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ABSTRACT. Gray leaf spot (GLS) is a major maize disease in Brazil 
that significantly affects grain production. We used Bayesian inference 
to investigate the nature and magnitude of gene effects related to 
GLS resistance by evaluation of contrasting lines and segregating 
populations. The experiment was arranged in a randomized block 
design with three replications and the mean values were analyzed using 
a Bayesian shrinkage approach. Additive-dominant and epistatic effects 
and their variances were adjusted in an over-parametrized model. 
Bayesian shrinkage analysis showed to be an excellent approach to 
handle complex models in the study of genetic control in GLS, since this 
approach allows to handle overparametrized models (main and epistatic 
effects) without using model-selection methods. Genetic control of GLS 
resistance was predominantly additive, with insignificant influence of 
dominance and epistasis effects. 

Key words: Cercospora zeae-maydis; Genetic resistance; Zea mays; 
Bayesian inference



18

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (1): 17-29 (2012)

M. Balestre et al.

INTRODUCTION 

Gray leaf spot (GLS, Cercospora zeae-maydis) is currently one of the major foliar 
maize diseases in Brazil due to its nation-wide distribution and level of damage in susceptible 
hybrids (Brito et al., 2008). As of 2000, GLS has reached epidemic proportions in several 
regions in Brazil (Julliati et al., 2004).

In Brazil, there is consensus among maize breeders that a major cause of interruptions 
in the planting of commercial maize hybrids is the severity of diseases such as GLS. The emer-
gence of variations in the pathogen population was mainly due to the cultivation of susceptible 
hybrids and to changes in production systems. The need for the development of hybrids with 
genetic resistance to this disease is evident. Fortunately, the efficiency of this strategy was 
confirmed in the U.S. and Africa, where damages caused by this disease were reported ahead 
of its occurrence in Brazil (Menkir and Ayodele, 2005; Derera et al., 2008). However, it is 
important to note that the germplasm used in most reports in the literature about the genetic 
control of GLS was adapted to ecological conditions different from those in Brazil. Thus, there 
is little information about the study of inheritance of GLS resistance in maize using contrast-
ing lines and its hybrid generations.

The studies on the type of gene action involved in GLS resistance indicate the pre-
dominance of additive gene action (Menkir and Ayodele, 2005; Derera et al., 2008). However, 
some reports have stated significance of non-additive effects, i.e., to fully explain the mode of 
inheritance of GLS resistance, dominance effects and epistatic effects should be included in a 
genetic-statistical modeling (Coates and White, 1998).

The effort of any breeding program may be facilitated if information on the genetic 
control of the trait of interest is available. A powerful tool to study the genetic inheritance 
of traits is the use of phenotypic data from segregating populations tracing back to pure and 
contrasting parental lines, enabling breeders to choose the most appropriate selection strategy.

To study the inheritance of any trait, join-scaling tests have usually been applied where 
main and epistatic effects can be adjusted in the single-model and tested by the chi-square test 
(Mather and Jinks, 1971). This methodology has some limitations, mainly when the degrees of 
freedom are restricted to number of parameters adjusted in the full-model, i.e., epistatic effects. 
One alternative to get around this limitation is to perform model selection or adjusting complex 
models where the number of parameters is higher than the number of observations. Taking into 
account the latter one, Xu (2003) proposed an approach to deal with complex models in the 
quantitative trait locus (QTL) analysis where the number of parameters is higher than the number 
of observations. In this approach, each parameter is assumed as random variables with specific 
variance, if so, those parameters with small variance will have its effect shrunk close to zero.

The Xu (2003) approach is a free-model selection methodology and was applied in this 
study. In addition, some authors have proposed the use of Bayesian inference to study the effect of 
major genes or polygenes in the genetic control of several traits (Janss et al., 1997; Kadarmideen 
and Janss, 2005). In this circumstance, Xu (2003) methodology could be very attractive since it 
enables to adjust additive, dominant, epistatic effects and their variances in a single-model.

