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ABSTRACT. At present, all available diagnostic antibody detection
tests for Trypanosoma brucei gambiense human African trypanosomiasis
are based on predominant variant surface glycoproteins (VSGs),
such as VSG LiTat 1.5. During investigations aiming at replacement
of the native VSGs by recombinant proteins or synthetic peptides,
the sequence of VSG LiTat 1.5 was derived from cDNA and direct
N-terminal amino acid sequencing. Characterization of the VSG based
on cysteine distribution in the amino acid sequence revealed an unusual
cysteine pattern identical to that of VSG Kinu 1 of 7. b. brucei. Even
though both VSGs lack the third of four conserved cysteines typical for
type A N-terminal domains, they can be classified as type A.
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INTRODUCTION

In mammalian hosts, the entire cell surface of African trypanosomes, including
the flagellum, is covered by a dense monolayer of variant surface glycoproteins (VSGs).
This protective coat has several functions, e.g.: 1) it shields the invariant antigens from
the immune system, 2) antigenic variation through frequent stochastic switching of
VSG permits trypanosomes to circumvent the specific antibody response that was raised
against earlier variable antigen types (VAT). The trypanosome genome contains >1000
VSG genes, but only one is expressed at a time (Berriman et al., 2005). The VSG dimers
are tethered to the cell surface by two glycosylphosphatidylinositol anchors that may
allow high packing density and that play a role in correct transportation and recycling
of the VSG (Ferguson et al., 1988a,b; Engstler et al., 2004, 2007). Each VSG monomer
contains at least one N-linked oligosaccharide and consists of two domains that are sepa-
rated by a hinge region. On the living trypanosome, the hyper-variable N-terminal do-
main (350-400 residues) is exposed to the immune system while the relatively conserved
C-terminal domain (40-80 residues) is hidden from it by the intact VSG coat. VSGs
are classified based on 1) the position of cysteines in the mature protein sequence, 2)
conserved N-linked glycosylation sites, 3) the C-terminal residue, and 4) the C-terminal
hydrophobic GPI-anchor signal. The N-terminal domain is classified into three types, A,
B and C (Carrington et al., 1991), although type C has been proposed to be classified
as type A (Marcello and Barry, 2007). Despite their high primary sequence heterogene-
ity, all N-terminal domains fold with a similar tertiary structure, necessary to form the
densely packed protective VSG coat, which exposes only a limited subset of immuno-
genic epitopes (Freymann et al., 1984; Blum et al., 1993; Chattopadhyay et al., 2005;
Schwede and Carrington, 2010; Schwede et al., 2011). There are six types of C-terminal
domains; types 2, 4 and 5 are single domains, while types 1, 3 and 6 are di-domains
(Carrington et al., 1991; Marcello and Barry, 2007; Schwede and Carrington, 2010). The
type 2 domain of MITat 1.2 and the type 1 domain of ILTat 1.24 share the same tertiary
structure, arguing for conservation of the tertiary structure of both N- and C-terminal do-
mains (Schwede and Carrington, 2010). All combinations of N-terminal with C-terminal
domains seem to be possible (Hutchinson et al., 2003).

One of the predominant VSGs of Tirypanosoma brucei gambiense, causing the chronic
form of sleeping sickness or human African trypanosomiasis (HAT), is VSG LiTat 1.5 (Van
Meirvenne et al., 1995). All currently available antibody detection tests for gambiense HAT,
i.e., card agglutination test for trypanosomiasis (CATT) (Magnus et al., 1978), LATEX/T. b.
gambiense and ELISA/T. b. gambiense (Biischer et al., 1999) make use of the native VSGs
LiTat 1.3, LiTat 1.5 and/or LiTat 1.6. The sequencing of the VSG LiTat 1.5 gene revealed
that the N-terminal domain can be classified as type A even though the third of four typically
conserved cysteines is missing. The C-terminal domain is a classical type 2 (Carrington et al.,
1991).

