

Association of IL-4 promoter polymorphisms with asthma: a meta-analysis

L. Tang¹, H.G. Lin² and B.F. Chen²

 ¹School of Basic Medical Science, Changsha Medical University, Changsha, China
 ²School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China

Corresponding author: B.F. Chen E-mail: cbifeng@gmail.com

Genet. Mol. Res. 13 (1): 1383-1394 (2014) Received January 17, 2013 Accepted July 23, 2013 Published February 28, 2014 DOI http://dx.doi.org/10.4238/2014.February.28.11

ABSTRACT. This study aimed to more precisely assess the correlation between interleukin-4 (IL-4) promoter polymorphisms and the susceptibility risk of asthma. We conducted association studies on IL-4 promoter C-33T, C-589T, and G-1098T polymorphisms with asthma using data obtained from MEDLINE up to September 2011. Results showed that the polymorphisms IL-4 C-33T and C-589T were significantly associated with asthma; however, significant associations were found only in the European population. In addition, the TT+CT genotype was significantly associated with asthma in adults and no significant association was found in asthma status subgroup analyses. This meta-analysis showed that IL-4 C-589T and C-33T were associated with asthma in Europeans. To further confirm correlations between polymorphisms of the IL-4 promoter with asthma susceptibility, studies involving a larger number of patients worldwide are necessary.

Key words: IL-4; Promoter; Polymorphisms; Meta-analysis; Asthma

©FUNPEC-RP www.funpecrp.com.br

Genetics and Molecular Research 13 (1): 1383-1394 (2014)

INTRODUCTION

Asthma is a complex inflammatory disease caused by a variety of stimuli, which is characterized by airway responsiveness, reversible airway obstruction, and inflammation. A multitude of cytokines is important in this inflammation (Zhu et al., 2000). A significant role for cytokines in the pathogenesis of asthma is evident, as they have been shown to play a critical role in immunoglobulin E (IgE) synthesis, eosinophil recruitment, and bronchial hyperresponsiveness (Renauld, 2001).

The Th2 cytokines [interleukin (IL)-4, IL-5, IL-9, IL-10, and IL-13] have a substantial effect on the pathogenesis of atopic diseases. IL-4 is produced by activated T cells, mast cells, and basophils, which participate in IgE synthesis and Th2 phenotype differentiation in T cells, and play a crucial role in the development of atopic diseases including asthma (Beghe et al., 2003).

Genome-wide association studies have suggested that an asthma susceptible locus could be mapped to chromosomes 5q31-33, covering genes encoding for human IL-4, IL-13, and IL-16. Moreover, the IL-4 gene was associated with asthma in more than three independent study populations (Liu et al., 2003; Michel et al., 2010). A polymorphism (C-589T) in the IL-4 promoter region seems to be related to elevated serum levels of IgE (Berenguer et al., 2012). Another single nucleotide polymorphism (SNP), C-33T, located in the 5'-untranslated region (UTR) of IL-4, was reported to be associated with asthma (Kim et al., 2010). Additionally, although a third polymorphism, G-1098T, has been investigated in several cohorts, its correlation with asthma varies across studies (Gervaziev et al., 2006; Amirzargar et al., 2009; Baye et al., 2011). Further investigations indicated that the polymorphisms C-589T and C-33T were associated with asthma by some authors, but by no means all (Elliott et al., 2001; Haller et al., 2009), which may be due to small sample sizes, low statistical power, and/or clinical heterogeneity.

Due to these conflicting and controversial results, combined evidence needs to be taken into account in order to assess the association between IL-4 promoter polymorphisms and asthma. In the present study, we carried out a meta-analysis to evaluate the association of IL-4 promoter polymorphisms with asthma susceptibility risk among different ethnic and asthma status groups.

MATERIAL AND METHODS

Identification and selection of relevant studies

The key words ("Interleukin-4" or "IL-4") and ("asthma") were used in the PUBMED database to identify relevant publications. Meanwhile, additional studies were identified by cross-referencing within original or review articles. Studies were not restricted to any particular language. Data from any fully published paper, excluding meeting or conference abstracts, were extracted. A study was included in the current meta-analysis if it conformed to the following criteria: i) an unrelated case-control design was used; ii) allele or genotype frequencies were available; and iii) frequencies of SNPs were in Hardy-Weinberg (HW) equilibrium.

Data extraction

Information of first author, year of publication, type of study design, ethnicity, age,

Genetics and Molecular Research 13 (1): 1383-1394 (2014)

asthma status, total sample size, number of cases and controls, genotype, haplotypes containing SNPs C-33T and C-589T, and allele frequencies were collected from each study. Two independent authors (L. Tang and H-G. Lin) extracted all data from each study and consensus was achieved for all studies.

Statistical methods

The odds ratio (OR) and the 95% confidence interval (95%CI) were calculated for each study. Variation and heterogeneity were evaluated using Cochran's Q-statistic. If significant heterogeneity was observed across studies (P < 0.10), the random-effect model was used for meta-analysis, otherwise, the fixed-effect model was used. The effect of heterogeneity was also measured by the I² value: I² = 100% x (Q - d.f.) / Q. Calculation of power was obtained at the 0.05 significance level, assuming an OR of 1.5 (small effect size). G*Power was used to perform the power analysis (http://www.psycho.uni-duesseldorf.de/aap/projects/gpower).

Publication bias

Publication bias was assessed using the Egger test. A P value < 0.05 was considered to indicate statistically significant publication bias. Sensitivity analysis excluding individual studies was performed in the meta-analysis. All statistical analyses were conducted with RevMan 5 (Oxford, UK) and STATA10.0 (http://www.stata.com) programs.