Regarding the GLS resistance, no study, to date, has been developed using Bayes-
ian inference. In this context, the present study was carried out to investigate the nature and 
magnitude of gene effects related to resistance of GLS based on Bayesian inference by the 
evaluation of contrasting lines and its segregating populations. 
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MATERIAL AND METHODS 

Four populations (F1, F2, BC11, and BC21) tracing back to two backgrounds (GNS30 x 
GNS31 and GNS84 x GNS31) and its parental inbred lines (GNS30, GNS31 and GNS84) were 
evaluated. The inbred lines GNS30 and GNS31 came from the same background formed by 
lines derived from the Cateto and Caribbean genotypes. Both have hard grains, short stature and 
a medium-late cycle. GNS31 is susceptible to GLS and GNS30 is GLS-resistant. The GNS84 
line was obtained from the selfing of varieties derived from genotype Tuxpeno with semi-dent 
grain, medium sized, early maturity and GLS resistance. The seeds of the parent lines, as well 
as the F1, F2, BC11, and BC21 generations, were obtained in the 2007/2008 growing season.

The experiments were sown in November and December 2008, with a 30-day interval 
between the first and second sowing. The experimental area is part of the Federal University 
of Lavras, MG (lat. 21°14ꞌS; long. 45°00ꞌW; 918 m asl). The local climate is Cwa (subtropical 
with rainy summer and dry winter). Two experiments were conducted separately for each sow-
ing date, one for each background in a randomized complete block design with three replica-
tions. Each replication consisted of 11 plots; one for each parental lines and the F1 generation, 
two for BC11, two for BC21, and four for the F2 generation. Thus, it was always possible to use 
plots of equal size, with four 5-m long rows, spaced 0.8 m apart. This resulted in a greater 
representation of segregating populations, with around 80 plants per plot.

On both sowing dates, 400 kg/ha fertilizer formulation 8-28-16 +0.5% zinc was applied to 
both experiments. When the plants had 4-5 leaves, 300 kg/ha NPK fertilizer 30-00-20 was applied 
as side-dressing. The second top-dressing of 100 kg/ha urea was applied when the plants had 8-9 
leaves. Cultural treatments as well as pest control were applied according to crop requirements.

The disease process was initiated by natural infection. To assess disease severity, 20 
plants of each plot were labeled for data collection during flowering. The evaluation was 
performed 95 days after plant emergence, as indicated by Brito et al. (2008), who found this 
season to be more efficient to discriminate the resistance level of genotypes. For these evalua-
tions of disease, severity data (grades) were represented by the percentage of infected leaf area 
(ILA) on a 1-9 rating scale (Von Pinho et al., 2001) as follows: 1 = 0% ILA and no symptoms; 
2 = ≤1% ILA with a few scattered lesions; 3 = 1-20% ILA; 4 = 20-40% ILA; 5 = 40-50% ILA 
with lesions on the ear leaf and a few lesions on leaves above the ear; 6 = 50-60% ILA with 
lesions on the leaves above the ear; 7 = 60-75% ILA; 8 = 75-90% ILA, and 9 = ≥90% ILA 
with premature plant death prior to physiological maturity (formation of black layer on grain).

The mean data of each generation, within two seasons and considering the two bak-
ground, were obtained. This approach presented two consequences, i.e., the accuracy of the 
means data was different and the matrix of genetic effects was assumed as known (fixed). 
Thus, one can assume that the phenotypic means are given by:

(Equation 1)

where y is the vector of population means within each background; b is the vector of general 
mean; a is the additive effect; d is the dominance effect, and aa, ad and dd are the additive 
x additive, additive x dominant and dominant x dominant epistatic effects, respectively; Z 
are vectors taken as known and reflect the expectation of the effects (a, d, aa, ad, dd) on the 
populations P1, P2, F1, F2, RC1, and RC2; σ2

 
is the residual variance, and V the matrix of weights 
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attributed to each mean. These weights take into account the phenotypic variance associated 
with each value on each generation and mean number of sampled individuals per generation, 
background and season. The diagonal matrix of weights V (1/wii) was constructed so that the 
trace of V-1 corresponded to the sample size.

