatively high mutation rate are useful in elucidating the phylogeny of the species. Hirai et al. (1985) constructed the first physical map of rice cpDNA. Hiratsuka et al. (1989) published the rice chloroplast genome sequence from Nipponbare. Five chloroplast genome sequences of rice are available at present. In addition, open reading frame (ORF)100 has been reported as an efficient marker that determines whether a rice chloroplast genome belongs to either the *indica* or the *japonica* type. The ORF100 band of japonica rice lags behind that of indica rice as a result of a 69-bp deletion in the indica ORF100 region (Kanno et al., 1993). Chen et al. (1994) classified 137 cultivated rice into indica/japonica based on the ORF100 marker, which was consistent with the classification based on morphological and physiological characteristics. Using this marker, 151 strains of O. rufipogon were identified, and the cpDNA of O. rufipogon can also be classified into the *indica* and *japonica* types (Sun et al., 1997). Tang et al. (2004) found that *indica* has a 32-bp insertion in the ORF29-tRNA-Cys(GCA) (TrnC^{GCA}) spacer, leading to a lag of the *indica* bands related to those of *japonica*. Therefore, ORF29-TrnC^{GCA} can be used as another marker to distinguish the *indica* chloroplast genome from that of japonica. Shaw et al. (2005) found that the intron of the s16 (rps16) ribosomal protein and the spacer of TrnT^{UGU}-TrnL^{UAA} [tRNA-Thr(UGU)-tRNA-Leu(UAA)] are highly variable regions in plant chloroplast genomes. These studies primarily focused on the sequences of the non-coding regions of cpDNA. However, some variable encoding regions of cpDNA that contain important genes involved in photosynthesis also provide effective sources for analyzing the phylogenetic relationships of closely related species.

In the present study, we performed a more comprehensive comparison of the cpDNAs of *O. sativa* and *O. rufipogon* using the sequences of 3 non-coding regions and 6 coding regions to explore the genetic diversity of cpDNA and the evolutionary relationship between *O. sativa* and *O. rufipogon* as well as to reveal the *indica/japonica* attributes of the *javanica* cpDNA. The results will deepen our understanding of the evolutionary relationships between *O. sativa* and *O. rufipogon* and ultimately accelerate the efficient use of the extraordinary genes of *O. rufipogon* for the genetic improvement of cultivated rice.

MATERIAL AND METHODS

Comparison of chloroplast genomes

Four chloroplast genomic sequences, *O. sativa japonica* (*Nipponbare*, AY522330.1, Tang et al., 2004 and *PA64S*, AY522331.1, Tang et al., 2004), *O. sativa indica* (isolate *9311*; AY522329.1, Tang et al., 2004), and *O. nivara* (AP006728.1, Shahid et al., 2004), from the National Center for Biotechnology Information (NCBI) nucleotide database were compared *in silico*. These sequences were aligned with ClustalW, and we manually proofed the alignment for extracting encoding regions that contain many variant sites.

Plant materials

A total of 30 accessions of rice were used in this study, which contained 18 *O. sativa* (6 *indica*, 4 *japonica*, and 8 *javanica*) and 12 *O. rufipogon* from different latitude distributions in China (Table 1).

Genetics and Molecular Research 11 (4): 4418-4431 (2012)

Table 1	. Plant materials used in this s	tudy.	
No.	Materials	Origin/latitude	Provider
1	Guangluai-4ª	Guangdong, China	Hunan Normal University
2	$IR36^{a}$	IRRI	Hunan Normal University
3	Nanjing-3 ^a	Jiangsu, China	Hunan Normal University
4	9311 ^a	IRRI	Hunan Normal University
5	Kasalath ^a	India	Hunan Normal University
6	Basmati ^a	India	Hunan Normal University
7	Nipponbare ^b	Japan	Hunan Normal University
8	Bairizao ^b	Sichuan, China	Hunan Normal University
9	Akihikari ^b	Japan	Hunan Normal University
10	Aizinuo ^b	Yunan, China	Hunan Normal University
11	Lemont	USA	Hunan Normal University
12	P002	USA	Hunan Normal University
13	IM359	Unknown	Hunan Normal University
14	IM273	Unknown	Hunan Normal University
15	CPSL017	Unknown	Hunan Normal University
16	Rosemont	USA	Hunan Normal University
17	D16	Unknown	Hunan Normal University
18	Brazilian UR	Brazil	Hunan Normal University
19	Hainan CWR	Hainan (18.73N), China	Hunan Normal University
20	Hepu CWR	Guangxi (21.38N), China	Nanning Wild Rice Garden
21	Gongguan CWR	Guangxi (21.39N), China	Nanning Wild Rice Garden
22	Gaozhou CWR	Guangdong (21.42N), China	South China Agriculture University
23	Fusui CWR	Guangxi (22.25N), China	Nanning Wild Rice Garden
24	Zengcheng CWR	Guangdong (23.28N), China	Nanning Wild Rice Garden
25	Tianyang CWR	Guangxi (23.37N), China	Nanning Wild Rice Garden
26	Liujiang CWR	Guangxi (24.08N), China	South China Agriculture University
27	Guilin CWR	Guangxi (24.15N), China	South China Agriculture University
28	Jiangyong CWR	Hunan (25.41N), China	Hunan Rice Institute
29	Chaling CWR	Hunan (26.50N), China	Hunan Normal University
30	Dongxiang CWR	Jiangxi (28.14N), China	Hunan Normal University

^aTypical *indica* rice; ^btypical *japonica* rice.

Chloroplast DNA extraction

Chloroplast DNA was extracted from the fresh leaves of rice using the method mentioned by Rogers and Bendich (1988).

PCR amplification and agarose-gel electrophoresis

Chloroplast genome primers cp1-cp11 were designed with Primer Premier 5.0 based on the chloroplast genome sequence of 9311 (Table 2). The PCR system included 2.5 μ L 10X PCR buffer, 0.5 μ L forward and reverse primers, 0.3 μ L 10 mM dNTPs, 1 U Taq polymerase, 40 ng template DNA, and complementary ultrapure water to 25 μ L. PCR amplification was performed as follows: pre-denaturation at 95°C for 3 min, then 95°C for 30 s, 50°-55°C for 30 s, and 72°C for 50-90 s; the cycle was repeated 30 times, and then 72°C for 10 min. The PCR products were fractionated on a 1-3% agarose gel, which contained 0.5 μ g/mL ethidium bromide, and then the gel was observed with an ultraviolet gel imaging system.

DNA sequencing and data analysis

The target fragments were isolated from the agarose gel, purified with the reagent

Genetics and Molecular Research 11 (4): 4418-4431 (2012)

kit [Tiangen Minipurification kit, Tiangen Biotech (Beijing) Co., Ltd.], and then directly sequenced. Sequence analyses on these polymorphic fragments were performed by the molecular evolutionary genetics analysis (MEGA) version 4.0 software (Tamura et al., 2007). GC content, consistency index, retention index, and Tajima's D statistic were calculated by MEGA 4.0. Phylogenetic analyses were conducted using maximum parsimony (MP) and neighbor joining (NJ) as implemented in MEGA 4. All positions containing gaps and missing data were eliminated from the dataset (complete deletion option). The MP analysis was carried out with all SNPs, inserts, and deletions (indels) data. The MP tree was obtained using the close-neighbor-interchange algorithm (Nei and Kumar, 2000). In the NJ analysis (Saitou and Nei, 1987), evolutionary distances were calculated using the maximum composite likelihood model as the number of base substitutions per site. Bootstrap resampling with 1000 replicates was performed to test the reliability of the inferred phylogenetic trees (Felsenstein, 1985).