RESULTS

Studies included in the meta-analysis

There were 160 papers identified through the initial search. After browsing titles and abstracts, 14 reviews were excluded, 19 articles were excluded because they were not conducted with human subjects, and 8 articles were excluded because they did not explore associations with asthma. After reading the full articles, 101 studies were excluded for not exploring IL-4 genetic polymorphisms, leaving 18 studies for full publication review (Rosenwasser et al., 1995; Laitinen et al., 1997; Sandford et al., 2000; Zhu et al., 2000; Noguchi et al., 1998, 2001; Freidin et al., 2003; Basehore et al., 2004; Park et al., 2004; Donfack et al., 2005; Gervaziev et al., 2006; Amirzargar et al., 2009; Wang et al., 2009; Beghe et al., 2003, 2010; Yang et al., 2011; Baye et al., 2011; Dmitrieva-Zdorova et al., 2012). Seven studies were excluded because they were family-based (Rosenwasser et al., 1995; Laitinen et al., 1997; Zhu et al., 2000; Noguchi et al., 1998, 2001; Beghe et al., 2003; Freidin et al., 2003). Four studies were excluded because allele frequencies were in HW disequilibrium (Gervaziev et al., 2006; Amirzargar et al., 2009; Wang et al., 2009; Dmitrieva-Zdorova et al., 2012). Meanwhile, 14 studies were added by cross-referencing (Walley and Cookson, 1996; Takabayashi et al., 2000; Suzuki et al., 2000; Hijazi and Haider, 2000; Cui et al., 2003a,b; Lee et al., 2004; Zhang et al., 2005; Isidoro-García et al., 2005; Chiang et al., 2007; Kamali-Sarvestani et al., 2007; Hosseini-Farahabadi et al., 2007; Mak et al., 2007; Rad et al., 2010). Therefore, a total of 21 studies were included in the meta-analysis (Table 1). Overall, eligible studies involved a total of 6421 asthma patients and 4755 healthy controls from 7 European, 14 Asian, and 3 African-

Genetics and Molecular Research 13 (1): 1383-1394 (2014)

American sample populations. Four studies comprised two or three different subpopulations (Basehore et al., 2004; Donfack et al., 2005; Zhang et al., 2005; Baye et al., 2011). Each population was treated independently. Therefore, 30 separate comparisons were possible. The meta-analysis was performed if there were at least two comparisons; therefore, a total of 29 comparisons were performed in this meta-analysis.

SNP	Reference (1st author)	Country (ethnic)	Year	Subjects age	Asthma status	Nu	mber	OR, P value	$\begin{array}{c} Power^{a} \\ (\alpha = 0.05, OR = 1.5) \end{array}$
						Case	Control	-	
C-589T	Basehore	USA	2004	Adult	А	233	245	1.04, 0.82	70.4
		African-American	2004	Adult	А	168	269	0.88, 0.37	67.1
		Hispanic	2004	Adult	А	116	130	1.18, 0.38	46.8
	Park	Korean	2004	Adult	A/NA	532	170	0.94, 0.76	84.2
	Beghe	UK	2009	Adult	А	299	176	1.01, 0.99	70.2
	Sandford	New Zealand	2000	Adult	А	233	143	1.39, 0.097	61.4
	Baye	Caucasian	2011	Children	A/NA	413	298	2.00, 0.00002	84.6
		African-American	2011	Children	A/NA	315	51	0.56, 0.008	60.8
	Donfack	European	2005	Adult	A/NA	126	205	0.98, 0.92	57.1
		African-American	2005	Adult	A/NA	205	183	1.17, 0.29	62.9
	Chiang	Taipei	2007	Adult	Unknown	167	112	4.06, <0.0001	51.2
	Kamali-Sarvestani	Iran	2007	Adult	А	203	112	2.05, 0.007	55.3
	Takabayashi	Japanese	2000	Children	А	100	100	4.11, <0.0001	40.9
	Lee	Korean	2004	Children	A/NA	256	100	0.88, 0.57	59.8
	Rad	Iran	2010	Adult	Unknown	64	65	0.76, 0.42	30.5
	Cui	Chinese	2003	Adult	А	98	103	0.76, 0.27	41.1
	Hijazi	Kuwaiti Arabs	2000	Adult	A/NA	84	100	1.23, 0.4	38.7
	Walley	UK	1996	Adult	А	124	59	1.34, 0.25	38.6
	Cui	Chinese	2003	Adult	А	241	175	0.84, 0.29	65.6
	Mak	Chinese	2007	Adult	A/NA	292	292	0.94, 0.67	77.9
	Hosseini	Iran	2007	Adult	А	30	50	3.14, 0.005	22.4
	Zhang	Chinese	2005	Adult	A/NA	145	156	0.83, 0.40	53.4
		Malayan	2005	Adult	A/NA	73	93	1.09, 0.72	35.9
		Hindoo	2005	Adult	A/NA	85	99	1.19, 0.49	38.5
C-33T	Yang	Chinese	2011	Adult	A/NA	202	205	0.99, 0.713	64.8
	Basehore	USA	2004	Adult	А	233	245	1.55, 0.014	70.9
		African-American	2004	Adult	А	168	269	1.04, 0.79	67.5
		Hispanic	2004	Adult	A	116	130	1.19, 0.37	47.1
	Park	Korean	2004	Adult	A/NA	532	170	0.89, 0.44	84.5
	Isidoro-García	Caucasian	2005	Adult	A/NA	133	79	1.82, 0.07	41.2
	Suzuki	Japanese	2000	Adult	A	120	120	1.02, 0.92	46.3
G-1098T	Baye	African-American	2011	Children	A/NA	315	51	0.47, 0.008	60.8

OR = odds ratio; a = power calculations assume $\alpha = 0.05$ and small effect size (0.1) or OR = 1.5; SNP = single nucleotide polymorphism; A = atopic; NA = nonatopic.

Two IL-4 gene polymorphisms were investigated in the meta-analysis. The distribution of genotypes was in HW equilibrium in these studies (P < 0.05). Ethnicity-specific metaanalyses were conducted for European, Asian, and African-American populations. Subgroup analyses were also performed with respect to asthma status.