In Bayesian shrinkage analysis suggested by Xu (2003) for QTL analysis each vari-
able is taken as random realization with specific variance. Thus, for general mean, it was as-
sumed a non-informative prior distribution given by:

Once all distributions are taken as known, the Monte Carlo Markov Chain method 
(MCMC) via Gibbs sampling can be implemented. Thus, the conditional posterior for the 
general mean was assumed as normal with mean and variance given by:

and  

(Equation 2)

(Equation 3)

The conditional posteriors for additive and dominant effects are normal with mean 
and variance given by:

(Equation 4)

(Equation 5)

and variances  (Equation 6)

and  , respectively. (Equation 7)

The conditional posteriors for the additive x additive, additive x dominant and domi-
nant x dominant epistatic effects and their variances are given by:

(Equation 8)

(Equation 9)

(Equation 10)

and variances
(Equation 11)



21

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (1): 17-29 (2012)

Bayesian genetic control

The residual, additive, dominant, additive x additive, additive x dominant, and domi-
nant x dominant variances were samples from inverted chi-square distributions, that is:

(Equation 13)

(Equation 12)

(Equation 15)

(Equation 14)

(Equation 18)

(Equation 17)

(Equation 16)

where 2
1χ  is sampled from the chi-square distribution with one degree of freedom and

(Equation 19)

where 2
nχ  is sampled from the chi-square distribution with n degree of freedom being n the 

number of genetic populations under analysis. In this study n = 6. The MCMC process con-
sists in sampling the general mean, additive, dominant, and epistatic effects from Equations 
2 to 13 and additive, dominant, epistatic, and residual variances from Equations 14 and 19.

This methodology can readily be applied to single analysis, i.e., one sown season and 
one background. For join analysis - two sown and two backgrounds - some adaptations are 
necessary. In this way, sown season and background normal effects were inserted in model 1, 
where flat prior was assumed for sown variance and  for background variance.

For the analysis, a program was developed using the SAS/IML (SAS Institute, 2000) 
package. Chains of different sizes were used according to the analysis (per cross or combined). 
The chain sizes as well as the burn-in and jump process were obtained as suggested by Raftery 
and Lewin (1992). For the stationarity analysis of the chains we used the criterion suggested 
by Gelman and Rubin (1992) and Brooks and Gelman (1998) using the Bayesian Output 
Analysis package (BOA) available for platform R.

RESULTS 

The chain sizes as well as the “burn-in” and “jump” process varied according to the 
cross and sown season (Table 1). It was observed that the largest chain sizes were required in 
second season for convergence. The stationarity of the chains was reached earliest for the first 
season and cross GNS31 x GNS30. On the other hand, for join analysis a chain of 510,000 
samples was required with burn-in of 10,000 and storage of one sample in 50 sampled.

Disease incidence in the two backgrounds (GNS31 x GNS84 and GNS31 x GNS30) 
increased in the second sowing, with a mean of 4.81 and 5.75 for first and second sowing, respec-
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tively. This found was probably due to the greater inoculum pressure in the experiments con-
ducted at second sowing. The susceptibility of the populations that arose from GNS31 x GNS30 
cross was slightly higher than ones coming from GNS31 x GNS84 cross (Figure 1). This finding 
suggests that the GNS84 line could be more resistant than the GNS30. The mean and median of 
the background variance were 3.871 and 0.428. This difference was due to shape of the sampled 
inverted chi-square distribution; in other words, this divergence could be caused by a restricted 
number of degrees of freedom (d.f. = 2) contained in background effects (two backgrounds), 
resulting in an L-shaped inverted chi-square. Under this scenario, the median might present a 
superior measure of position of an L-shaped distribution than the mean measure.

 GNS31 x GNS84

Grown  Chain MPRSF
   Season 1  330000 1.000
   Season 2  400000 1.000

 GNS31 x GNS30

Grown  Chain MPRSF
   Season 1    95000 1.000
   Season 2  160000 1.000

 Join

  Chain MPRSF
Season 1 + Season 2  510000 1.000

Table 1. Number of iterations required for convergence.

MPSRF = multivariate potential scale reduction factor.