MATERIAL AND METHODS

VSG LiTat 1.5 was purified from a cloned population of 7. b. gambiense VAT LiTat
1.5 (Biischer et al., 1999). The N-terminal amino acid sequence of the mature VSG LiTat
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1.5 protein was determined by Edman degradation (Edman, 1950) on an ABI 471-B as
recommended by the manufacturer. RNA was extracted from the same cloned population
as above (RNeasy Midi Kit; Qiagen). After removing contaminating DNA (DNA-free™
kit; Ambion), cDNA was prepared by RT-PCR with an oligo(dT) -primer (Transcriptor
First-Strand ¢cDNA Synthesis kit; Roche). To amplify the VSG LiTat 1.5 DNA sequence,
a proofreading DNA polymerase (Deep Vent,™ DNA polymerase; New England Biolabs)
and oligo 54 (spliced leader) forward primer and oligo 42 (VSG all) reverse primer were
used (Table 1). The PCR product was purified (QIAquick PCR Purification kit; Qiagen),
and post-amplification 3'-adenine ends were added with HotStarTaq® DNA polymerase
(Qiagen). The resulting construct was ligated into a pCR®2.1-TOPO® vector (TOPO TA
Cloning® Kit; Invitrogen). These plasmids were transformed by heat-shock (30 s at 42°C)
into One Shot® TOP10 chemically competent Escherichia coli cells. Clones with VSG
LiTat 1.5 inserted in the pCR®2.1-TOPO® vector were screened by colony-PCR with the
M13 forward and reverse primers (Table 1). Five positive colonies were grown for plasmid
purification with the QIAprep® Spin Miniprep kit (Qiagen). The nucleotide sequence of
VSG LiTat 1.5, ligated into the pCR®2.1-TOPO® vector, was determined at the VIB Ge-
netic Service Facility of the University of Antwerp by sequencing with the M13 forward
and reverse primers. The chromatograms were read with Chromas 2.33 (Technelysium Pty
Ltd.), and five identical DNA sequences were obtained.

Table 1. Primers used for the amplification and sequencing of LiTat 1.5 cDNA.

Primer sequence (5'-3")

Oligo 54 (spliced leader) GACTAGTTTCTGTACTAT

Oligo 42 (VSG all) CCGGGTACCGTGTTAAAATATATC
M13 forward primer TGTAAAACGACGGCCAGT

MI13 reverse primer CAGGAAACAGCTATGACC

VSG = variant surface glycoprotein.

RESULTS AND DISCUSSION

The ¢cDNA and protein sequence of VSG LiTat 1.5 are published in the NIH genetic
sequence database (GenBank ID: HQ662603). The amino acid sequence of VSG LiTat 1.5 is
presented in Figure 1.

Fifty-seven N-terminal amino acids were derived by direct sequencing of the mature VSG
LiTat 1.5 protein: AAITDADTGPAQITDVXKEEFYLSELRKELAAGITRRRTQRQGLLXIQxxY
RLAADL. The signal sequence was determined by comparison of the amino acids obtained by
Edman degradation with the sequence derived from cDNA. The N-terminal domain is nominally
taken to be residue 1 to 350 of the mature VSG. Interestingly, the cysteine distribution in both the
N- and C-terminal domains of the mature VSG LiTat 1.5 protein is identical to that of VSG Kinu
1 (GenBank ID: AJ937313.1), even though both proteins share only 33% of identical amino acids
(Clustal W multiple sequence alignment (Thompson et al., 1994) (Figure 1).

VSG Kinu 1, of a T b. brucei strain originally collected in the Tororo district of
Uganda, has been classified as a type A N-terminal domain (Hutchinson et al., 2007; Mar-
cello and Barry, 2007), but when compared to typical type A VSGs such as VSG MITat
1.2, the third of four conserved cysteines is missing (Carrington et al., 1991). However,
according to Marcello and Barry (2007), a group 2 subclass and a group 4 of type A also
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lack this conserved cysteine around position 123 (Figure 2). Furthermore, the presence of
cysteine at position 147 is similar to the group 1 cysteine pattern (MITat 1.2 residue 145),
while the cysteines at positions 17, 65, 214, 250, 272, and 306 show an identical cysteine
pattern as in group 2 subclass of type A. The extra cysteine residue at position 196 can be
found in group 4 of type A. Classification of the protein sequences of VSG LiTat 1.5 and
Kinu 1 is thus not straightforward. As six of eight cysteines are similar to the group 2 sub-
class of type A, they can be classified as type A, but it is also possible that they constitute
a separate group or subclass.

