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ABSTRACT. Squamous cell carcinoma (SCC) and adenocarcinoma 
(AC) are the major histological types of non-small cell lung cancer 
(NSCLC). Although differences in molecular, histological, and clinical 
characteristics have been reported for both subtypes, no specific 
therapy exists thus far. The aim of this analysis was to identify potential 
therapeutic target genes that are specific to SCC and AC. We used 
microarray data to analyze the global gene expression profile of 58 
human NSCLC specimens. We identified more than 2400 genes that 
were differentially expressed in SCC and AC. Bicluster analysis with 
iterative signature algorithm revealed 22 biclusters that were strongly 
associated with the histological subtypes AC and SCC of NSCLC. We 
also built a regulatory network of genes differentially expressed in SCC 
and AC. Some transcription factors and target genes related to lung 
cancer are linked in our network. Furthermore, we used the Database 
for Annotation, Visualization and Integrated Discovery to identify the 
main pathways in which these differentially expressed genes were 
involved. Eight pathways were enriched by this analysis. Our data 
provide a comprehensive transcriptional profile of candidate genes that 
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may be involved in the complex regulatory networks underlying the 
different NSCLC subtypes.

Key words: Iterative signature algorithm; Squamous cell carcinoma; 
Adenocarcinoma

INTRODUCTION

According to World Health Organization, lung cancer is the most common type of 
cancer in the world and the most common cause of cancer-related deaths in men and women, 
with 1.2 million new cases diagnosed every year (http://www.who.int/mediacentre/news/re-
leases/2003/pr27/en/). Lung carcinomas are generally classified as either small-cell lung car-
cinoma (SCLC) or non-SCLC (NSCLC). Within these groups, further distinctions are made, 
with NSCLC being subclassified into adenocarcinoma (AC), squamous cell carcinoma (SCC), 
and large-cell carcinoma. After AC, SCC is the most frequent form of cancer, accounting for 
approximately 30% of all lung cancers. Inhaled carcinogens, such as cigarette smoke, are a 
major risk factor for the disease (Inamura et al., 2005). Because AC and SCC differ in their 
histopathological and clinical characteristics and in their relationship with smoking, their eti-
ologies may be different. For example, different tumor suppressor genes may be related to the 
etiology of each type of cancer. Transcriptional differences between and within these NSCLC 
subtypes have been reported in several studies using microarray-based gene expression pro-
filing. However, not all of these studies accounted for the potential confounding effects of 
NSCLC subtype-dependent transcriptomic variability. Furthermore, it remains a challenge to 
identify prognostically relevant transcriptomic differences between and within these subtypes 
that highlight the biological processes and molecular pathways underlying these cancers, 
which may harbor potential targets for therapeutic intervention.

DNA microarray analysis, which monitors the expression levels of thousands of genes 
simultaneously, has been used as a global approach to investigate the physiological mecha-
nisms involved in health and disease (Spies et al., 2002). A high-throughput microarray exper-
iment was designed to analyze genetic expression patterns of and identify potential therapeutic 
target genes in AC (Li et al., 2006). Genomic expression profiling has been proven to be a use-
ful tool in identifying novel pathological mechanisms in human cancer (Wittchen et al., 2007).

Large sets of data, such as expression profiles from many samples, require analytic 
tools to reduce their complexity (Csardi et al., 2010). The iterative signature algorithm (ISA) 
(Ihmels et al., 2002; Bergmann et al., 2003; Ihmels et al., 2004) is a biclustering method 
that tries to find blocks that are different from the rest of the matrix. For example, the values 
covered by the bicluster are all above or below the background. It can be applied to identify 
coherent substructures (or modules) from any rectangular matrix of data. Its input is a matrix 
and its output is a set of biclusters, which are blocks of potentially reordered input matrices 
that fulfill some predefined criteria. As ISA is an unsupervised algorithm, it performs very well 
in finding modules, even in the presence of noise in the input matrix.

In the present study, we report a correlation between histopathological subtypes of 
NSCLC and global gene expression profiles using transcriptome analysis of 58 NSCLC pa-
tient samples. We performed bicluster analysis using ISA to classify the differentially ex-
pressed genes (DEGs) in SCC and AC into functional subgroups, and constructed a transcrip-
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tome network linking transcription factors (TFs) and their target genes. Furthermore, we used 
the Database for Annotation, Visualization and Integrated Discovery (DAVID) (Huang et al., 
2009) to identify the significant pathways in which these DEGs are involved.