Table 2. Primer sequence and target fragment of chloroplast DNA.									
Primer	Forward sequence (5'-3')	Reverse sequence (5'-3')	Target fragment						
cp1	GTGGACCTGACTCCTTGAA	AGCCGAGGTCGTGGTAA	ORF100						
cp2	GCAGCCCAAGCGAGACT	AAGGCTCGGCGATACTG	ORF29-TrnCGCA						
cp3	TTTTCTCCTCATACGGCT	TAGTCTGTTCTATTCGTCCC	rps16 gene intron						
cp4	AGTGGGCTTACATAACAGAAA	ACCAAGGCTCAATACAATCA	TrnT ^{UGU} -TrnL ^{UAA}						
cp5	AGTCTTTGCCAATGCGATAA	GTTGCTGACCCATACCAC	psbB						
cp6	CTATGTGGTATGGGTCAGC	AAAGAAGGGATGGGAGAT	psbB						
cp7	TAGCAACACTTTTCCCACA	GCTCATTCCAATCCTCAA	rpoc2						
cp8	TGAGGATTGGAATGAGCG	TTTTGGGAGATGGTGGA	rpoc2						
cp9	TCAAGCATCTCGGTTCG	CGCCTCATTAGCCCATAC	ccsA						
cp10	TTCCCAGTAAGAGGGTCAA	CTTCTCACTTGTTATGGCTTG	ndhH						
cp11	AGAGGGAAGTTGTGAGCATT	CGTCTGGGTATGCGTCCT	psbA						

RESULTS

Identifying the encoding regions with condensed variant sites in *Oryza* cpDNA

We manually examined the sequence alignments by comparing the 4 chloroplast genomic sequences in the NCBI nucleotide database, and found 34 SNPs and 3 indels in the encoding regions. Of these, 19 SNPs could eventually lead to changes in the amino acids (Table 3). Five highly variable encoding regions were then selected for the genetic diversity and phylogenetic relationship analyses of rice. The 5 selected regions are fragments of photosystem II 47-kDa protein (*psbB*), RNA polymerase beta chain (*rpoc2*), cytochrome c biogenesis protein (*cscA*), NADH dehydrogenase 48-kDa subunit (*ndhH*), and photosystem II protein D1 (*psbA*) genes.

CpDNA genetic diversity analysis of 9 highly variable regions

The ORF100, ORF29-TrnC^{GCA}, rps16 intron, and TrnT^{UGU}-TrnL^{UAA} fragments are currently the most widely used in cpDNA genetic diversity analyses. In these 4 cpDNA regions and the 5 previously mentioned selected variable coding regions, 144 polymorphic bases (bp) were detected among 30 rice accessions (Tables 4 and 5), and 117 polymorphic bases were found among the 12 strains of *O. rufipogon*, suggesting high genetic diversity in the cpDNA of various ecotypes from different distributions.

Genetics and Molecular Research 11 (4): 4418-4431 (2012)