Main results

Results of the meta-analysis of the relationship between IL-4 promoter polymorphisms and asthma are shown in Table 2, Figures 1 and 2. Due to an insufficient number of studies, the meta-analysis of G-1098T haplotypes containing SNPs C-33T and C-589T with asthma was not conducted in this study. In this analysis, the overall ORs for IL-4 C-33T were significantly increased in asthma (OR = 1.14, 95%CI = 1.00-1.31, P = 0.04). Moreover, a significant association was revealed in Europeans (OR = 1.26, 95%CI = 1.03-1.55, P = 0.02), but not in Asians (OR = 1.03, 95%CI = 0.85-1.26, P = 0.74). Neither the TT nor the TT+CT genotype of C-33T were associated with asthma (P > 0.05). A significant association was found between C-589T and asthma (OR = 1.20, 95%CI = 1.01-1.42, P = 0.04). However, the ethnic-specific meta-analysis showed that this association only existed in Europeans (OR = 1.27, 95%CI = 1.10-1.46, P = 0.0009). The meta-analysis showed a significant association of the TT+CT genotype of C-589T with asthma (OR = 1.30, 95%CI = 1.11-1.53, P = 0.001) but not the TT genotype (OR = 1.11, 95%CI = 0.86-1.44, P = 0.43). With respect to these genotypes, results based on ethnicity showed no difference from the combined results.

SNP	Comparison	Sample size		No. of studies	Т	est of associa	tion	Model	Test of heterogeneity			Publication bias
		Disease	Control		OR	95%CI	P value		Q	P value	I^2	P value (Egger's test)
C-589T	T vs C											
	European	3088	2502	7	1.24	1.03-1.50	0.02	F	10.3	0.11	42	0.41
	Asian	4740	3454	14	1.31	0.99-1.74	0.06	R	72	< 0.00001	82	0.11
	African-American	1376	1066	3	0.85	0.58-1.25	0.42	R	8	0.02	75	0.14
	Overall	9204	6962	24	1.20	1.01-1.42	0.04	R	100	< 0.00001	77	0.47
	TT vs TC+CC											
	Overall	2312	2174	15	1.11	0.86-1.44	0.43	R	24.6	0.001	60	0.10
	European	269	438	2	0.90	0.17-4.86	0.91	R	3.1	0.08	68	NA
	Asian	1838	1553	12	1.11	0.82-1.49	0.51	R	31.4	0.0009	65	0.09
	TT+TC vs CC											
	Overall	2020	1798	17	1.30	1.11-1.53	0.001	F	16.3	0.43	2	0.07
	European	602	749	3	1.29	1.03-1.62	0.03	F	2	0.89	0	0.10
	Asian	1838	1553	13	1.36	1.07-1.72	0.01	F	15.8	0.20	24	0.97
C-33T	T vs C											
	European	1068	1186	3	1.26	1.03-1.55	0.02	F	4.6	0.10	56	0.55
	Asian	1708	990	3	1.03	0.85-1.26	0.74	F	7.4	0.73	0	0.64
	Overall	3008	2436	7	1.14	1.00-1.31	0.04	F	8.7	0.31	15	0.08
	TT vs TC+CC											
	Overall	455	404	3	1.07	0.78-1.47	0.66	F	2	0.95	0	NA
	European	133	79	1	1.82	0.07-44.72	0.72	-		-	-	-
	Asian	322	325	2	1.07	0.78-1.47	0.69	F	1	0.99	0	NA
	TT+TC vs CC											
	Overall	455	404	3	1.08	0.69-1.69	0.75	R	5.6	0.06	64	0.08
	European	133	79	1	1.84	0.94-3.60	0.08	-		-		-
	Asian	322	325	2	0.66	0.35-1.24	0.20	F	1	0.33	0	NA

OR = odds ratio; 95%CI = 95% confidence interval; NA = not available; F = fixed-effect model; R = random-effect model.

Subgroups were also analyzed based on asthma status: unknown (atopy status nondefined); atopic asthma; and nonatopic asthma. In the atopic and nonatopic asthma subgroups, no associations between C-589T and asthma were revealed, except for TT vs TC+CC in the asthma group. Furthermore, no association was discovered between C-33T and asthma (Figures 3 and 4).

Study or Subgroup	cas Events		Contr		Moight	Odds Ratio M-H, Random, 95% Cl	Year	Odds Ratio M-H, Random, 95% Cl
	82	10.000	29			[10] S. K. S. M. S.	1996	
Walley 1996		248		108	3.9%	1.35 [0.82, 2.22]		
Hijazi 2000	133	168	151	200	3.9%	1.23 [0.75, 2.02]	2000	
Takabayashi 2000	188	200	141	200	3.1%	6.56 [3.40, 12.66]	2000	
Sandford 2000	96	466	45	286	4.4%	1.39 [0.94, 2.05]	2000	
Cui 2003	371	482	280	350	4.7%	0.84 [0.60, 1.17]	2003	
Cui 2003	149	196	166	206	4.0%	0.76 [0.47, 1.23]		
Lee 2004	413	512	165	200	4.2%	0.88 [0.58, 1.35]	2004	
Park 2004	862	1064	272	340	4.8%	1.07 [0.79, 1.45]	2004	Ť
Basehore-2 2004	215	336	360	538	4.9%	0.88 [0.66, 1.17]	2004	
Basehore-3 2004	90	232	91	260	4.5%	1.18 [0.82, 1.70]	2004	
Basehore-1 2004	68	466	69	490	4.6%	1.04 [0.73, 1.50]	2004	+
Zhang -1 2005	236	290	262	312	4.3%	0.83 [0.55, 1.27]	2005	-
Zhang-2 2005	90	146	116	186	4.1%	0.97 [0.62, 1.52]	2005	-
Donfack-1 2005	49	252	81	410	4.4%	0.98 [0.66, 1.46]	2005	-
Donfack-2 2005	278	410	235	366	4.9%	1.17 [0.87, 1.58]	2005	
Zhang-3 2005	43	170	44	198	4.0%	1.19 [0.73, 1.92]	2005	
Mak 2007	453	584	459	584	5.0%	0.94 [0.71, 1.24]	2007	+
Hosseini-Farahabadi 2007	18	60	12	100	2.5%	3.14 [1.39, 7.12]	2007	
Chiang 2007	313	334	176	224	3.6%	4.06 [2.36, 7.01]	2007	
Kamali-Sarvestani 2007	68	406	20	224	3.7%	2.05 [1.21, 3.48]	2007	
Beghe 2009	72	598	42	352	4.3%	1.01 [0.67, 1.52]	2009	+
Rad 2010	18	128	23	130	3.1%	0.76 [0.39, 1.49]	2010	
Baye-1 2011	161	826	69	596	4.8%	1.85 [1.36, 2.51]	2011	-
Baye-2 2011	209	630	48	102	4.3%	0.56 [0.37, 0.85]	2011	-
Total (95% CI)		9204		6962	100.0%	1.20 [1.01, 1.42]		•
Total events	4675		3356					
Heterogeneity: Tau ² = 0.14; C		72, df=		0.0000	1); I ² = 77	%		
Test for overall effect: Z = 2.0								0.01 0.1 1 10 10 control asthma