MATERIAL AND METHODS

Microarray data selection and preprocessing

The gene expression profile of NSCLCs was obtained from the public functional ge-
nomics data repository Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) using 
the accession number GSE10245 (Kuner et al., 2009). These data are based on the Affymetrix 
Human Genome U133 plus 2.0 Array (Affymetrix, Santa Clara, CA, USA). Data from 40 AC 
and 18 SCC samples were used.

Pathway data

The Kyoto Encyclopedia of Genes and Genomes is a collection of online databases 
dealing with genomes, enzymatic pathways, and biological chemicals (Kanehisa, 2002). The 
‘pathway’ database records networks of molecular interactions in the cells, and variants of 
those specific to particular organisms (http://www.genome.jp/kegg/).

Regulation data

There are approximately 2600 proteins in the human genome that contain DNA-bind-
ing domains, and most of these are presumed to function as TFs (Wachi et al., 2005). The 
combinatorial use of a subset of the approximately 2000 human TFs easily accounts for the 
unique regulation of each gene in the human genome during development (Brivanlou and 
Darnell, 2002). These transcription factors are grouped into 5 superclass families, based on 
the presence of conserved DNA-binding domains. The TRANSFAC database contains data 
on transcription factors, and their experimentally proven binding sites and regulated genes 
(Wingender, 2008). Transcriptional Regulatory Element Database (TRED) has been built to 
accommodate the need for an integrated repository for both cis- and trans-regulatory elements 
in mammals (Jiang et al., 2007). TRED curates transcriptional regulation information, includ-
ing transcription factor binding motifs and experimental evidence. The curation is currently 
focused on the target genes of 36 cancer-related TF families. A total of 227 regulatory rela-
tionships between 59 TFs and 136 target genes were collected from the 2 regulatory datasets.

Analysis of DEGs

The Limma library (Diboun et al., 2006) based on R (Team, 2011) and Bioconductor 
(Gentleman et al., 2004) was used to identify genes that were differentially expressed between 
AC and SCC subtypes. To control for the multiple testing issue, which might introduce too 
many false-positive results, the Benjamini-Hochberg (BH) method (Benjamini et al., 2001) 
was used to adjust the raw P values into a false-discovery rate. The original expression datasets 
from all conditions were processed into expression estimates, and these were used for con-
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structing a linear model. Only genes with a P value less than 0.05 (2493 genes) were selected 
to perform the bicluster analysis. One hundred and eighty-nine DEGs showing a fold-change 
greater than 1.5 and a P value less than 0.05 were selected for the construction of the regula-
tory network.

Bicluster analysis

ISA (Ihmels et al., 2002) was developed to find biclusters (or modules as most of 
the ISA papers call them) that have correlated rows and columns. More precisely, the rows 
in the bicluster need to only be correlated across the columns of the bicluster and vice versa. 
Bicluster analysis with ISA using the ISA2 (Csardi et al., 2010) packages was performed to 
find enriched biclusters. After removing the biclusters whose sample count was less than 4 and 
gene count was less than 6, we were left with only 22 biclusters. The biclusters that had an 
absolute value of SCC sample numbers/AC sample numbers equal to or greater than 2/3 were 
considered to be significant.

Gene ontology (GO)-enrichment analysis

Functional annotation of DEGs was performed using the GO software BiNGO (Maere 
et al., 2005). We selected the DEGs and calculated a significance value for over- and under-
represented GO categories using a cut-off criterion (P < 0.05). Furthermore, hypergeometric 
tests were used for statistical analysis and the BH method (Benjamini et al., 2001) was used 
for multiple testing correction with the hypergeometric distribution.

Pathway-enrichment analysis

DAVID (Huang et al., 2009), a high-throughput and integrated data-mining environ-
ment, analyzes gene lists derived from high-throughput genomic experiments. We used DA-
VID to identify over-represented pathways with P values less than 0.01.