	genomic sequences.									
9311O. nivaraNipponbare-GP464S412psbACTCCTCTTCTTCLeu/Phe4,547ps16TGTTGTGGTGGTCys/Gly7,141psbKAACAACAATAATAAT8,554ORF100D-69D-69I-69I-6914,166ORF91AGCAGCAACAACAAC20,547poBCCACCACCTCCT20,797poBCCACCACCTCCT29,073poc2CGACGTCGACGA29,073poc2GACGACAACAAC29,945ps2CAACTACAACAA29,951ps2CAACTACAACAA29,963psaBGTCGTTGTCGTC35,342atpAGCAGCAGCAGCGCGC35,342atpAGCAGCAGCAGCGGTC35,345ps8BGTCGTTGTCGTC52,09035,342atpAGCACCGCGCCGCCys/Arg53,188atpBACGCCGACGACGACG56,545ORF106GCTGTTGTTGTTTCT56,818ORF106GCTGGTGGAGCAGCA63,518peECTCTACACCACTACT63,518peBGTGGGGGGGGCAGCA <td< th=""><th>Position^a</th><th>Gene</th><th></th><th colspan="2">Change of amino acid</th></td<>	Position ^a	Gene		Change of amino acid						
412psbACTCCTCTTCTTCLeu/Phe4,547rps16TGTTGTTGTGGTGGTCys/Gly7,141psbKAACAACAATAAT8,554ORF100D-69D-691-691-6914,166ORF91AGCAGCAACAACAAC20,547rpoBCCACCACCTCCT27,979-27,980rpoc2TTGTTTTGGTGGLeu/Phe/Trp29,073rpoc2GACGACAACAACAAC29,945rps2CAACTACAACAACAA29,945ps3BGTCGTTGTCGTC37,963psaBGGCGGAGCAGCAGCA37,963psaBGTCGTTGTCGTC52,900atpAGCAGCAGCAGCCCS/Arg31,88atpBTGCCGCCGCCGCCys/Arg53,188atpBGTGGGTGGTGGCGGC65,818ORF106TCCTCCTCTCTC52,309rpdECTGGTGGGGGGCGGA65,314pt1106TCCTCCTCCTCLeu/Phe65,172rp133GTAGCGGGGGGCGGA65,315rp133GCAGCGGCGGGAGGC65,315rp133GCAGCGGCGGCGVal/Ala			9311	O. nivara	Nipponbare-G	PA64S				
4,547rps16TGTTGTTGTGGTGGTCys/Gly7,141psbKAACAACAATAATAAT8,554ORF100D-69D-69L-69L-69Ser/Asn16,613psbMA20,547rpoBCCACCACCTCCT27,979-27,980rpoc2TTGTTTTGGTGGLeu/Phe/Trp28,970rpoc2CGACGACAACAACAA29,945rps2CAACTACAACAAGGG29,945rps2CAACTACAACAALgu/Asn37,963psaBGCCGGGGCGGCGCys/Asn37,963psaBTGCCGGCGGCGCCys/Asn37,963psaBTGCCGGCGGCGCCys/Arg31,88atpBACGCCGACGCGCCgG54,869rbcLGGAGGAGGGGGC66,51465,818ORF106TCCTCCTCCCTCLeu/Phe65,125rpl33GTGGCGGCGGCAGCA65,354rpl33GTGGCGGCGGCAGCA65,354rpl33GTGGCGGCGGCAGCA65,354rpl33GTGGCGGCGGCGVal/Ala69,301psbBGTGGCTACTACTThr/Ata77,550rpl14ACT </td <td>412</td> <td>psbA</td> <td>CTC</td> <td>CTC</td> <td>TTC</td> <td>TTC</td> <td>Leu/Phe</td>	412	psbA	CTC	CTC	TTC	TTC	Leu/Phe			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4,547	rps16	TGT	TGT	GGT	GGT	Cys/Gly			
8,554 ORF100 D-69 D-69 I-69 I-69 14,166 ORF91 AGC AGC AAC AAC Ser/Asn 16,613 psbM A - - - - 20,547 rpoB CCA CCA CCT CCT 2 27,979-27,980 rpoc2 CGA CGT CGA CGA 2 28,970 rpoc2 CGA GGT CGA CGA 2 AAC AAC AAC Asp/Asn 29,945 rps2 CAA CTA CAA CAA CAA CAA CAA Lgs/Asn 30,925 atpI AAA AAT AAA AAA Lgs/Asn 1////////////////////////////////////	7,141	psbK	AAC	AAC	AAT	AAT	5 5			
14,166ORF91AGCAGCAACAACSer/Asn16,613psbMA20,547rpoBCCACCACCTCCT227,979-27,980rpoc2TTGTTTTGGTGGLeu/Phe/Trp28,970rpoc2CGACGTCGACGA229,073rpoc2GACGACAACAACAsp/Asn29,973rps2CAACTACAACAAGAAGI/Leu30,925atp1AAAAATAAAAAALys/Asn335,342atpAGCAGCCCGCCGCCys/Arg37,963psaBGTCGTTGTCGTC552,090atpBACGCCGACGACGThr/Pro54,869rbcLGGAGGAGGGGGGGGC55,545ORF106GCTTTCTCTTCT56,818ORF106GGTGGTGGGGGCGGC665,172rp133GTAGTGGCGGCAGCA65,354rp120TGGTGGTGATGATrp/Stop condon69,301psbBACTACCACTACTACTACT66,554rp183psbBACTACCACTACTACT66,554rp133GTGGCGGCGGCGGCAGCA66,554rp133psbBACTACCACT <td>8,554</td> <td>ORF100</td> <td>D-69</td> <td>D-69</td> <td>I-69</td> <td>I-69</td> <td></td>	8,554	ORF100	D-69	D-69	I-69	I-69				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14.166	ORF91	AGC	AGC	AAC	AAC	Ser/Asn			
20,547rpoBCCACCACCTCCTCCT $27,979-27,980$ rpoc2TTGTTTTGGTGGLeu/Phe/Trp $28,970$ rpoc2CGACGTCGACGA29,073 $29,073$ rpoc2GACGACAACAACAsp/Asn $29,073$ rpoc2CAACTACAACAAGACGAC $29,945$ rps2CAACAACAACAACAAGAAGIA $35,342$ atpIAAAAATAAAAAAAAALys/Asn $35,342$ atpAGCAGCGCGCCGCCys/Arg $37,963$ psaBGTCGTTGTCGTC52,090 $31,818$ atpBACGCCGCGCCGCCys/Arg $33,188$ atpBACGCCGCGCCGCCys/Arg $56,545$ ORF106TCCTCTTCTTCT $56,818$ ORF106GGTGGTGGCGGC63618petECTCTTCCTCCTCLeu/Phe $65,235$ rp133GCAGCGGCGGCAGCA $66,354$ rp120TGGTGGTGATGATrp/Stop condon $69,331$ psbBACTACCACTACTACTThr/A1a $77,550$ rp114ACTGCAGCCGCCCys/Arg104,485 $79,426$ rps3TTCTTCCTCCTCPhe/Leu $105,740$ c	16.613	psbM	А	-	-	_				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.547	rpoB	CCA	CCA	CCT	CCT				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 979-27 980	rpoc2	TTG	TTT	TGG	TGG	Leu/Phe/Trp			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28,970	rpoc2	CGA	CGT	CGA	CGA	· · · · · · · ·			
29,945Tps2CAACTACAACAAGIn/Leu30,925atplAAAAAAAATAAAAAALys/Asn35,342atpAGCAGCAGCGGCGCGG37,963psaBGTCGTTGTCGTC52,090atpBTGCCGCCGCCGCCys/Arg53,188atpBACGCCGACGACGThr/Pro54,869rbcLGGAGGAGGGGGGGGG56,545ORF106TCCTCTTCTTCTTCT56,818ORF106GGTGGTGGCGGCGGC63,618petECTCTTCCTCCTCLeu/Phe65,172rpl33GTTGTCGTTGTTGTT65,235rpl33GCAGCGGCGGCAGCA66,354rpl20TGGTGGTGGTGATGAThr/Stop condon69,301psbBGTGGCGGCGGCGVal/Ala69,833psbBACTACCACTACT77,550rpl14ACTGCTACTACTThr/AlaThr/Ala77,750Thl/ATGCTGCCGCCGCCys/Arg104,485rpl32ACAAACAA105,740ccsATTGTTATTATTA105,741-105,743ccsACTTCTTAGCAGCActo/SerThr/Pro113,049ndhH	29.073	rpoc2	GAC	GAC	AAC	AAC	Asp/Asn			
3).22atplAAAAAAAAAAAALys/Asn35,342atpAGCAGCAGCGGCGGCG37,963psaBGTCGTTGTCGTC52,090atpBTGCCGCCGCCGCCys/Arg53,188atpBACGCCGACGACGThr/Pro54,869rbcLGGAGGAGGCGGCGGC56,545ORF106TCCTCTTCTTCT56,818ORF106GGTGGCGGCGGC63,618petECTCTTCCTCCTC65,235rp133GCAGCGGCAGCA66,354rp120TGGTGGTGGTGA65,353psbBGTGGCGGCGVal/Ala69,301psbBGTGGCTACTACT76,556rps8D-21I-21D-21Thr/Ala77,532rp114ACTGCTACTACTACT76,566rps8D-21I-21D-21D-2177,532rp116TACTACTGCTGCCTCCTC105,740ccsATTGTTCCTCCTCPhe/Leu105,740ccsATTGTTGTTATTATTA105,741-105,743ccsACTTCTTAGCAGCACC113,049ndhHTGATGAGGAGGAStop condon/Glv	29.945	rps2	CAA	CTA	CAA	CAA	Gln/Leu			