Figure 1. Odds ratio and 95% confidence interval (95%CI) from individual studies testing association of the C-589T polymorphisms and asthma.

cas	е	Contr	ol		Odds Ratio		Odds Ratio
Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
162	240	161	240	12.6%	1.02 [0.70, 1.49]	2000	· +
83	232	83	260	12.1%	1.19 [0.82, 1.73]	2004	
862	1064	269	340	18.7%	1.13 [0.83, 1.53]	2004	· · · · · · · · · · · · · · · · · · ·
151	336	237	538	24.2%	1.04 [0.79, 1.36]	2004	+
88	466	64	490	12.2%	1.55 [1.09, 2.20]	2004	
40	266	14	158	3.6%	1.82 [0.96, 3.46]	2005	· · ·
160	218	30	136	0.0%	9.75 [5.89, 16.14]	2006	
320	404	329	410	16.4%	0.94 [0.67, 1.32]	2011	-
0	0	0	0		Not estimable	2012	
	3008		2436	100.0%	1.14 [1.00, 1.31]		•
1706		1157					
f=6(P=0	l.31); I ²	= 15%					
							0.01 0.1 1 10 10 control asthma
	Events 162 83 862 151 88 40 160 320 0 1706 f = 6 (P = 0	162 240 83 232 862 1064 151 336 88 466 40 266 160 218 320 404 0 0 3008 1706	Events Total Events 162 240 161 83 232 83 862 1064 269 151 336 237 88 466 64 40 266 14 160 218 30 320 404 329 0 0 0 sous 1706 1157 f= 6 (P= 0.31); I ^p = 15% 15%	Events Total Events Total 162 240 161 240 83 232 83 260 862 1064 269 340 151 336 237 538 88 466 64 490 40 266 14 158 160 218 30 136 320 404 329 410 0 0 0 0 3008 20808 2436 1706 1157 15%	Events Total Events Total Weight 162 240 161 240 12.6% 83 232 83 260 12.1% 862 1064 269 340 18.7% 151 336 237 538 24.2% 88 466 64 490 12.2% 40 266 14 158 3.6% 160 218 30 136 0.0% 320 404 329 410 16.4% 0 0 0 0 0 3008 2436 100.0% 1706 1157 f= 6 (P = 0.31); P= 15% 155 155 155 155	Events Total Events Total Weight M-H, Fixed, 95% CI 162 240 161 240 12.6% 1.02 [0.70, 1.49] 83 232 83 260 12.1% 1.19 [0.82, 1.73] 862 1064 269 340 18.7% 1.13 [0.83, 1.53] 151 336 237 538 24.2% 1.04 [0.79, 1.36] 88 466 64 490 12.2% 1.55 [1.09, 2.20] 40 266 14 158 3.6% 1.82 [0.96, 3.46] 160 218 30 136 0.0% 9.75 [5.89, 16.14] 320 404 329 410 16.4% 0.94 [0.67, 1.32] 0 0 0 0 Not estimable 3008 2436 100.0% 1.14 [1.00, 1.31] 1706 1157 1157 1157	Events Total Events Total Weight M-H, Fixed, 95% CI Year 162 240 161 240 12.6% 1.02 [0.70, 1.49] 2000 83 232 83 260 12.1% 1.19 [0.82, 1.73] 2004 862 1064 269 340 18.7% 1.13 [0.83, 1.53] 2004 151 336 237 538 24.2% 1.04 [0.79, 1.36] 2004 88 466 64 490 12.2% 1.55 [1.09, 2.20] 2004 40 266 14 158 3.6% 1.82 [0.96, 3.46] 2005 160 218 30 136 0.0% 9.75 [5.89, 16.14] 2006 320 404 329 410 16.4% 0.94 [0.67, 1.32] 2011 0 0 0 0 Not estimable 2012 3008 2436 100.0% 1.14 [1.00, 1.31] 1706 1157 1157 156 (P = 0.31); P = 15%

Figure 2. Odds ratio and 95% confidence interval (95%CI) from individual studies testing association of the C-33T polymorphisms and asthma.

No significant association was found between C-589T and asthma when stratified by age, except for the TT+CT (dominant) genotype in adults. This result was in agreement with the overall results of the genotype analysis (Figure 5).