Figure 1. Background effects correspondent to GNS84 x GNS31 and GNS30 x GNS31 crosses and background variance.

Independent of the season assessed, high disease severity was observed in the suscep-
tible line GNS31 - common to both crosses - ranging from 8.85 to 8.95. The disease severity 
related to the resistant line GNS30 was of 1.11. Also, the line GNS84 had a severity note of 
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1.10 and the performance of the F1 hybrid was intermediate between mid-parent and resistant 
line, presenting a severity of 3.20 and 2.15 in the first and second season, respectively.

The results based on F1 and F2 means suggest, at first instance, the presence of 
non-additive effects on genetic resistance for C. zeae-maydis, i.e., imply partial domi-
nance since only for the GNS31 x GNS30 cross - in the first season - the mean of the F1 
generation was similar to the mean of the F2 generation and mid-parent as well. How-
ever, the individual and join analysis revealed a strong influence of the additive effect 
on the genetic control of GLS.

It was observed that the magnitude of additive effects was mostly positive and dif-
ferent from zero (Table 2 and Figure 2). Moreover, the additive effect observed in the join 
analysis was similar to that obtained in the grown 1. The results of individual and join analysis 
suggest that additive effect has significant influences on GLS resistance. The additive variance 
ranged from 0.86 to 34.8 evidencing the importance of this effect on genetic control of GLS. 
The additive heritability was highlighting high since it presented 95% of its values higher than 
0.23 converging in a beta posterior probability distribution with parameters α = 1.36 and β = 
0.42 (Figure 3). 

Effects/parameters                                GNS31 x GNS84

  Sown 1   Sown 2

 Mean                                  Quantiles  Mean                            Quantiles

    0.05  0.95    0.05   0.95
a  3.755  2.293 4.656   2.302 -0.216   5.962
d -0.365 -2.050 0.104  -0.450 -5.540   2.696
aa  0.083 -0.178 0.909  -0.441 -4.599   1.668
ad  0.242 -0.350 2.242   1.817 -3.364 14.131
dd -0.430 -1.811 0.078  -0.761 -6.012   1.703

 Mean  Median Mean  Median
σ2

a 4.1 x 104  30.100 49.104    7.300
σ2

d 3.9 x 105  1.3 x 10-4 30.104    0.150
σ2

aa 3.4 x 103  6.9 x 10-6 56.103    0.088
σ2

ad 3.5 x 103  1.2 x 10-5 62.104    0.440
σ2

dd 1.3 x 103  2.4 x 10-4 77.104    0.180
σ2       1.897  0.579 19.458  10.996

                                GNS31 x GNS30

  Sown 1   Sown 2

 Mean                                  Quantiles  Mean                            Quantiles

    0.05  0.95   0.05   0.95
a  3.947  3.360 4.608   1.943 -0.021   4.801
d  0.144 -0.208 0.975   0.325 -0.362   2.934
aa  0.257 -0.056 1.280  -0.464 -3.337   0.214
ad  0.926 -0.091 4.781  -0.455 -5.559   1.213
dd  0.046 -0.127 0.236  -0.008 -1.000   1.376 
 Mean  Median Mean  Median
σ2

a 5.9 x 105  34.600 4.5 x 104  4.41
σ2

d 8.2 x 102  2.1 x 10-5 1.5 x 103  1.31 x 10-5

σ2
aa 1.3 x 103  5.8 x 10-5 1.2 x 103  3.5 x 10-5

σ2
ad 5.6 x 103  0.006 9.1 x 103  3.3 x 10-5

σ2
dd 1.1 x 103  2.7 x 10-5 9.8 x 103  1.1 x 10-5

σ2       0.609  0.230        12.880    6.966

Table 2. Additive, dominant and epistatic effects and their variances obtained under different backgrounds and 
sowing season.