35,342atpAGCAGCAGCGGCGGCG37,963psaBGTCGTTGTCGTC52,090atpBTGCCGCCGCCGCCgC53,188atpBACGCCGACGACGTht/Pro54,869rbcLGGAGGAGGGGGGGGG56,545ORF106TCCTCTTCTTCTTCT56,818ORF106GGTGGTGGCGGCGGC63,618petECTCTTCCTCCTCLeu/Phe65,172rpl33GTTGTCGTTGTTGT66,354rpl20TGGTGGTGGTGATrp/Stop condon69,301psbBGTGGCGGCGGCGVal/Ala69,833psbBACTACCACTACTACT77,552rpl14ACTGCTACTACTThr/Ala77,750rpl16TACTACTGCCTCTCCPhe/Leu102,887ndhfTGCTGCCGCCGCCys/Arg104,485rpl32ACAAACAA105,740ccsATTGTTGTTATTATTA1TA105,741-105,743ccsACTTCTTAGCAGCAGCCTT13,049ndhHTGATGAGCAGCGCGCCTCThr/Pro13,049ndhHTGATGAGGAGCG	30,925	atpl	AAA	AAT	AAA	AAA	Lvs/Asn			
37,963psaBGTCGTTGTCGTCGTC52,090atpBTGCCGCCGCCGCCys/Arg53,188atpBACGCCGACGACGThr/Pro54,869rbcLGGAGGAGGGGGGGGG56,545ORF106TCCTCTTCTTCTTCT56,818ORF106GGTGGTGGCGGCGGC63,618petECTCTTCCTCCTCLeu/Phe65,172rp133GTTGTCGTTGTTGTT65,235rp133GCAGCGGCAGCAGCA66,354rp120TGGTGGTGGTGATGATrp/Stop condon69,301psbBGTGGCGGCGGCGVal/Ala69,833psbBACTACCACTACTACT77,532rp114ACTGCTACTACTThr/Ala77,750rp116TACTACTGCTGCCTCPhe/Leu102,887ndhfTGCTGCCGCCGCCgS/Arg104,485rp132ACAAACAA105,741cesACTTCTTAGCAGCLeu/Ser112,788ndhHACCCCCACCACCACCThr/ProThr/Pro113,049ndhHTGATGAGGAStop condon/Glv	35,342	atpA	GCA	GCA	GCG	GCG				
52,090atpBTGCCGCCGCCGCCGCCys/Arg53,188atpBACGCCGACGACGThr/Pro54,869rbcLGGAGGAGGGGGGGG56,545ORF106TCCTCTTCTTCT56,818ORF106GGTGGTGGCGGC63,618petECTCTTCCTCCTC65,235rpl33GTTGTCGTTGT65,344rpl20TGGTGGTGATGA69,301psbBGTGGCGGCGGCG69,301psbBGTGGCTACTACT76,656rps8D-21I-21D-21Thr/Ala77,750rpl16TACTACTGCCGCCGC79,426rps3TTCTTCCTCCTCPhe/Leu102,887ndhfTGCTGCCGCCGCCys/Arg104,485rpl32ACAAACAA105,740ccsATTGTTGTTATTATTA105,741-105,743ccsACTTCTTAGCAGCLeu/Ser113,049ndhHTGATGAGGAGGAStop condon/Glv	37,963	psaB	GTC	GTT	GTC	GTC				
53,188atpBACGCCGACGACGThr/Pro54,869rbcLGGAGGAGGAGGGGGG56,545ORF106TCCTCTTCTTCT56,818ORF106GGTGGTGGCGGC63,618petECTCTTCCTCCTCLeu/Phe65,172rp133GTTGTCGTGTGCA66,354rp120TGGTGGTGATGATp/Stop condon69,301psbBGTGGCGGCGGCGVal/Ala69,833psbBACTACCACTACTThr/Ala77,552rp114ACTGCTACTACTThr/Ala77,750rp116TACTACTGCTGCTGCTGC79,426rps3TTCTTCCTCCTCPhe/Leu102,887ndhfTGCTGCTGCCGCCys/Arg104,485rp132ACAAACAA105,740ccsATTGTTGTTATTATTA105,741-105,743ccsACTTCTTAGCAGCLeu/Ser112,049ndhHTGATGAGGAGGAStop condon/Glv	52,090	atpB	TGC	CGC	CGC	CGC	Cvs/Arg			
54,869rbcLGGAGGAGGGGGGGGG56,545ORF106TCCTCTTCTTCTTCT56,818ORF106GGTGGTGGCGGCGGC63,618petECTCTTCCTCCTCLeu/Phe65,172rp133GTTGTCGTTGTTGTT65,235rp133GCAGCGGCAGCAGGA69,301psbBGTGGCGGCGGCGVal/Ala69,301psbBGTGGCGGCGGCGVal/Ala69,833psbBACTACCACTACTThr/Ala77,532rp14ACTGCTACTACTThr/Ala77,750rp116TACTACTGCTGCTGCCYs/Arg104,485rp132ACAAACAA105,740ccsATTGTTGTTATTATTA105,741-105,743ccsACTTCTTAGCAGCLeu/Ser112,049ndhHTGATGAGGAStop condon/Glv	53,188	atpB	ACG	CCG	ACG	ACG	Thr/Pro			
56,545ORF106TCCTCTTCTTCT56,545ORF106GGTGGTGGCGGC63,618petECTCTTCCTCCTC65,172rpl33GTTGTCGTTGTT65,235rpl33GCAGCGGCAGCA69,301psbBGTGGGGGCGGCGVal/Ala69,333psbBACTACCACTACT76,656rps8D-21I-21D-21Thr/Ala77,750rpl14ACTGCTACTACT77,750rpl16TACTACTGCTGCTGC79,426rps3TTCTTCCTCCTCPhe/Leu102,887ndhfTGCTGCCGCCGCCys/Arg104,485rpl32ACAAACAA105,740ccsACTTCTTAGCAGCLeu/Ser112,788ndhHACCCCCACCACCThr/Pro113,049ndhHTGATGAGGAGGAStop condon/Glv	54,869	rbcL	GGA	GGA	GGG	GGG				
56,818ORF106GGTGGTGGCGGC63,618petECTCTTCCTCCTC65,172rp133GTTGTCGTTGTT65,235rp133GCAGCGGCAGCA66,354rp120TGGTGGTGATGATrp/Stop condon69,301psbBGTGGCGGCGGCGVal/Ala69,303psbBACTACCACTACT76,656rps8D-21I-21D-21Thr/Ala77,750rp116TACTACTGCTGCTGC79,426rps3TTCTTCCTCCTCPhe/Leu102,887ndhfTGCTGCCGCCGCCys/Arg104,485rp132ACAAACAA105,740ccsATTGTTGTTATTATTA105,741-105,743ccsACTTCTTAGCAGCLeu/Ser112,089ndhHTGATGAGGAGGAStop condon/Glv	56 545	ORF106	TCC	TCT	TCT	TCT				
Chi of the constraint of the co	56 818	ORF106	GGT	GGT	GGC	GGC				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	63 618	netE	CTC	TTC	CTC	CTC	Leu/Phe			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65 172	rpl33	GTT	GTC	GTT	GTT	Lea, The			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65 235	rp133	GCA	GCG	GCA	GCA				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66 354	rpl20	TGG	TGG	TGA	TGA	Trp/Stop condon			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69 301	nshB	GTG	GCG	GCG	GCG	Val/Ala			
76,656 $rps8$ $D-21$ $I-21$ $D-21$ $D-21$ $77,532$ $rpl14$ ACT GCT ACT ACT Thr/Ala $77,750$ $rpl16$ TAC TAC TGC TGC Tgr/Cys $79,426$ $rps3$ TTC TTC CTC CTC Phe/Leu $102,887$ $ndhf$ TGC TGC CGC CGC Cys/Arg $104,485$ $rpl32$ $ACAA$ $ACAA$ $ 105,740$ $ccsA$ TTG TTG TTA TTA $105,741-105,743$ $ccsA$ CTT CTT ACC ACC $112,788$ $ndhH$ ACC CCC ACC ACC $113,049$ $ndhH$ TGA TGA GGA GGA	69.833	psbB	ACT	ACC	ACT	ACT	(tit) 1 11tt			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76 656	rns8	D-21	I-21	D-21	D-21				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77 532	rpl14	ACT	GCT	ACT	ACT	Thr/Ala			
17,10017101710171017101710171079,426rps3TTCTTCCTCCTCPhe/Leu102,887ndhfTGCTGCCGCCGCCys/Arg104,485rpl32ACAAACAA105,740ccsATTGTTGTTATTA105,741-105,743ccsACTTCTTAGCAGCLeu/Ser112,788ndhHACCCCCACCACCThr/Pro113,049ndhHTGATGAGGAStop condon/Glv	77 750	rpl16	TAC	TAC	TGC	TGC	Tyr/Cys			
102,887ndhfTGCTGCCGCCGCCgCCys/Arg104,485rpl32ACAAACAA105,740ccsATTGTTGTTATTA105,741-105,743ccsACTTCTTAGCAGC112,788ndhHACCCCCACCACC113,049ndhHTGATGAGGAStop condon/Glv	79 426	rns3	TTC	TTC	CTC	CTC	Phe/Leu			
IO2,000IndiaIOC	102 887	ndhf	TGC	TGC	CGC	CGC	Cvs/Arg			
105,740 ccsA TTG TTA TTA 105,741-105,743 ccsA CTT CTT AGC AGC 112,788 ndhH ACC CCC ACC ACC 113,049 ndhH TGA TGA GGA Stop condon/Glv	104 485	rnl32	ACAA	ACAA	-	-	095/116			
105,741-105,743ccsACTTCTTAGCAGCLeu/Ser112,788ndhHACCCCCACCACCThr/Pro113,049ndhHTGATGAGGAGGAStop condon/Glv	105 740	ccsA	TTG	TTG	TTA	TTA				
112,788 ndhH ACC CCC ACC ACC Thr/Pro 113,049 ndhH TGA TGA GGA GGA Stop condon/Glv	105 741-105 743	ccsA	CTT	CTT	AGC	AGC	Leu/Ser			
113,049 ndhH TGA TGA GGA GGA Stop condon/Glv	112 788	ndhH	ACC	CCC	ACC	ACC	Thr/Pro			
	113.049	ndhH	TGA	TGA	GGA	GGA	Stop condon/Gly			