RESULTS

GO-enrichment analysis of genes in all biclusters

By analyzing the microarray data from 40 AC and 18 SCC samples, we identified 2493 
DEGs that showed statistically significant differences between the 2 groups. We selected these 
genes for further analysis. Bicluster analysis of all 58 NSCLC tumors using the 2493 most 
variably expressed transcripts revealed 22 biclusters (detailed information is shown in Table 
1), which were strongly associated with the histological subtypes AC and SCC of NSCLC. We 
performed GO-enrichment analysis for each bicluster, and selected the most significant GO 
term associated with each bicluster as its GO term annotation (Table 1). As seen in Table 1, 
several biological process, such as “mitotic cell cycle” (biclusters 1-4, 10, 12, 15, 17-19, 21-
22), “epidermis development” (biclusters 9, 16), “response to interleukin-6” (biclusters 7, 13), 
“epithelial tube branching involved in lung morphogenesis” (biclusters 6, 8, 11, 14), etc., were 
enriched. The GO enrichment of bicluster 9 is shown as an example in Figure 1.
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Bicluster ID	 Gene count		 Sample count		 Description	 P value	 FDR

		  All	 SCC	 AC

  1	   349	   5	   0	   5	 Mitotic cell cycle	 5.81E-24	 1.39E-20
  2	   263	   8	   2	   6	 Mitotic cell cycle	 5.17E-29	 1.10E-25
  3	   278	   8	   3	   5	 Mitotic cell cycle	 2.77E-34	 6.53E-31
  4	   315	   7	   0	   7	 Mitotic cell cycle	 3.75E-42	 8.42E-39
  5	   115	 22	 12	 10	 Regulation of insulin receptor signaling pathway	 2.75E-04	 1.93E-01
  6	     96	 20	 12	   8	 Epithelial tube branching involved in lung morphogenesis	 6.50E-04	 1.94E-01
  7	   118	 20	 11	   9	 Response to interleukin-6	 4.96E-05	 7.20E-02
  8	     94	 24	 14	 10	 Epithelial tube branching involved in lung morphogenesis	 5.33E-04	 2.84E-01
  9	   127	 16	 13	   3	 Epidermis development	 8.39E-08	 7.91E-05
10	   230	 20	   9	 11	 Mitotic cell cycle	 8.10E-41	 1.51E-37
11	   113	 20	 11	   9	 Epithelial tube branching involved in lung morphogenesis	 8.98E-04	 2.14E-01
12	   250	 20	   8	 12	 Mitotic cell cycle	 8.95E-56	 1.67E-52
13	   128	 18	 10	   8	 Response to interleukin-6	 7.08E-05	 1.11E-01
14	   116	 20	 11	   9	 Epithelial tube branching involved in lung morphogenesis	 9.40E-04	 2.89E-01
15	 1108	   8	   6	   2	 Mitotic cell cycle	 1.92E-15	 7.69E-12
16	 1053	   9	   8	   1	 Epidermis development	 9.12E-07	 3.62E-03
17	 1064	 10	   4	 10	 Mitotic cell cycle	 6.63E-42	 2.60E-38
18	 1096	 10	   4	   6	 Mitotic cell cycle	 7.21E-42	 2.94E-38
19	 1120	   9	   4	   5	 Mitotic cell cycle	 1.72E-34	 7.01E-31
20	 1059	   8	   8	   0	 Circulatory system development	 7.79E-06	 1.53E-02
21	 1093	   9	   7	   2	 Mitotic cell cycle	 1.19E-07	 2.59E-04
22	 1127	 23	 12	 11	 Mitotic cell cycle	 7.81E-33	 3.16E-29

Gene count = number of differentially expressed genes associated to each bicluster; sample count = number of 
samples associated to each bicluster; P value = Fisher exact test. FDR = false-discovery rate; SCC = squamous cell 
carcinoma; AC = adenocarcinoma. 

Table 1. Gene ontology-enrichment analysis in the total 22 biclusters.

Figure 1. Gene ontology (GO)-enrichment analysis of bicluster 9. The gray nodes represent the significant GO 
terms (FDR <0.05). The node size is proportional to the number of genes in the node.
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Construction of a regulatory network of DEGs in SCC and AC

Using regulatory data collected from the TRANSFAC and TRED databases, we identi-
fied 227 relationships between 59 TFs and their 136 target genes. By integrating these regula-
tory relationships, a regulatory network was built between TFs and their target genes (Figure 
2). In this network, estrogen receptor 1 (ESR1) was an important hub TF that regulates a large 
number of genes. ESR1 may be important in distinguishing between the 2 subtypes of lung 
cancer and may also be an important factor in determining the fate of an NSCLC tumor cell. 
The TFs FOXA2, SP1, and NFIC were also found to regulate several DEGs (marked in red or 
green) and with higher degrees formed a local network. Furthermore, our network suggests 
that ESR1 regulates its downstream target genes by regulating E2F1, which activates FOXA2.