a = additive; d = dominant; aa = additive x additive; ad = additive x dominant; dd = dominant x dominant.
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Figure 2. Posterior probability distributions of additive, dominant and epistatic effects and their variances obtained 
in join analysis.
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Figure 3. Posterior probability distributions of additive, dominant and epistatic heritability obtained in join analysis.
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In terms of magnitude, the dominance effect presented a low influence on GLS re-
sistance and was variable in direction according to background analyzed; being negative for 
GNS84 x GNS31 and positive for GNS30 x GNS31. The dominant variance was nearest of 
zero in individuals and join analysis, ranging from 2.61 x 10-6 to 0.002 (Table 2 and Figure 
2). Dominance shrinkage effect occurred due to magnitude of its variance that was lowest in 
relation to residual variance. It is an advantage of Bayesian shrinkage analysis since effects 
of marginal importance are more penalized by residual variance than those with significant 
importance. In addition to this, in the joint analysis, the dominance effects obtained for both 
background 1 and 2 were cancelled out since it presented opposite sign - presented negative 
effect in the cross GNS84 x GNS31 and positive effect in GNS84 x GNS31 cross (Table 2). 
Likewise, the dominance heritability was extremely low with median and mode equal to zero 
reflecting a beta posterior probability distribution with parameters α = 0.06 and β = 2.22.

Therefore, it can be inferred that dominance effects exhibit a minor effect in the con-
trol of GLS resistance.

In the second grown season, the model adjustment was less effective reflecting in a high 
residual variance. Not by chance, in this circumstance, more influence of the epistatic effects 
was observed in detriment of additive effect: the additive x dominance epistasis was equivalent 
to additive effect in GNS84 x GNS31 background. Notwithstanding the additive x dominance 
effect had not been significantly different from zero by its posterior probability distribution, it 
was mostly larger than dominance, additive x additive and dominance x dominance ones. These 
results may suggest that under high inoculum pressure, the host might make use of complex 
genetics interaction in order to increase the resistance to GLS. However, in general, additive x 
dominance had minor influence on GLS genetic control, presenting null heritability (Figure 3). 

The additional epistatic effects, such as additive x additive and dominance x domi-
nance, demonstrated marginal importance in the genetic control of the GLS. These effects 
were shrunken close to zero converging in variances close to zero as well (Figure 2). In ad-
dition, the heritability posterior distribution, considering all epistatic effects, converged in an 
L-shaped beta posterior distribution with parameters α ˂0.2 and β ≥1.1 (Figure 3).

Thus, the results obtained in this study suggest that genetic control of GLS resistance 
is strongly influenced by additive genes and just only in extraordinary circumstance by addi-
tive x dominance epistatic effect. 

DISCUSSION 

The use of Bayesian inference to study trait inheritance has been extremely useful in 
animal (Kadarmideen and Janss, 2005), and plant breeding (Silva et al., 2009). Among the 
already known advantages over frequentist analysis, the potential use of priors, flexibility in 
complex models, accurate credibility intervals, smaller square error estimators, and others can 
be highlighted. Another advantage of Bayesian shrinkage analysis is the direct estimate of 
additive, dominant, and epistatic variance in a single-model, which is unfeasible in common 
least square. In addition, direct inferences on posterior probability distribution and accurate 
credibility intervals make this analysis very attractive in terms of inference on genetic pa-
rameters. Also, it is possible updating the breeder’s knowledge about genetic control of GLS 
resistance; based on our results, informative priors might be built for main and epistatic effects 
in further studies.
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The join-scaling test suggested by Mather and Jinks (1971) is commonly used for 
parameter estimates in study of genetic control; however, this approach presents several dis-
advantages that might restrict its application. This methodology cannot directly handle linear 
models where the number of parameters is larger/equal than the number of observations. In 
this circumstance, a statistical test might be restrictive due to its restricted number of degrees 
of freedom and the full-model intractable for test. In addition, the epistatic effects are assumed 
as a non-adjustment of the additive-dominant model, forcing the full-model explains 100% 
of phenotypic variance. To get around this limitation, model selection is normally applied; 
however, it does not effectively solve the full-model test problem in over-parametric models.

Bayesian shrinkage analysis is an alternative to model selection since it is a free-
model selection methodology. In this approach, epistatic parameters and their variances can 
be adjusted in a single-over-parameterized model where whole probability inferences are built 
given the phenotypic observations and uncertain about additive, dominant and epistatic ef-
fects. Due to these several advantages Bayesian shrinkage analysis was applied in this study.