Table 3. SNPs and Indels found in encoding regions of rice cpDNA by comparing the four whole chloroplast

^aPosition denotes the nucleotide position in the chloroplast genome sequence of 9311.

A total of 141 polymorphic bases were found in the cpDNA fragments of O. sativa, of which 131 indica-japonica-characteristic bases spread across 13 sites were identified (marked "4" in Tables 4 and 5). Six indica and 4 japonica strains were clearly identified at these indica-japonicaspecific sites, and 8 javanica strains had sequences similar to those of japonica at these sites. Based on the 131 indica-japonica-characteristic bases, the cpDNA classification results of these O. sativa strains coincide with the results of the length polymorphism of the ORF100 and ORF29 -TrnC^{GCA} fragments (Figure 1). Hence, the ORF100 and ORF29-TrnC^{GCA} fragments are reliable molecular markers that can be used to classify the O. sativa cpDNA into the indica/japonica types. The O. rufipogon strains can also be classified into the *indica/japonica* types according to these 2 fragments, which agree with the results of Sun et al. (1997). Nevertheless, no O. rufipogon strain had sequences similar to those of indica or japonica in all the 131 indica-japonica-characteristic bases. Some O. rufipogon strains had more indica-specific bases, whereas the others contained more japonica-specific bases. For example, O. rufipogon from Zengcheng had 117 indica-specific bases and 14 japonicaspecific bases, whereas Chaling had 9 indica-specific bases and 122 japonica-specific bases. Therefore, although a certain *indica-japonica* differentiation trend exists in O. rufipogon, they could not be classified into the *indica/japonica* types as simply as those in O. sativa.

Genetics and Molecular Research 11 (4): 4418-4431 (2012)

W.J. Li et al.

Material	Gene and its base site No.													
	ORF100	ORF29-TrnCGCA		rps16 intron		TrnT ^{UGU} -TrnL ^{UAA}								
-	248-316 ^a	130-131ª	163-194ª	267-273ª	309-312	322-326ª	413 ^a	463	479	520	572	599	635	774-779ª
9311	D-69	AA	I-32	CTTTATC	-	-	-	G	А	А	G	Т	А	-
IR36	D-69	AA	I-32	CTTTATC	-	-	-	G	А	Α	G	Т	Α	-
Nanjing-3	D-69	AA	I-32	CTTTATC	-	-	-	G	С	G	Α	Т	Α	-
Guangluai-4	D-69	AA	I-32	CTTTATC	CTTT	-	-	G	А	Α	G	Т	Α	-
Kasalath	D-69	AA	I-32	CTTTATC	CTTT	-	-	G	А	Α	G	Т	А	-
Basmati	D-69	AA	I-32	CTTTATC	CTTT	-	-	G	А	Α	G	Т	А	-
Nipponbare	I-69	GG	D-32	-	-	TATAT	Т	G	А	Α	G	Т	А	AGAAA
Bairizao	I-69	GG	D-32	-	-	TATAT	Т	G	Α	А	G	Т	А	AGAAAA
<i>Akihika</i> ri	I-69	GG	D-32	-	-	TATAT	Т	Α	А	Α	G	С	Т	AGAAA
Aizinuo	I-69	GG	D-32	-	-	TATAT	Т	G	А	А	G	Т	А	AGAAA
Lemont	I-69	GG	D-32	-	-	TATAT	Т	G	А	А	G	Т	А	AGAAA
P002	I-69	GG	D-32	-	-	TATAT	Т	G	А	А	G	Т	А	AGAAA
IM359	I-69	GG	D-32	-	-	TATAT	Т	G	А	А	G	Т	А	AGAAA
IM273	I-69	GG	D-32	-	-	TATAT	Т	G	А	А	G	Т	А	AGAAA
CPSL017	I-69	GG	D-32	-	-	TATAT	Т	G	А	А	G	Т	А	AGAAA
Rosemont	I-69	GG	D-32	-	-	TATAT	Т	G	А	А	G	Т	А	AGAAA
D16	I-69	GG	D-32	-	-	TATAT	Т	G	А	А	G	Т	А	AGAAA
Brazilian UR	I-69	GG	D-32	-	-	TATAT	Т	G	А	А	G	Т	А	AGAAA
Hainan CWR	D-69	AA	I-32	-	-	-	-	G	А	А	G	Т	А	AGAAA
Hepu CWR	D-69	AA	I-32	-	-	-	-	G	А	А	G	Т	А	AGAAA
Gongguan CWR	D-69	AA	I-32	-	-	-	-	G	А	А	G	Т	А	AGAAA
Gaozhou CWR	I-69	GG	D-32	-	-	-	-	G	А	А	G	Т	А	AGAAA
Fusui CWR	I-69	GG	D-32	-	-	-	-	G	А	А	G	Т	А	AGAAA
Zengcheng CWR	D-69	AA	I-32	-	-	-	-	G	А	А	G	Т	А	AGAAA
Tianyang CWR	D-69	AA	I-32	-	-	-	-	G	А	А	G	Т	А	AGAAA
Liujiang CWR	I-69	GG	D-32	-	-	TATAT	Т	G	А	А	G	Т	А	AGAAA
Guilin CWR	I-69	GG	D-32	-	-	TATAT	Т	G	А	А	G	Т	А	AGAAA
liangyong CWR	D-69	AA	I-32	-	-	-	-	G	А	А	G	Т	А	AGAAA
Chaling CWR	I-69	GG	D-32	-	-	TATAT	Т	G	А	А	G	Т	А	AGAAA
Dongxiang CWR	D-69	AA	I-32	-	-	-	-	G	А	А	G	Т	А	AGAAA

*aindica-japonica-*characteristic sites. All the GenBank accession Nos. of these sequences were listed in Table S1.