Study or Subgroup	Execute	1a Total	contr		Moint	Odds Ratio	Odds Ratio
	Events	otal	Events	rotal	weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 by atopy asthma	122			-			
Nalley	82	248	29	108	2.9%	1.35 [0.82, 2.22]	
"akabayashi	188	200	141	200	2.6%	6.56 [3.40, 12.66]	
Sandford	96	466	45	286	3.2%	1.39 [0.94, 2.05]	
Beghe	72	598	42	352	3.1%	1.01 [0.67, 1.52]	+
Park	598	738	135	164	3.1%	0.92 [0.59, 1.43]	
Dui	149	196	166	206	3.0%	0.76 [0.47, 1.23]	
(amali-Sarvestani	68	406	20	224	2.9%	2.05 [1.21, 3.48]	
Donfack-1	32	164	67	410	3.0%	1.24 [0.78, 1.98]	
)onfack-2	217	320	235	366	3.3%	1.17 [0.86, 1.61]	+-
/ak	283	356	158	200	3.1%	1.03 [0.67, 1.58]	
Basehore-1	68	466	69	490	3.2%	1.04 [0.73, 1.50]	+
Basehore-2	215	336	360	538	3.4%	0.88 [0.66, 1.17]	
Basehore-3	90	232	91	260	3.2%	1.18 [0.82, 1.70]	
.ee	321	392	164	200	3.1%	0.99 [0.64, 1.55]	+
losseini	18	60	12	100	2.3%	3.14 [1.39, 7.12]	
Baye-1	105	538	35	596	3.1%		
Baye-2						3.89 [2.60, 5.81] 0.56 (0.26, 0.90)	
	100	300	48	102	3.0%	0.56 [0.36, 0.89]	
Dui Jiiozi	371	482	280	350	3.3%	0.84 [0.60, 1.17]	
lijazi hang-1	96	120	25	34	2.1%	1.44 [0.60, 3.48]	
-	146	186	153	184	2.9%	0.74 [0.44, 1.25]	
Chang-2	66	114	52	104	2.9%	1.38 [0.81, 2.35]	
hang-3	37	142	40	142	2.9%	0.90 [0.53, 1.52]	
Subtotal (95% CI)		7060		5616	65.7%	1.23 [1.00, 1.52]	•
Total events	3418		2367				
4 4 9 1	_						
1.1.2 by nonatopy asthma		226	120	176	2.0%		
Park	261	326	139	176	3.0%	1.07 [0.68, 1.68]	-
Park Donfack-1	261 16	88	67	410	2.7%	1.14 [0.62, 2.08]	+-
Park Donfack-1 Donfack-2	261 16 61	88 90	67 235	410 366	2.7% 3.0%	1.14 [0.62, 2.08] 1.17 [0.72, 1.92]	_
Park Donfack-1 Donfack-2 1ak	261 16 61 30	88 90 72	67 235 265	410 366 340	2.7% 3.0% 2.9%	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34]	
Park Donfack-1 Donfack-2 1ak Lee	261 16 61 30 92	88 90 72 120	67 235 265 164	410 366 340 200	2.7% 3.0% 2.9% 2.8%	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26]	
Park Donfack-1 Donfack-2 1ak Lee Baye-1	261 16 61 30 92 59	88 90 72 120 302	67 235 265 164 35	410 366 340 200 596	2.7% 3.0% 2.9% 2.8% 3.1%	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07]	
Park Donfack-1 Donfack-2 1ak ee Baye-1 Baye-2	261 16 61 30 92 59 120	88 90 72 120 302 360	67 235 265 164 35 48	410 366 340 200 596 102	2.7% 3.0% 2.9% 2.8% 3.1% 3.1%	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07] 0.56 [0.36, 0.88]	
Park Donfack-1 Donfack-2 1ak Lee Jaye-1 Baye-2 Hijazi	261 16 61 30 92 59 120 37	88 90 72 120 302 360 48	67 235 265 164 35 48 126	410 366 340 200 596 102 166	2.7% 3.0% 2.9% 2.8% 3.1% 3.1% 2.4%	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07] 0.56 [0.36, 0.88] 1.07 [0.50, 2.29]	
Park Donfack-1 Jonfack-2 Jak Lee Baye-1 Baye-2 Hijazi Zhang-1	261 16 61 30 92 59 120 37 90	88 90 72 120 302 360 48 104	67 235 265 164 35 48 126 109	410 366 340 200 596 102 166 136	2.7% 3.0% 2.9% 2.8% 3.1% 3.1% 2.4% 2.5%	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07] 0.56 [0.36, 0.88] 1.07 [0.50, 2.29] 1.59 [0.79, 3.22]	
Park Donfack-1 Jonfack-2 1ak Lee Baye-1 Jaaye-2 Lijazi Zhang-1 Zhang-2	261 16 61 30 92 59 120 37 90 24	88 90 72 120 302 360 48 104 32	67 235 265 164 35 48 126 109 54	410 366 340 200 596 102 166 136 82	2.7% 3.0% 2.9% 2.8% 3.1% 3.1% 2.4% 2.5% 2.1%	$\begin{array}{c} 1.14 \left[0.62, 2.08 \right] \\ 1.17 \left[0.72, 1.92 \right] \\ 0.20 \left[0.12, 0.34 \right] \\ 0.72 \left[0.41, 1.26 \right] \\ 3.89 \left[2.50, 6.07 \right] \\ 0.56 \left[0.36, 0.88 \right] \\ 1.07 \left[0.50, 2.29 \right] \\ 1.59 \left[0.79, 3.22 \right] \\ 1.56 \left[0.62, 3.91 \right] \end{array}$	
Park Donfack-1 Jonfack-2 Iak Jaye-1 Jaye-2 Linag-1 Chang-1 Chang-3	261 16 61 30 92 59 120 37 90	88 90 72 120 302 360 48 104 32 28	67 235 265 164 35 48 126 109	410 366 340 200 596 102 166 136 82 56	2.7% 3.0% 2.9% 3.1% 3.1% 2.4% 2.5% 2.1% 1.4%	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07] 0.56 [0.36, 0.88] 1.07 [0.50, 2.29] 1.59 [0.79, 3.22] 1.56 [0.62, 3.91] 3.55 [0.91, 13.81]	
Park Donfack-1 Donfack-2 Iak Lee Baye-1 Baye-2 Ulijazi Zhang-1 Zhang-3 Subtotal (95% CI)	261 16 61 30 92 59 120 37 90 24 6	88 90 72 120 302 360 48 104 32	67 235 265 164 35 48 126 109 54 4	410 366 340 200 596 102 166 136 82	2.7% 3.0% 2.9% 2.8% 3.1% 3.1% 2.4% 2.5% 2.1%	$\begin{array}{c} 1.14 \left[0.62, 2.08 \right] \\ 1.17 \left[0.72, 1.92 \right] \\ 0.20 \left[0.12, 0.34 \right] \\ 0.72 \left[0.41, 1.26 \right] \\ 3.89 \left[2.50, 6.07 \right] \\ 0.56 \left[0.36, 0.88 \right] \\ 1.07 \left[0.50, 2.29 \right] \\ 1.59 \left[0.79, 3.22 \right] \\ 1.56 \left[0.62, 3.91 \right] \end{array}$	