Pathway-enrichment analysis

A total of 189 genes expressed differentially in SCC and AC (fold-change >1.5 times) 
were further analyzed. We used DAVID to identify the pathways in which the DEGs may be 
involved. A P value less than 0.01 was chosen as the cut-off for this analysis. We identified 8 

Figure 2. Regulatory network of transcription factors (TFs) and their target genes in squamous cell carcinoma 
(SCC) and adenocarcinoma (AC). The triangles represent TFs. The red points represent differentially expressed 
genes (DEGs) upregulated in SCC compared to AC. The green points represent DEGs downregulated in SCC 
compared to AC. Lines represent the regulatory relationships.
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pathways in which the DEGs were involved (Table 2), including “tyrosine metabolism”, “tight 
junction”, and “cell adhesion molecules” among others.

Category	 Description	    P value	   FDR

hsa00350	 Tyrosine metabolism	   0.014029	   13.52789
hsa04530	 Tight junction	     0.0189183	   17.83913
hsa00980	 Metabolism of xenobiotics by cytochrome P450	 0.03183	   28.30744
hsa00982	 Drug metabolism	     0.0346141	   30.40026
hsa00340	 Histidine metabolism	     0.0439794	 37.0418
hsa04610	 Complement and coagulation cascades	     0.0453189	   37.94338
hsa04514	 Cell adhesion molecules	     0.0660438	   50.48606
hsa02010	 ABC transporters	     0.0918569	   62.88899

FDR = false-discovery rate.

Table 2. Pathway enrichment analysis.

DISCUSSION

The recent development of cDNA microarray or cDNA chip technology, a high-
throughput method of monitoring gene expression, has made it possible to analyze the expres-
sion of thousands of genes at once (Schena et al., 1995; DeRisi et al., 1996; Ermolaeva et al., 
1998; Khan et al., 1998). This genome-wide microarray study of 58 NSCLCs revealed that 
the 2 NSCLC subtypes SCC and AC have different transcriptional profiles. This conclusion is 
in line with previous microarray studies, which reported large transcriptomic differences be-
tween NSCLC subtypes (Bhattacharjee et al., 2001; Garber et al., 2001; Kuner et al., 2009). In 
this study, we performed bicluster analysis using ISA to classify the DEGs in SCC and AC into 
functional subgroups, and constructed a transcriptome network between TFs and their target 
genes. Furthermore, we used DAVID to identify pathways involving the DEGs.

Before cells undergo DNA replication, they enter the G1 phase of their cell cycle dur-
ing which they interpret a flood of signals that influence cell division and cell fate. Mistakes 
in this process can lead to cancer (Massague, 2004). From the results of our GO-enrichment 
analysis in the 22 biclusters that we identified, we found that most biclusters were associated 
with the process of “mitotic cell cycle”, suggesting that most of the DEGs in the 2 NSCLC 
subtypes are involved in the mitotic cell cycle. Therefore, differential expression of genes con-
trolling cell cycle regulation may distinguish AC from SCC. Consistent with this result, a more 
detailed view of G1 signaling networks, which coordinate cell growth, proliferation, stress 
management, and survival, will be helpful in defining the causes of malignancies and identify-
ing better cancer therapies (Massague, 2004). In addition, subsets of genes that encode cell 
junction proteins (DSG3, GBJ5, GBJ6, PVRL1, CLDN1, DSC2, CLDN3, CLDN12, CLDN23, 
PARD6B, CGN, and PARD6G) were found in these biclusters. Some of these were discovered 
by a previous study to be upregulated in SCC as compared to AC (Kuner et al., 2009).

Another enriched biological process, as shown in Table 1 was “epidermis develop-
ment”, suggesting that several DEGs in AC and SCC take part in the epidermis development 
process. These genes may also have a critical impact in affecting the fate of tumor cells. We 
also found genes such as DSG3, GJB5, CLDN3, and CGN, which encode cell junction pro-
teins, in these biclusters. In tumorigenesis, a loss of junctional complexes has been reported to 
be involved in the epithelial-mesenchymal transition, an essential event for tumor progression 
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and metastasis (Thiery and Sleeman, 2006). In contrast, both, the higher and lower abundance 
of cell junction genes was described in diverse neoplastic tissues (Morin, 2005; Hewitt et al., 
2006). Several TFs implicated in lung cancer have been linked in our regulatory network. 
The genes ESR1, FOXA2, SP1, and NFIC are also hub nodes in our transcriptome network, 
indicating that these TFs may be useful in distinguishing between these 2 NCSLC subtypes 
and determining tumor cell fate. Furthermore, our network suggests that ESR1 regulates its 
downstream target genes by regulating E2F1, which activates FOXA2. Some of these TFs 
have been implicated in lung cancer by previous studies (Stabile and Siegfried, 2004; Basseres 
et al., 2012; Hsu et al., 2012).