Sequence characteristics and phylogenetic analysis based on concatenated datasets

A total of 9080 bases of the cpDNA regions were sequenced separately from 30 *Oryza* accessions. The variable sites, varying from 1 (0.15%) to 6 (0.73%), were screened in all of the sampled sequences, except in the ORF100 region. The ORF100, ORF29-TrnC^{GCA}, rps16 intron, and TrnT^{UGU}-TrnL^{UAA} regions contained different numbers of informative indels, varying from 12 to 69 bp (Table 6). The total number of variable sites was 22 (0.24%), and that of the parsimoniously informative characters was 14 (0.15%). We tested the selection and neutrality with Tajima's D, using the sequences of *O. sativa* and *O. rufipogon* in each region. The results showed no significant value in any of the regions, which indicated that the areas are evolutionarily neutral and without selective pressure.

Two phylogenetic trees were reconstructed via the MP and NJ methods using the combined sequences of the 9 cpDNA regions to reveal the evolutionary relationship between *O. sativa* and *O. rufipogon*. The MP phylogenetic tree was assembled from all of the SNPs

Genetics and Molecular Research 11 (4): 4418-4431 (2012)

(22 sites) and the length variations (8 sites) to fully extract information regarding the DNA sequences (Figure 2). On the other hand, the NJ tree was constructed based only on the SNP data (Figure 3). The MP and NJ trees showed nearly similar topologies, with little difference in the bootstrap values, indicating that the studied rice species were classified into 2 main clusters: 1 branch consisted of the *indica* and the 8 *O. rufipogon* strains, and the other consisted of the *japonica*, *javanica*, and the rest of the 4 *O. rufipogon* strains. These relationships were supported by bootstrap values of greater than 50% (Figures 2 and 3). The results also support the existence of *indica-japonica* differentiation trends in *O. rufipogon*.

Material	Gene and its base site No.													
	p.	sbB	rpoc2		ccsA	ndhH		psbA						
	550ª	1082	3293ª, 3294	4387ª	540-543ª	109	370 ^a	331ª						
9311	Т	Т	TG	G	GCTT	А	Т	С						
IR36	Т	Т	TG	G	GCTT	А	Т	С						
Nanjing-3	Т	Т	TG	G	GCTT	А	Т	С						
Guangluai-4	Т	Т	TG	G	GCTT	А	Т	С						
Kasalath	Т	Т	TG	G	GCTT	А	Т	С						
Basmati	Т	Т	TG	Ğ	GCTT	А	Т	Č						
Nipponbare	С	Т	GG	А	AAGC	А	G	Т						
Bairizao	Č	Т	GG	А	AAGC	А	Ğ	Т						
Akihikari	Č	Т	ĞĞ	А	AAGC	А	Ğ	Т						
Aizinuo	Č	Т	GG	А	AAGC	А	Ğ	Т						
Lemont	Č	Т	GG	А	AAGC	А	Ğ	Т						
P002	Č	Ť	ĞĞ	A	AAGC	A	Ğ	Ť						
IM359	Č	Т	GG	А	AAGC	А	Ğ	Т						
IM273	Č	Ť	ĞĞ	A	AAGC	A	Ğ	Ť						
CPSL017	Č	Ť	ĞĞ	A	AAGC	A	Ğ	Ť						
Rosemont	Č	Т	GG	А	AAGC	А	Ğ	Т						
D16	Č	Ť	ĞĞ	A	AAGC	A	Ğ	Ť						
Brazilian UR	č	Ť	ĞĞ	A	AAGC	A	Ğ	Ť						
Hainan CWR	Č	Ť	ŤĞ	G	GCTT	A	Ť	Č						
Henu CWR	Ť	Ť	ŤĜ	Ğ	GCTT	A	Ť	Č						
Gongguan CWR	Ť	Ť	ĜĜ	Ğ	GCTT	A	Ť	č						
Gaozhou CWR	Č	Ť	ĞĞ	Ă	GCTT	A	Ğ	Ť						
Fusui CWR	Č	Ť	ĞĞ	A	GCTT	A	Ğ	Ť						
Zenocheno CWR	č	Ť	ŤŤ	Ğ	GCTT	A	Ť	Ĉ						
Tianyang CWR	č	ċ	ŤŤ	Ğ	GCTT	Ĉ	Ť	č						
Liuijang CWR	č	Ť	ĜĜ	Ă	GCTT	Ă	Ġ	Ť						
Guilin CWR	č	Ť	ĞĞ	Ĝ	GCTT	A	Ğ	Ť						
liangvong CWR	Ť	Ť	TG	A	GCTT	A	Ğ	Ť						
Chaling CWR	Ť	T	TG	G	GCTT	A	Ť	Ċ						
Dongxiang CWR	Ť	Ť	ŤĞ	Ğ	GCTT	Ă	Ť	č						

 Table 5. Sequence divergence of the 5 new selected cpDNA encoding regions among 30 materials.

aindica-japonica-characteristic sites. All the GenBank accession Nos. of these sequences were listed in Table S1.

Figure 1. Agarose gel eletrophoresis results of ORF100 and ORF29-TrnC^{GCA} fragments. **A.** ORF100 fragments; **B.** ORF29-TrnC^{GCA} fragments. *Lane* M = molecular marker; *lanes* 1-30 = different materials according to Table 1.

Genetics and Molecular Research 11 (4): 4418-4431 (2012)

©FUNPEC-RP www.funpecrp.com.br

W.J. Li et al.

Table 6. Sequence characteristics of 9 regions and combined datasets.										
Locus	Aligned length (bp)	GC (%)	No. of variable sites (%)	No. of informative sites (%)	Consistency index	Retention index	No. of informative indels	Tajima's D		
ORF100	456	32.5	0	0	-	-	1 (69 bp)	n/c		
ORF29-TrnCGCA	514	37.8	2 (0.39)	2 (0.39)	1.000	1.000	1 (32 bp)	1.083071		
rps16 intron	684	32.1	1 (0.15)	0	-	-	3 (17 bp)	-1.155588		
TrnT ^{UGU} -TrnL ^{UAA}	824	29.3	6 (0.73)	0	-	-	3 (12 bp)	-1.091074		
psbB	1688	43.9	2 (0.12)	2 (0.12)	1.000	1.000	0	0.737635		
rpoc2	2474	38.1	4 (0.16)	3 (0.12)	0.800	0.960	0	0.959302		
ccsA	859	33.9	4 (0.47)	4 (0.47)	1.000	1.000	0	1.092620		
ndhH	964	37.8	2 (0.21)	2 (0.21)	1.000	1.000	0	0.838228		
psbA	617	42.9	1 (0.16)	1 (0.16)	1.000	1.000	0	1.590843		
Total	9080	37.5	22 (0.24)	14 (0.15)	1.000	1.000	8 (130 bp)	0.413816		

n/c = not counted.

Figure 2. Evolutionary history inferred using the maximum parsimony method. A strict consensus tree of the 288 most parsimonious trees (length = 25) is shown. The consistency index is 0.705882, the retention index is 0.960938, and the composite index is 0.768750 for all sites and parsimony-informative sites. The MP tree was obtained using the close-neighbor-interchange algorithm. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the evolutionary history of the taxa analyzed. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentages of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches.