Park Donfack-1 Donfack-2 Jak ee Baye-1 Baye-2 Hijazi Zhang-1 Zhang-3 Subtotal (95% CI) Total events	261 16 61 30 92 59 120 37 90 24 6 796	88 90 72 120 302 360 48 104 32 28 1570	67 235 265 164 35 48 126 109 54 4 1246	410 366 340 200 596 102 166 136 82 56 2630	2.7% 3.0% 2.9% 2.8% 3.1% 3.1% 2.4% 2.5% 2.1% 1.4% 28.9 %	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07] 0.56 [0.36, 0.88] 1.07 [0.50, 2.29] 1.59 [0.79, 3.22] 1.56 [0.62, 3.91] 3.55 [0.91, 1.381] 1.09 [0.65, 1.83]	+ + + + + + + + +
Park Donfack-1 Donfack-2 Iak Lee Baye-1 Baye-2 Ulijazi Zhang-1 Zhang-3 Subtotal (95% CI)	261 16 61 30 92 59 120 37 90 24 6 796 4; Chi ^z = 8	88 90 72 120 302 360 48 104 32 28 1570 4.54, df	67 235 265 164 35 48 126 109 54 4 1246	410 366 340 200 596 102 166 136 82 56 2630	2.7% 3.0% 2.9% 2.8% 3.1% 3.1% 2.4% 2.5% 2.1% 1.4% 28.9 %	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07] 0.56 [0.36, 0.88] 1.07 [0.50, 2.29] 1.59 [0.79, 3.22] 1.56 [0.62, 3.91] 3.55 [0.91, 1.381] 1.09 [0.65, 1.83]	
Park Donfack-1 Donfack-2 Iak .ee Jaye-1 Jaye-2 Jiage-2 Zhang-1 Zhang-3 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.6 Test for overall effect: Z =	261 16 61 30 92 59 120 37 90 24 6 796 4; Chi ^z = 8	88 90 72 120 302 360 48 104 32 28 1570 4.54, df	67 235 265 164 35 48 126 109 54 4 1246	410 366 340 200 596 102 166 136 82 56 2630	2.7% 3.0% 2.9% 2.8% 3.1% 3.1% 2.4% 2.5% 2.1% 1.4% 28.9 %	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07] 0.56 [0.36, 0.88] 1.07 [0.50, 2.29] 1.59 [0.79, 3.22] 1.56 [0.62, 3.91] 3.55 [0.91, 1.381] 1.09 [0.65, 1.83]	+ + + + + + + + + +
Park Donfack-1 Donfack-2 Iak Lee Baye-1 Baye-2 Hijazi Zhang-2 Zhang-3 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.6 Test for overall effect: Z = 1.1.3 unknown	261 16 61 30 92 59 120 24 6 796 4; Chi ² = 8 0.33 (P = 1	88 90 72 120 302 360 48 104 28 1570 4.54, df 0.74)	67 235 265 164 35 48 126 109 54 4 1246 7 = 10 (P	410 366 340 200 596 102 166 136 82 56 2630 < 0.000	2.7% 3.0% 2.9% 2.8% 3.1% 2.4% 2.5% 2.1% 1.4% 28.9 %	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07] 0.56 [0.36, 0.88] 1.07 [0.50, 2.29] 1.59 [0.79, 3.22] 1.56 [0.62, 3.91] 3.55 [0.91, 13.81] 1.09 [0.65, 1.83] 8%	
Park Donfack-1 Donfack-2 Iak .ee Baye-1 Baye-2 Hijazi Zhang-2 Zhang-2 Zhang-3 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.6 Test for overall effect: Z = 1.1.3 unknown Chi ang 2007	261 16 61 30 92 59 120 37 90 24 6 796 4; Chi₹=8 0.33 (P = 1 313	88 90 72 120 302 360 48 104 22 28 1570 4.54, df 0.74)	67 235 265 164 35 48 126 109 54 4 1246 = 10 (P	410 366 340 200 596 102 166 136 82 56 2630 < 0.000	2.7% 3.0% 2.9% 2.8% 3.1% 2.4% 2.5% 2.1% 1.4% 28.9% 001); I ² = 8	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07] 0.56 [0.36, 0.88] 1.07 [0.50, 2.29] 1.59 [0.79, 3.22] 1.56 [0.62, 3.91] 3.55 [0.91, 13.81] 1.09 [0.65, 1.83] 8%	
Park Donfack-1 Donfack-2 lak ee Baye-1 Baye-2 Hjazi Zhang-1 Zhang-2 Zhang-2 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.6 Test for overall effect: Z = 1.1.3 unknown Chi ang 2007 Rad 2010	261 16 61 30 92 59 120 24 6 796 4; Chi ² = 8 0.33 (P = 1	88 90 72 120 302 48 104 32 28 1570 4.54, df 0.74) 334 128	67 235 265 164 35 48 126 109 54 4 1246 7 = 10 (P	410 366 340 200 596 102 166 136 82 56 2630 < 0.000 224 130	2.7% 3.0% 2.9% 3.1% 3.1% 2.4% 2.5% 2.1% 1.4% 28.9% 001); * = 8	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07] 0.56 [0.36, 0.88] 1.07 [0.50, 2.29] 1.59 [0.79, 3.22] 1.56 [0.62, 3.91] 3.55 [0.91, 13.81] 1.09 [0.65, 1.83] 8%	
Park Donfack-1 Donfack-2 fak .ee Baye-1 Baye-2 Hijazi Zhang-1 Zhang-2 Zhang-3 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.6 Test for overall effect: Z = 1.1.3 unknown Zhi ang 2007 Rad 2010 Subtotal (95% CI)	261 16 61 30 92 59 120 37 90 24 6 796 4; Chi [≈] = 8 0.33 (P = 1 313 18	88 90 72 120 302 360 48 104 22 28 1570 4.54, df 0.74)	67 235 265 164 35 48 126 109 54 4 1246 '= 10 (P 176 23	410 366 340 200 596 102 166 136 82 56 2630 < 0.000	2.7% 3.0% 2.9% 2.8% 3.1% 2.4% 2.5% 2.1% 1.4% 28.9% 001); I ² = 8	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07] 0.56 [0.36, 0.88] 1.07 [0.50, 2.29] 1.59 [0.79, 3.22] 1.56 [0.62, 3.91] 3.55 [0.91, 13.81] 1.09 [0.65, 1.83] 8%	
Park Donfack-1 Donfack-2 fak .ee Baye-1 Baye-2 Hijazi Zhang-2 Zhang-3 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.6 Test for overall effect: Z = 1.1.3 unknown Chi ang 2007 Rad 2010 Subtotal (95% CI) Total events	261 16 61 30 92 59 120 37 90 24 6 796 4; Chi [≢] = 8 0.33 (P = 1 313 18 331	88 90 72 120 302 360 48 104 32 28 1570 4.54, df 0.74) 334 128 462	67 235 265 164 35 48 126 109 54 4 1246 = 10 (P 176 23 199	410 366 340 200 596 102 166 136 82 56 2630 < 0.000 224 130 354	2.7% 3.0% 2.9% 2.8% 3.1% 2.4% 2.5% 2.1% 1.4% 28.9% 001); ² = 8 2.9% 2.6% 5.4%	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07] 0.56 [0.36, 0.88] 1.07 [0.50, 2.29] 1.59 [0.79, 3.22] 1.56 [0.62, 3.91] 3.55 [0.91, 13.81] 1.09 [0.65, 1.83] 8% 4.06 [2.36, 7.01] 0.76 [0.39, 1.49] 1.78 [0.34, 9.19]	