ESR1 is a nuclear receptor that is activated by the sex hormone estrogen. Data suggest 
that estrogens and growth factors promote tumor progression (Márquez-Garbán et al., 2007). 
Estrogens may be involved in lung carcinogenesis, and estrogen receptors are present and 
function in normal lung and tumor cell lines and tissues. Estrogen can directly stimulate the 
transcription of estrogen-responsive genes in the nucleus of lung cells, and it can transactivate 
growth factor signaling pathways, in particular the epidermal growth factor pathway (Stabile 
and Siegfried, 2004).

Sp1, a member of the Sp protein family, is overexpressed in a variety of cancers 
including gastric, colorectal, pancreatic, epidermal, thyroid, breast, and lung. Previous stud-
ies showed that Sp proteins mediate the expression of a number of genes involved in cell 
proliferation, survival, and angiogenesis (Sp1 and Krüppel-like factor family of transcription 
factors in cell growth regulation and cancer), suggesting that targeting transcription factors 
that activate Sp protein expression can serve as a powerful strategy for the development of 
anti-cancer agents.

From the results of the pathway-enrichment analysis, we find that SCC and AC show 
differences in the following 8 pathways: 1) tyrosine metabolism: several proteins that have 
tyrosine kinase activity are encoded by oncogenes, and oncogenes play an important role in 
cell growth, proliferation, and differentiation (Arora and Scholar, 2005). The DEGs in this 
pathway include HGD, ADH7, ALDH3B1, and ALDH3A1. 2) Tight junction: the dysfunction 
of cell junction complexes is known to be important for tumorigenesis, tumor progression, 
and metastasis formation (Beaudry et al., 2010). Changes in the transcription of cell junc-
tion genes can reduce cell-cell connectivity during tumorigenesis. The DEGs in this pathway 
include CLDN8, RAB3B, CGN, CLDN3, CLDN1, and CLDN2. 3) Metabolism of xenobiotics 
by cytochrome P450: the DEGs in this pathway include CYP2S1, ADH7, ALDH3B1, and 
ALDH3A1. 4) Drug metabolism: the 2 subtypes of NSCLC are different with respect to this 
pathway. This may explain the differences between the 2 subtypes in terms of drug metabo-
lism, excretion, and tolerability. The DEGs in this pathway include FMO5, ADH7, ALDH3B1, 
and ALDH3A1. 5) Histidine metabolism: loss of heterozygosity and exon deletions within the 
fragile histidine triad gene are associated with smoking habits in lung cancer patients. Thus, 
this gene has been proposed as a target for tobacco smoke carcinogens (Hecht, 1999). There-
fore, histidine metabolism may be more important in SCC than in AC. Loss of fragile histidine 
triad function could initiate malignancy by stimulating the proliferation of cells that are the 
precursors of digestive tract cancer and lung cancer cells (Sozzi et al., 1996). The DEGs in 
this pathway include HAL, ALDH3B1, and ALDH3A1. 6) Complement and coagulation cas-
cades: differences in this pathway may explain the differences in the therapeutic response of 
the 2 subtypes. 7) Cell adhesion molecules (CAMs). CAMs are proteins located on the tumor 
cell surface that are involved in the interaction of the tumor cell with the extracellular matrix, 



1718

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 12 (2): 1710-1719 (2013)

L. Li et al.

vascular endothelial cells, and other tumor cells. CAMs are involved in tumor invasion and me-
tastasis (Cavallaro and Christofori, 2001). The DEGs in this pathway include CLDN8, NRCAM, 
CLDN3, CLDN1, and CLDN2. 8) ABC transporters: ATP-binding cassette (ABC) transporters 
are a family of transporter proteins that contribute to drug resistance via ATP-dependent drug 
efflux pumps (Leonard et al., 2003). The 2 subtypes show differences in this pathway, indicat-
ing that their drug tolerances may be different. The DEGs in this pathway include ABCC5, 
ABCA13, and ABCC6. These genes are members of the ABCC and ABCA subfamilies of the 
ABC superfamily.

In conclusion, our data provide a comprehensive transcriptional profile of candidate 
genes that may underlie the complex transcriptional/regulatory networks in NSCLC subtypes. 
We identified several genes and pathways that are differentially expressed in SCC and AC; 
however, further analysis will be required to unravel their influences on the progression of 
human lung cancer.
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