Genetics and Molecular Research 11 (4): 4418-4431 (2012)

cpDNA diversity of cultivated rice and its wild relatives

0.0001

Figure 3. Evolutionary history inferred using the neighbor-joining method. The optimal tree with the sum of branch length = 0.00286400 is shown. The evolutionary distances were computed using the maximum composite likelihood model. The percentages of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches.

4427

Genetics and Molecular Research 11 (4): 4418-4431 (2012)

DISCUSSION

CpDNA genetic diversity of O. sativa

Indica and japonica are 2 important subspecies of O. sativa. Their agronomic characteristics and ecological adaptability show remarkable differences, and this characteristic association of traits has been explained by hybrid sterility or by reproductive barriers (Sato and Morishima, 1988; Harushima et al., 1998). The nuclear genetic diversities between *indica* and *japonica*, particularly the nuclear genetic differences related to important agronomic traits, have been widely investigated in recent decades (Second, 1982; Wang and Tanksley, 1989; Chen et al., 1994; Garris et al., 2005). However, our understanding of the cytoplasmic genetic diversity between them, as well as of the relationship between their genetic diversity, agronomic characteristics, and phylogeny, is still limited (Kanno et al., 1993; Chen et al., 1994; Sun et al., 1997; Shaw et al., 2005). In the present study, 131 indica-japonica characteristic bases involved in 13 sites were identified based on the sequence analysis of 6 indica, 4 japonica, and 8 javanica, as listed in Table 1. The results revealed abundant polymorphism between the *indica* and *japonica* subspecies, not only in the non-coding regions, but also in the coding regions. These polymorphic bases in the encoding regions could lead to changes in the amino acids. However, whether these amino acid changes are related to the different phenotypes of these 2 subspecies remains to be determined. The indica-japonica classification results of these O. sativa strains in all of the *indica-japonica* characteristic nucleotides are highly consistent with those of the ORF100 and ORF29-TrnC^{GCA} fragments. Therefore, the analysis of the amplified fragment lengths of ORF100 and ORF29-TrnC^{GCA} using agarose gel electrophoresis is a simple, fast, and accurate method of identifying the *indica/japonica* types in the O. sativa cytoplasm.

Javanica showed very wide compatibility, as shown by the fairly good bearing rates of both its *indica/javanica* and *japonica/javanica* hybrids, which has great significance for achieving strong heterosis. However, the attributes of *javanica* remain controversial (Wang and Sun, 2000). Some scholars advocated that *O. sativa* L. should be classified into the *indica* (*O. sativa* ssp *indica*) and *japonica* (*O. sativa* ssp *japonica*) subspecies (Cheng, 1985), and that *javanica* is an ecotype of *japonica*. However, others argued that it should be divided into 3 subspecies, namely, *indica, japonica*, and *javanica* (Chang, 1976; Yuan, 1987). The *javanica* studied in our research has a relatively close relationship with *japonica* and is clustered into the *japonica* branch in both the MP and NJ trees; therefore, our results support the former classification system.

CpDNA genetic diversity and *indica-japonica* differentiation in O. rufipogon

The *O. rufipogon* strains used in our study were distributed from Yaxian (18.73N) of the Hainan Province to Dongxiang (28.14N; the highest latitude of *O. rufipogon* distribution) of the Jiangxi Province, both located in China. The plant types, photosensitivities, cold tolerance, and overwintering capabilities of the *O. rufipogon* strains from the different latitude distributions showed clear differences. The *O. rufipogon* strains from Dongxiang (28.14N), Chaling (26.50N), Jiangyong (25.41N), Guilin (24.15N), and Liujiang (24.08N) can tassel, bloom, and seed from September to November under natural conditions in Changsha (28.12N), whereas those from Hainan (18.73N) can only complete their entire life cycle under a 10-h short-day treatment. These results indicated differences in the photosensitivity of

Genetics and Molecular Research 11 (4): 4418-4431 (2012)

floral induction, although the *O. rufipogon* strains were all typical short-day plants, the photosensitivity strengthened with decreasing distribution latitude. These *O. rufipogon* strains also showed significant differences in their cold tolerance and overwintering capabilities under natural conditions in Changsha. Those from the lowest latitude of Hainan (18.73N) could not live through winter; those from the 21.38N to 25.41N region could not survive overwintering in normal years without freezing weather, and only those from Chaling (26.50N) and Dongxiang (28.14N) safely survived the winter of 2008, which had a rare snow disaster that lasted for 20 days. These results demonstrated the biological diversity of *O. rufipogon*, which resulted from the difference in regional distributions (Li et al., 2001).

Our study also indicated rich genetic polymorphism in the cpDNA of O. rufipogon from different distributions. The O. rulipogon strains from near geographic distributions often had similar sequences and closer relationships. For instance, the O. rufipogon from Gaozhou (21.42N) and Fusui (22.25N) had perfectly similar sequences and were clustered into a clade based on the sequence analyses of these 9 highly cpDNA variable regions (Figures 2 and 3). The O. rufipogon strains showed different trends of indica-japonica differentiation in the 131 identified indica-japonica characteristic bases, which were validated by both the MP and NJ trees. Hence, these trends provide evidence on the level of cytoplasmic genetic information for dual origins; *indica* and *japonica* must have evolved separately from O. rufipogon strains with different indica/japonica differentiation trends (Chang, 1976; Second, 1982; Londo et al., 2006; Duan et al., 2007; Kumagai et al., 2010). However, no O. rufipogon strains that are completely identical to those of *indica* or *japonica* were found at these sites in our research, suggesting that the *indica-japonica* differentiation of O. rufipogon is relatively primitive and incomplete. Thus, the agarose gel electrophoresis results of the ORF100 and ORF29-TrnC^{GCA} fragments could only be used in the preliminary analysis of the *indica-japonica* differentiation trends in O. rufipogon, and we could not simply determine the characteristics of the O. rufipogon cpDNA based on these results. In addition, all of these corresponding indica/japonicaspecific sequences, except the *indica*-specific sequences "CTTTATC" at positions 267-273 of the rps16 intron and the japonica-specific sequences "AAGC" at positions 540-543 of the ccsA gene, could be detected in the O. rufipogon strains. When position 370 of the ndhH gene fragment is taken as an example, the *indica*-specific base C was found in O. rufipogon from Gaozhou, Fusui, Liujiang, Guilin, and Jiangyong, whereas the japonica-specific sequence G was found in the rest of the O. rufipogon strains (Tables 4 and 5). Hence, the indica/japonicaspecific sequences of the cpDNA in O. sativa were mainly inherited from the O. rufipogon strains that have different indica/japonica differentiation trends. In addition, a small number of *indica/japonica*-specific sequences have independently formed through mutation during the long process of natural selection and artificial selection. This phenomenon is another theory that supports the dual origin of O. sativa.

ACKNOWLEDGMENTS

We thank the South China Agriculture University and Nanning Wild Rice Garden for providing the plant material for this study. Research supported by the National High Technology Research and Development Program (863 Program, #2010AA101305), Key Programs for Science and Technology Development of Hunan Province (#2009FJ1004-1) and the National Natural Science Foundation of China (#31171473/C1302).