Park Donfack-1 Donfack-2 tak .ee Jaye-1 Baye-2 Hijazi Zhang-1 Zhang-3 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.6 Test for overall effect: Z = 1.1.3 unknown Chi ang 2007 Rad 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 1.3	261 16 61 30 92 59 120 37 90 24 6 796 4; Chi [≠] = 8 0.33 (P = 1 313 18 331 1; Chi [≠] = 1	88 90 72 120 302 360 48 104 32 28 1570 4.54, df 0.74) 334 128 462 4.41, df	67 235 265 164 35 48 126 109 54 4 1246 = 10 (P 176 23 199	410 366 340 200 596 102 166 136 82 56 2630 < 0.000 224 130 354	2.7% 3.0% 2.9% 2.8% 3.1% 2.4% 2.5% 2.1% 1.4% 28.9% 001); ² = 8 2.9% 2.6% 5.4%	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07] 0.56 [0.36, 0.88] 1.07 [0.50, 2.29] 1.59 [0.79, 3.22] 1.56 [0.62, 3.91] 3.55 [0.91, 13.81] 1.09 [0.65, 1.83] 8% 4.06 [2.36, 7.01] 0.76 [0.39, 1.49] 1.78 [0.34, 9.19]	
Park Donfack-1 Donfack-2 tak .ee Baye-1 Baye-2 Hijazi Zhang-1 Zhang-2 Zhang-3 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.6 Test for overall effect: Z = 1.1.3 unknown Chiang 2007 Rad 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 1.3 Test for overall effect: Z =	261 16 61 30 92 59 120 37 90 24 6 796 4; Chi [≠] = 8 0.33 (P = 1 313 18 331 1; Chi [≠] = 1	88 90 72 302 360 48 104 32 28 1570 4.54, df 0.74) 334 128 462 4.41, df 0.49)	67 235 265 164 35 48 126 109 54 4 1246 = 10 (P 176 23 199	410 366 340 200 596 102 166 136 82 566 2630 < 0.000 224 130 354 0.0001	2.7% 3.0% 2.9% 2.9% 3.1% 2.4% 2.5% 2.1% 1.4% 28.9% 201); * = 8 2.9% 2.6% 5.4%	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07] 0.56 [0.36, 0.88] 1.07 [0.50, 2.29] 1.59 [0.79, 3.22] 1.56 [0.62, 3.91] 3.55 [0.91, 13.81] 1.09 [0.65, 1.83] 8% 4.06 [2.36, 7.01] 0.76 [0.39, 1.49] 1.78 [0.34, 9.19] 6	
Park Donfack-1 Donfack-2 tak .ee Baye-1 Baye-2 Hijazi Zhang-1 Zhang-2 Zhang-3 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.6 Test for overall effect: Z = 1.1.3 unknown Chiang 2007 Rad 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 1.3 Test for overall effect: Z = Total (95% CI)	261 16 61 30 92 59 120 37 90 24 6 796 4; Chi ² = 8 0.33 (P = 1 313 18 331 1; Chi ² = 1 0.69 (P = 1	88 90 72 120 302 360 48 104 32 28 1570 4.54, df 0.74) 334 128 462 4.41, df	67 235 265 164 35 48 126 109 54 4 1246 = 10 (P 176 23 199 = 1 (P =	410 366 340 200 596 102 166 136 82 566 2630 < 0.000 224 130 354 0.0001	2.7% 3.0% 2.9% 2.8% 3.1% 2.4% 2.5% 2.1% 1.4% 28.9% 001); ² = 8 2.9% 2.6% 5.4%	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07] 0.56 [0.36, 0.88] 1.07 [0.50, 2.29] 1.59 [0.79, 3.22] 1.56 [0.62, 3.91] 3.55 [0.91, 13.81] 1.09 [0.65, 1.83] 8% 4.06 [2.36, 7.01] 0.76 [0.39, 1.49] 1.78 [0.34, 9.19]	
Park Donfack-1 Donfack-2 lak .ee Jaye-1 Baye-2 Hijazi Dhang-1 Chang-2 Chang-3 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.6 Test for overall effect: Z = 1.1.3 unknown Chi ang 2007 Rad 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 1.3 Test for overall effect: Z = Total events	261 16 61 30 92 59 120 37 90 24 6 796 4; Chi [≥] = 8 0.33 (P = 1 313 18 331 1; Chi [≥] = 1 0.69 (P = 1	88 90 72 120 302 360 48 104 32 28 1570 4.54, df 0.74) 334 128 462 4.41, df 0.49) 9092	67 235 265 164 35 48 126 109 54 4 1246 = 10 (P 176 23 199 = 1 (P = 3812	410 366 340 200 596 102 166 136 82 56 2630 < 0.000 224 130 354 0.0001 8600	2.7% 3.0% 2.9% 2.8% 3.1% 2.4% 2.5% 2.1% 1.4% 28.9% 001); ² = 8 2.9% 2.6% 5.4% (); ² = 939 100.0%	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07] 0.56 [0.36, 0.88] 1.07 [0.50, 2.29] 1.59 [0.79, 3.22] 1.56 [0.62, 3.91] 3.55 [0.91, 13.81] 1.09 [0.65, 1.83] 8% 4.06 [2.36, 7.01] 0.76 [0.39, 1.49] 1.78 [0.34, 9.19] 6 1.22 [0.99, 1.49]	
tark Jonfack-1 Jonfack-2 lak ee Jaye-1 Jaye-2 Jijazi Jhang-1 Chang-2 Jhang-3 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.6 Test for overall effect: Z = 1.1.3 unknown Chi ang 2007 Rad 2010 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 1.3 Test for overall effect: Z = Total (95% Cl)	261 16 61 30 92 59 120 37 90 24 6 796 4; Chi ^z = 8 0.33 (P = 1 313 18 331 1; Chi ^z = 1 0.69 (P = 1 4545 0; Chi ^z = 2	88 90 72 120 360 48 104 32 28 1570 4.54, df 0.74) 334 128 462 4.41, df 0.49) 9092 08.18, c	67 235 265 164 35 48 126 109 54 4 1246 = 10 (P 176 23 199 = 1 (P = 3812	410 366 340 200 596 102 166 136 82 56 2630 < 0.000 224 130 354 0.0001 8600	2.7% 3.0% 2.9% 2.8% 3.1% 2.4% 2.5% 2.1% 1.4% 28.9% 001); ² = 8 2.9% 2.6% 5.4% (); ² = 939 100.0%	1.14 [0.62, 2.08] 1.17 [0.72, 1.92] 0.20 [0.12, 0.34] 0.72 [0.41, 1.26] 3.89 [2.50, 6.07] 0.56 [0.36, 0.88] 1.07 [0.50, 2.29] 1.59 [0.79, 3.22] 1.56 [0.62, 3.91] 3.55 [0.91, 13.81] 1.09 [0.65, 1.83] 8% 4.06 [2.36, 7.01] 0.76 [0.39, 1.49] 1.78 [0.34, 9.19] 6 1.22 [0.99, 1.49]	

