GMR

Biotools: an R function to predict spatial gene diversity via an individual-based approach

A.R. da Silva¹, G. Malafaia² and I.P.P. Menezes³

¹Laboratório de Estatística Aplicada, Instituto Federal Goiano, Urutaí, GO, Brasil ²Laboratório de Pesquisas Biológicas, Instituto Federal Goiano, Urutaí, GO, Brasil ³Laboratório de Genética Molecular, Instituto Federal Goiano, Urutaí, GO, Brasil

Corresponding author: A.R. da Silva E-mail: anderson.silva@ifgoiano.edu.br

Genet. Mol. Res. 16 (2): gmr16029655 Received February 23, 2017 Accepted March 14, 2017 Published April 13, 2017 DOI http://dx.doi.org/10.4238/gmr16029655

Copyright © 2017 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License.

ABSTRACT. The gene diversity or expected heterozygosity ($H_{\rm E}$) is based on the allele frequency and is often used as a measure of genetic variability of populations. Knowing the pattern of spatial distribution of $H_{\rm E}$ can be useful for determining strategies of conservation and sampling of collections of individuals. In addition, it can allow one to detect genetic boundaries in a landscape. We adapted a Wombling method based on assignment tests in a circular moving window extensively sampled over the study area in order to estimate $H_{\rm E}$ at points of a prediction grid. The function sHe(), package biotools, is an easy-to-use and flexible implementation in R language that accepts as input geographical and genotyping data. The package biotools is distribution-free under the GPL-2/3 license and currently available from the Comprehensive R Archive Network (CRAN) at http://CRAN.Rproject.org/package=biotools. The R platform and all R dependencies are similarly available from CRAN.

Key words: Expected heterozygosity; Landscape genetics; Landscape ecology; Population genetics

Genetics and Molecular Research 16 (2): gmr16029655

INTRODUCTION

The gene diversity or expected heterozygosity $(H_{\rm E})$ is a parameter often employed to quantify the genetic variability within a population or species. This parameter has been the base for evaluating the relationship between population genetic diversity and the effective number of alleles, in order to detect intra- and inter-populational endogamy, for measuring the linkage disequilibrium and to test for natural selection occurrence (Frankham et al., 2004; Hartl and Clark, 2010). $H_{\rm E}$ is based on the polymorphic allele pool of a population; its unbiased estimator, as presented by Nei (1978), is given by:

$$\hat{H}e = \frac{2n}{2n-1} \left(1 - \sum_{i} p_{i}^{2} \right)$$
 (Equation 1)

where *n* is the number of individuals in a population and p_i is the relative frequency of the *i*-th allele in a certain locus in this population. The classical and most frequent use of H_E is with populations or predefined groups of individuals. It can be calculated for a certain DNA marker or more generally as the mean value of Equation 1 across all markers used to characterize a population.

Studying the spatial distribution of $H_{\rm E}$ allows one to analyze the occurrence of hotspots of genetic diversity over a landscape. The data analysis of DNA markers, combined with phenotypic and spatial data, can be particularly useful to promote fundamental insights on the evolutionary history, natural selection, adaptation and domestication of species (Rodriguez et al., 2016). Moreover, the spatial genetic variation is useful for conservation management of accessions in breeding programs. For this purpose, spatial interpolation techniques such as kriging appear as tools for obtaining associating interpretations between the phytophysiognomy and the evolutionary dynamics of populations. In this context, genetic diversity heat maps can be very elucidative (Corre et al., 1998).

Manel et al. (2007) presented a Wombling method to identify genetic boundaries via a spatial approach that consists of assignment tests in a circular moving window over an extensively sampled study area, making it possible to identify locations where abrupt changes on allele frequency occur. This technique avoids assumptions of discrete genetic groups and may be particularly useful for animals or plants that have non-clumped or uniform distributions (Storfer et al., 2010). Nevertheless, the availability of this method in software packages is still restricted. We have adapted and implemented this procedure in R language (http://www.Rproject.org/) in an efficient and flexible way with the intention of predicting H_E at points of a predetermined spatial grid. The function sHe() of the package biotools (version 3.0) allows one to obtain spatial unbiased estimates of gene diversity from molecular datasets. In this paper, we detail the algorithm and the usage of sHe(). A video, distributed as Supplementary information (**Appendix S1**), illustrates the procedure.

MATERIAL AND METHODS

Algorithm

The function sHe() is based on the circular moving window over the sampling area.

Genetics and Molecular Research 16 (2): gmr16029655

Thus, Step 1 of its algorithm (Figure 1) is to define the input: i) locations of sampling points, ii) the matrix of geographical distances among sampling points, iii) the prediction grid, and iv) the marker data.

In Step 2, Euclidian distances between every sampling point and every point of the prediction grid are calculated and stored in the object 'mdis', a matrix with dimension $n \times m$, where *m* is the number of predicting points. Afterwards, for each predicting point, those sampling points distant by the input 'radius' or less are computed and stored in the object 'id', a list of size *m*.