Genetics and Molecular Research 11 (4): 4418-4431 (2012)

Supplementary material

REFERENCES

- Cai HW and Wang XK (1992). Classification of Asian rices by esterase isozymes. Southeast China J. agric. Sci. 5: 19-22.
 Caicedo AL, Williamson SH, Hernandez RD, Boyko A, et al. (2007). Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet. 3: 1745-1756.
- Chang TT (1976). The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices. *Euphytica* 25: 435-441.
- Chen WB, Sato YI, Nakamura I and Nakai H (1994). Indica-Japonica differentiation in Chinese rice landraces. *Euphytica* 74: 195-201.
- Cheng KS (1985). A statistical evaluation of the classification of rice cultivars into hsien and keng subspecies. RGN 2: 46-48.
- Duan SH, Li SQ, Li YS, Xiong Y, et al. (2007). Distribution and SNPs of the rice CMS-related gene in AA-genome of Oryza species. Yi Chuan 29: 455-461.
- Felsenstein J (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
- Fukui K, Ohmido N and Khush GS (1994). Variability in rDNA loci in the genus *Oryza* detected through fluorescence in situ hybridization. *Theor. Appl. Genet.* 87: 893-899.
- Garris AJ, Tai TH, Coburn J, Kresovich S, et al. (2005). Genetic structure and diversity in *Oryza sativa* L. *Genetics* 169: 1631-1638.
- Harushima Y, Kurata N, Yano M, Sasaki T, et al. (1998). Detection of interactive loci for genotype segregation in F2 populations between japonica and indica rice crosses. *Breed. Sci.* 4: 82-101.
- Hirai A, Isshibashi T, Morikami A, Iwatsuki N, et al. (1985). Rice chloroplast DNA: a physical map and the location of the genes for the large subunit of ribulose 1, 5-bisphosphate carboxylase and the 32 kD photosystem II reaction center protein. *Theor. Appl. Genet.* 70: 117-122.
- Hiratsuka J, Shimada H, Whittier R, Ishibashi T, et al. (1989). The complete sequence of the rice (*Oryza sativa*) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. *Mol. Gen. Genet.* 217: 185-194.
- Joshi SP, Gupta VS, Aggarwal RK, Ranjekar PK, et al. (2000). Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus *Oryza*. *Theor. Appl. Genet.* 100: 1311-1320.
- Kanno A, Watanabe N, Nakamura I and Hirai A (1993). Variations in chloroplast DNA from rice (*Oryza sativa*): Differences between deletions mediated by short direct-repeat sequences within a single species. *Theor. Appl. Genet.* 86: 579-584.
- Khush GS (1997). Origin, dispersal, cultivation and variation of rice. *Plant Mol. Biol.* 35: 25-34.
- Kumagai M, Wang L and Ueda S (2010). Genetic diversity and evolutionary relationships in genus *Oryza* revealed by using highly variable regions of chloroplast DNA. *Gene* 462: 44-51.
- Li DY, Liang YM and Yang HQ (2001). Genetic diversity of agricultural crops germplams in Guangxi. Acta Bot. Yunnanica 23: 18-21.
- Londo JP, Chiang YC, Hung KH, Chiang TY, et al. (2006). Phylogeography of Asian wild rice, *Oryza rufipogon*, reveals multiple independent domestications of cultivated rice, *Oryza sativa*. *Proc. Natl. Acad. Sci. U. S. A.* 103: 9578-9583.
- Morishima H and Oka HI (1960). The pattern of interspecific variation in the genus *Oryza*: Its quantitative representation by statistical methods. *Evolution* 14: 153-165.
- Nakano M, Yoshinura A and Iwata N (1992). Phylogenetic study of cultivated rice and its wild relatives by RFLP. *Rice Genet. Newsl.* 9: 132-134.
- Nei M and Kumar S (2000). Molecular Evolution and Phylogenetics. Oxford University Press, New York.
- Nishikawa T, Vaughan DA and Kadowaki K (2005). Phylogenetic analysis of *Oryza* species, based on simple sequence repeats and their flanking nucleotide sequences from the mitochondrial and chloroplast genomes. *Theor. Appl. Genet.* 110: 696-705.
- Rogers OS and Bendich AJ (1988). Extraction of DNA Plant Tissue, Plant Molecular. In: Plant Molecular Biology Manual (Gelvin SB, Schilpe RA and Verna DS, eds.). Kluwer Academic Publishers, Dordecht, 1-10.
- Saitou N and Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol. Biol. Evol.* 4: 406-425.
- Sato YI and Morishima H (1988). Distribution of the genes causing F2 chlorosis in rice cultivars of the Indica and Japonica types. *Theor. Appl. Genet.* 75: 723-727.
- Second G (1982). Origin of the genic diversity of cultivated rice (*Oryza* spp.): study of the polymorphism scored at 40 isozyme loci. *Jap. J. Genet.* 57: 25-57.
- Shahid MM, Nishikawa T, Fukuoka S, Njenga PK, et al. (2004). The complete nucleotide sequence of wild rice (Oryza nivara)

Genetics and Molecular Research 11 (4): 4418-4431 (2012)

©FUNPEC-RP www.funpecrp.com.br

chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. *Gene* 340: 133-139. Shaw J, Lickey EB, Beck JT, Farmer SB, et al. (2005). The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. *Am. J. Bot.* 92: 142-166.

Sun CQ, Mao L, Wang ZS, Zhu LH, et al. (1995). A Primary Study of Cultivated Rice (Oryza sativa) and Common Chinese Wild Rice (O. rufipogon) Using Random Amplified Polymorphic DNA (RAPD). Chin. J. Rice Sci. 9: 1-6.

Sun CQ, Wang XK, Yoshimura A and Iwata N (1997). Indica-japonica differentiation of chloroplast DNA in O. rufipogon Griff, and O. sativa L. J. Agric. Biotech. 5: 319-324.

Sun CQ, Wang XK, Li ZC, Yoshimura A, et al. (2001). Comparison of the genetic diversity of common wild rice (*Oryza rufipogon* Griff.) and cultivated rice (*O. sativa* L.) using RFLP markers. *Theor. Appl. Genet.* 102: 157-162.

Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.

Tang J, Xia H, Cao M, Zhang X, et al. (2004). A comparison of rice chloroplast genomes. *Plant Physiol*. 135: 412-420. Tian X, Zheng J, Hu S and Yu J (2006). The rice mitochondrial genomes and their variations. *Plant Physiol*. 140: 401-410. Vaughan DA, Morishima H and Kadowaki K (2003). Diversity in the *Oryza* genus. *Curr. Opin. Plant Biol*. 6: 139-146.

Wang XK and Sun CQ (2000). Origin and evolution of biodiversity and classification of *Oryza sativa* L. J. Plant Genet. Resour. 1: 48-53.

Wang XK, Cai HW, Sun CQ, Wang ZS, et al. (1994). The preliminary study on the primitive type of Oryza rufipogon Griff. in China and its Hsien-Keng differentiation. Chin. J. Rice Sci. 8: 205-210.

Wang ZY and Tanksley SD (1989). Restriction fragment length polymorphism in *Oryza sativa* L. *Genome* 32: 1113-1118. Yuan LP (1987). The stratagement thinking of hybrid rice breeding. *Hybrid Rice* 2: 1-3.

Genetics and Molecular Research 11 (4): 4418-4431 (2012)