Kinul = === MDYKDCYGYLAALTFVVSLCSGAPLTDNDPVAEQISDLCKEKFYVETLIQ 28
LiTatl.5 MTGRKVSITSKSLLAAVAALLTLVYATKSASTAAITDADTGPAQITDVCKEEFYLSELRK 28
* :*.:'._ ‘* *':** *_ . **:*:***:**:_ * .
17
Kinul NLKQRVQSTADSIKDMEKLKATWEKAAAATSDAAKKCLFSALEHKADAELLRELPKIEEA 88
LiTatl.5 ELAAGITRRRTQRQGLLKIQKKYRLAADLASSTEQRCLYSALAAKLEEKAESVQQQADKA 88
: : Lot Ax gD fokmgEme kg HE
65
Kinul TEAVTTAQIALSEHVGMLGATITLAKTKLDSGSSNHGNADTG-SIRIALSRTTATTDLCN 147
LiTatl.5 DDTATTAMELIDEHVGKLKYAQKLLKTKPTVDGSGYSRASSGGNIHLELTRETIASGGCA 148
-.*** :.**** * : ‘* ekl “*‘:_.*.:* ‘*:: *:* * . *
147
Kinul EPATISDIKPGVSEIQPGKLFKLKLTKPTDLHKHMFVDWLTIGGLKSCT-AHTSYDONFD 206
LiTatl.5 AIDSWAKFSNTHTAINTAKLTEIKITPDTELTTKIFKDKITIGGFSTCTGSAVAKTPTEFS 208
*:' * % s * * * * .o ok k **** . ** . . _*_
196
Kinul GALSGCQYSASGTAVATQASTKPPYATAAVTLFKNNDPEQQCEVTDLPAGGAADKHKKLQ 266
LiTatl.5 SVLNTCTVSNSETVTYARNAPDYIYGGTAQAVYKDHDPDQGCKDAAAAAEPGATDDIKLR 268
JELE kL 2k .. E, 0E soiEigEmoE wa 2 LAY
214 250
Kinul HSLCRALQLGNVKGHSLRQLDGAALQSDHVVANTIRNCDPVFQKLTTATDGEGTTELKKY 326
LiTatl.5 YAVCEALKIIQTDGGKVPPLNGKALKGDKLVTNILRNCLPAYQAVSKPWDSVEAKNLNDE 328
sEoERS o0 L Eak kEkg kg akrk adikRk EUSE tE.. KL HPR S P
272 306
Kinul IKEAYGSSASEFAEKFITNAEKLOMTLRLNDKIETKDLSAVSPGEQTAAALSHIQGLHNK 386
LiTatl.5 IESAYGADDGKFKDIFDTPLDSRQITVKLNDKSEDKALTALSTASERNAATSHSAGQRNK 388
*:'***:. ':* H *  x S . *:*::**** *  x *:*:*._.: **x k% * :**
Kinul RELEAGKKSTSAAAVDPQKSED-CKGEKDETKCNKKDGCE FKDGECLAKVTTAAGTDGKTN 446
LiTatl.5 KEIETSKKQPAGAPVASKESEEKCKD-KPQGDCKEENGCE FKEGKCQVKVTATTGKDGKTT 448
:*:*:'*‘k..:_*_* .::**: * * * H .*::::*****:*:* _***:::*.****.
Kinul -TTGSNSFVIHKTPLLLAVLLLA 468
LiTatl.5 NTTGSNSFVINKTPLWLAFLLF- 470

*khkhkhkkkhkhkhkkoekhkkhkkx *k Kkko

Figure 1. Alignment of variant surface glycoprotein (VSG) LiTat 1.5 of 70 b. gambiense with VSG Kinu 1 of 7. b.
brucei. The amino acid sequence of LiTat 1.5 was deduced from its cDNA sequence (GenBank ID: HQ662603).
The amino acid residues are numbered starting with the N-terminal end of the mature protein as determined by
Edman degradation. The result of the Edman degradation is underlined. The amino acid sequence of VSG LiTat
1.5 is aligned with the sequence of Kinu 1 (Genbank ID: AJ937313.1). The signal sequence is indicated in gray.
Cysteines are gray and underlined, and their position in the N-terminal domain of the mature protein sequence of
VSG LiTat 1.5 is numbered. The domain boundary between the nominally determined mature N- and C-terminal
domains is in italics. The C-terminal hydrophobic sequence is in bold italics. The C-terminal residue is bold and
underlined. Identical residues are marked with an asterisk under the sequence. Colons indicate strongly conserved
substitutions (side chains with similar biochemical properties, scoring >0.5 in the Gonnet PAM 250 matrix). Periods
indicate weakly conserved substitutions (scoring <0.5 in the Gonnet PAM 250 matrix).
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Figure 2. Cysteine pattern of variant surface glycoprotein N-terminal domain types. Cysteine positions are
indicated as vertical bars. The scale bar (number of residues) is shown below the figure. A = N-terminal domain
type A; g = group; s = subgroup. Figure adapted from Marcello and Barry (2007).

The location of the mature C-terminal domain and C-terminus is based on sequence
homology (Carrington et al., 1991). The C-terminal domain sequence of both VSG LiTat 1.5
and VSG Kinu 1 consists of 45 amino acids and belongs to type 2, with four cysteine residues
(positions 412, 420, 426, and 433) and serine as C-terminal residue. The hydrophobic exten-
sion of VSG LiTat 1.5 and VSG Kinu 1 contains, respectively, 17 and 18 amino acids, starts
with asparagine and shows sequence homology to the hydrophobic extension of VSG MITat
1.2 (Carrington et al., 1991).

In conclusion, the sequence of the predominant VSG LiTat 1.5 of T b. gambiense
displays an atypical cysteine pattern in the N-terminal domain, but can nevertheless be clas-
sified as a type A. Furthermore, despite a 33% identical amino acid sequence, VSG LiTat 1.5
shares an identical distribution of cysteine residues, in both the N- and C-terminal domains,
with VSG Kinu 1 of . b. brucei.
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