Auxiliary functions are written in Step 3 in order to estimate $H_{\rm E}$ for both codominant or dominant markers - 'fHeco' and 'fHe', respectively. This way of programming makes sHe() faster and easier to debug.

In Step 4, the type of marker defines how $H_{\rm E}$ is calculated through the auxiliary functions in Step 3. In both cases, a matrix containing the estimates of $H_{\rm E}$ per locus at each predicting point is computed. Afterwards, the mean value of $H_{\rm E}$ is calculated for each predicting point.

```
gotibm: site
    put: x, coord-cols, marker.cols, marker.type, grid, radius, mmin
    tput: an object of class "SHO" containing estimates of He over the grid
    loc <- as.matrix(x[, coord.cols])
    d <- as.matrix(distlicc))</pre>
d <- as.matrix(dist(co))
grid <- as.matrix(grid)
markers <- as.matrix(grid)
markers <- as.matrix(gr, sarker.cols))
id <- list()
for(i in insol(mdis)) (
modis,[1 <- agrt(spb))((loc -
matrix(grid[1, ), now = arow(loc), ncol = ncol(loc),
byrow = TRED)^2, xum))
id[(1)] <- which(mdis[, 1] <= radius)
]</pre>
                  <- sapply(id, length)

Heoo <- function(x) (

x <- as.natrix(x)

n <- sun(is.na(x) / 2

bias (- 2\pi n / (2\pi n - 1)

He <-1 - sun((table(x) / (2\pi n))^2)

uHe <- He + bias
                       return(uHe)
         fHe <- function(x) (
                  \begin{split} & \text{re} < - \text{function}(x) \ ( & x < x \ (\text{complete.cases}(x) \ ) \\ & \text{n} < - \text{longth}(x) \\ & \text{bias} < - 2^*n \ / \ (2^*n - 1) \\ & \text{fail} < - \text{agrt}(1 - \text{mean}(x)) \\ & \text{succ} < 1 - \text{fail} \\ & \text{ulde} < - 2^* \text{ succ} * \text{fail} * \text{ bias} \\ & \text{return}(u\text{de}) \end{split}
         /
f (marker.type == "codominant") {
o <- seq(1, ncolimarkers), by = 2)
MaxDist <- NULL
mHe <- matrix(nrow = length(id), ncol = length(o))
                       mmm <- matrix(nrow = iserpt(id), ncol = length(o))
for (in n:length(id)) {
MassBist(i) <- ifelsen(n[) > 1, max(d[ id[[i]], id[[i]] ), 0)
for(j n:length(o)) (
    if (n[i] == 0) (
        mae[i, j] << 0
        ) else if ((is.nul(nnin) & n[i] < nnin) (
        mie[i, j] << 0
        ) else if ((is.nul(nnin) & n[i] < nnin) (
        mie[i, j] << 0
        ) else if ((is.nul(nnin) & n[i] < nnin) (
        mie[i, j] <= 0
        )
        ) else if ((is.nul(nnin) & n[i] < nnin) (
        mie[i, j] <= 0
        )
        ) else if ((is.nul(nnin) & n[i] < nnin) (
        mie[i, j] <= 0
        )
        ) else if ((is.nul(nnin) & n[i] < nnin) (
        mie[i, j] <= 0
        )
        ) else if ((is.nul(nnin) & n[i] < nnin) (
        mie[i, j] <= 0
        )
        ) else if ((is.nul(nnin) & n[i] < nnin) (
        mie[i, j] <= 0
        )
        ) else if ((is.nul(nnin) & n[i] < nnin) (
        mie[i, j] <= 0
        )
        ) else if ((is.nul(nnin) & n[i] < nnin) (
        mie[i, j] <= 0
        )
        )
        ) else if ((is.nul(nnin) & n[i] <= n[i] < nnin) (
        mie[i, j] <= 0
        )
        )
        ) else if ((is.nul(nnin) & n[i] <= n[i] < n[i] < n[i] < n[i] <= n[i] < n[i] <= n[i] <= n[i] < n[i] <= n[i] <= n[i] < n[i] <= n
                                                                              mHe[i, j] <- fHeco(markers[id[[i]], o[j]:(o[j]+1)])</pre>
       /
    mHe[mHe < 0] <- mHe[is.na(mHe)] <- 0
} else (</pre>
                                                 (
Dist <- NULL
                       mHe[i, j] <- 0
                                                        ) else
                                                                              mHe[i, j] <- fHe(markers[id[[i]], j])
                  He <- apply(mHe, 1, mean)
```

Figure 1. Pseudo-code of sHe().

Genetics and Molecular Research 16 (2): gmr16029655

A.R. da Silva et al.