Even with non-informative prior distributions used for all parameters, the results of 
the Bayesian shrinkage analysis were very different to the ones expected by the weighted-least 
squares method. For example, in Bayesian shrinkage analysis each effect is directly penal-
ized by its heritability, if so, those parameters with marginal effects have low variance, low 
heritability and hence are shrunken to nearest zero values. Herein, for instance, dominant and 
epistatic effects were shrunken for values near zero presenting roughly heritability equal to 
zero. On the other hand, in complete-scaling test obtained by weighted-least square, these 
effects were extremely high achieving 2 to 3 times the additive magnitude even when the 
adjustment of additive-dominant model explained about 95% of the phenotypic variance (data 
not shown). Nevertheless, it is probable that when the complete-model was adjusted in join-
scaling test, additive, dominant and epistatic effects were over- or underestimated since these 
ones are obtained without error in least square model, i.e., the contrasts of the parameters 
explained 100% of phenotypic variance. 

However, the divergences between weighted-least square and Bayesian results were 
not absolute. The additive effect obtained in Bayesian shrinkage analysis, join-scaling test 
and additive/dominant scaling test was very similar, i.e., in a scaling test it ranged from 3.86 
to 3.93, varying according to the grown season and background. These values are inside of 
Bayesian additive credibility interval (95%) shown in Figure 3. The further parameters ob-
tained from weighted-least square, on the other hand, were outside of Bayesian credibility 
interval, and if so, it is possible to infer that scaling estimates for dominant and epistatic effects 
obtained herein by join-scaling test are improbable given the actual data set.

Predominance of additive effects in the genetic control of GLS resistance was ob-
served in this study, as well as a minor influence of dominant and epistatic effects. Taking 
these last components into account, a moderate influence of the additive x dominant epistatic 
effect was observed on high inoculum pressure. This kind of epistatic effect influencing GLS 
resistance is not uncommon in the literature, i.e., Coates and White (1998) found influence of 
dominant x additive epistasis on GLS resistance as well.

Previous studies of QTL mapping for GLS resistance largely corroborate the results 
observed herein. In some of these reports, additive gene effects were linked with QTL regions 
mapped on chromosome 2 by Bubeck et al. (1993), on chromosome 1 by Saghai-Maroof et 
al. (1996) and also on chromosome 4 by Gordon et al. (2004). Our results are consistent with 
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most of the reports in the literature, in that previous studies revealed that additive effects ac-
count for more than 90% of the variability among generations and that GLS resistant could be: 
i) inherited additively, ii) controlled by additive gene action and presenting minor dominant 
and epistatic contributions, iii) associated with the general combining ability of inbred lines, 
and iv) controlled by few effective factors (Clement et al., 2000; Julliati et al., 2009; Pozar 
et al., 2009). The results and inferences about GLS genetic resistance obtained in this study 
would be different from previously reported studies if least square estimates were applied, 
since a high influence of epistasis was observed on scaling-test (data not shown). Our results 
probably would be similar to those obtained by Coates and White (1998). These authors, ap-
plying join-scaling test by weighted-least square (full-model explaining 100% of phenotypic 
variance) in various backgrounds, observed a non-negligible epistasis in GLS genetic control. 
However, as previously highlighted, significant epistasis has not been observed in QTL map-
ping studies for GLS resistance.

Given the additive action of the genes involved in GLS and high additive heritability 
observed in this study, mass selection or another recurrent selection method could be indi-
cated as breeding strategy to obtain resistant breeding populations for use per se or to obtain 
resistant inbred lines to be used in single-cross hybrids. However, since epistatic effects can 
emerge under high inoculum pressure, these effects cannot be ignored completely.

Based on these results, one can infer that Bayesian shrinkage analysis is an excellent 
approach to handle with complex models in study of genetic control in GLS. Gray leaf spot 
resistance was predominantly additive, whereas the influences of both dominant and epistatic 
effects on the genetic control of this disease were insignificant.
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