Features

As input, sHe() accepts for the argument "x" a numeric matrix or data frame organized in columns containing geographical coordinates and genotyping data. The latter can be obtained via codominant (default) or dominant molecular markers. The arguments "coord. cols" and "marker.cols" must be used to inform the columns in "x" corresponding to those data. It is advised that the first column of coordinates is referring to the x-axis. An optional argument, "grid", can be used to define a prediction grid, otherwise sHe() will automatically define a rectangular grid of dimension 50×50 , considering the limits of the coordinates in "x". The user has the opportunity of dealing with coordinates in the Latitude-Longitude (degrees) system and even though to pass a radius for the search moving window in kilometres, i.e., without having to convert the coordinates before using the function. To do so, one just has to keep the argument latlong2km = TRUE; if FALSE, then the argument "radius" must receive a numeric value in the same unit as the input coordinates. Finally, the optional argument "nmin" restricts the calculation of H_E to locations where the search window of predetermined radius finds out a fixed number of individuals.

sHe() outputs an object of homonymous class that consists basically of a list containing: (i) a data frame with the coordinates of the prediction grid, the number of individuals found at each point of that grid, the unbiased estimate and the standard error of $H_{\rm E}$; (ii) a numeric matrix containing values of $H_{\rm E}$ per locus for each point of the prediction grid. A print method summarizes the output. There is also a plot method for objects of class sHe, whose solution is a gene diversity heat map (Figure 2). For this, the package lattice (Sarkar, 2008) is used.

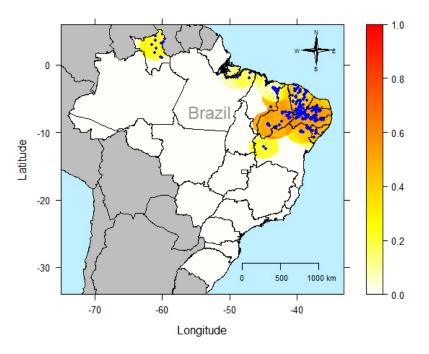


Figure 2. Gene diversity heat map drawn using the output of sHe(), considering a 200 km radius. Color key: from low (white) to high (red) diversity. Sampling points are indicated in blue.

Genetics and Molecular Research 16 (2): gmr16029655

The function allows one to deal with missing values, i.e., "NA" values, which are disregarded on the calculation of allele frequency.

The program, user manual and examples are available on CRAN (http://CRAN.R-project.org/package=biotools).

RESULTS AND DISCUSSION

Prediction sites are analyzed by a loop. Thus, large datasets may increase the processing time. Timings for several analyses can be seen in Table 1. The number of markers is more time demanding than the number of individuals. Codominant markers take more time to compute $H_{\rm E}$ than dominant, for the calculations involve twice the number of columns in the genotyping data set. And of course, the larger the grid size the more time demanding is the process.

Table 1. Timing for ana	alyses performed wit	h various dat	a sizes.			
No. of individuals	Marker type/No. of markers					
	Dominant			Codominant		
	5	30	10,000	5	30	10,000
50	1.87	2.00	396.61	2.09	3.77	1,099.81
100	1.91	2.20	602.52	2.42	4.70	1,556.43
1000	4.55	5.47	1,071.97	5.72	12.52	5,021.82

Time in seconds, based on Intel[®] CoreTM i5 1.40 GHz, with 3.71 GB RAM. Analyses based on a prediction grid of dimension 50×50 .

CONCLUSION

An effective and flexible tool for predicting gene diversity over a sampling area has been created. The package biotools has been regularly updated and on permanent improvement.

ACKNOWLEDGMENTS

We thank Instituto Federal Goiano (Brazil) for the financial support.

REFERENCES

Corre VL, Rousse G, Zanetto A and Kremer A (1998). Geographical structure of gene diversity in *Quercus petraea* (Matt.) Liebl. III. Patterns of variation identified by geostatistical analyses. *Heredity* 80: 464-473. <u>http://dx.doi.org/10.1046/j.1365-2540.1998.00313.x</u>

Frankham R, Ballou JD and Briscoe DA (2004). A primer of conservation genetics. Cambridge University Press, New York.

Hartl DL and Clark AG (2010). Principles of population genetics. 4th edn. Artmed, Porto Alegre.

Manel S, Berthoud F, Bellemain E, Gaudeul M, et al.; Intrabiodiv Consortium (2007). A new individual-based spatial approach for identifying genetic discontinuities in natural populations. *Mol. Ecol.* 16: 2031-2043. <u>http://dx.doi.org/10.1111/j.1365-294X.2007.03293.x</u>

Rodriguez M, Rau D, Bitocchi E, Bellucci E, et al. (2016). Landscape genetics, adaptive diversity and population structure in *Phaseolus vulgaris*. New Phytol. 209: 1781-1794. <u>http://dx.doi.org/10.1111/nph.13713</u>

Sarkar D (2008). Lattice: Multivariate Data Visualization with R. Springer, New York.

Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. *Genetics* 89: 583-590.

Storfer A, Murphy MA, Spear SF, Holderegger R, et al. (2010). Landscape genetics: where are we now? Mol. Ecol. 19: 3496-3514. http://dx.doi.org/10.1111/j.1365-294X.2010.04691.x

Genetics and Molecular Research 16 (2): gmr16029655

Supplementary material

Appendix S1. A video (*video_she_SuppInfo.mpg*) illustrating the algorithm of the spatial individual-based approach implemented in biotools.

Genetics and Molecular Research 16 (2): gmr16029655