Figure 3. Forest plot of asthma risk associated with the C-589T polymorphism in the stratified analyses by asthma status.

Genetics and Molecular Research 13 (1): 1383-1394 (2014)

©FUNPEC-RP www.funpecrp.com.br

	ASTH	MA	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 by atopy asthma	a						
Basehore-1	88	466	64	490	13.3%	1.55 [1.09, 2.20]	
Basehore-2	151	336	237	538	16.7%	1.04 [0.79, 1.36]	+
Basehore-3	83	232	83	260	12.4%	1.19 [0.82, 1.73]	
Park	598	738	135	164	10.2%	0.92 [0.59, 1.43]	-+-
Isidoro-García	32	198	14	158	5.7%	1.98 [1.02, 3.86]	— •—
Suzuki	162	240	161	240	12.2%	1.02 [0.70, 1.49]	+
Yang	60	84	329	410	8.0%	0.62 [0.36, 1.05]	
Subtotal (95% CI)		2294		2260	78.5%	1.11 [0.89, 1.38]	+
Total events	1174		1023				
Heterogeneity: Tau ² =	0.04 Chi	= 12.3	9 df = 6 f	P = 0.0	5): $I^2 = 52$	96	
Test for overall effect: . 1.1.2 by nonatopy ast		- 0.01	<i>'</i>				
Park	264	326	136	176	10.1%	1.25 (0.80, 1.96)	
Isidoro-García	9	68	14	158	3.5%	1.57 [0.64, 3.82]	 .
Yang	72	94	329	410	7.9%	0.81 [0.47, 1.38]	
Subtotal (95% CI)		488		744	21.5%	1.10 [0.78, 1.56]	•
Total events	345		479				
	345 0.01: Chi ^z	= 2.23	479 df = 2 (F	e = 0.33): I² = 10 9	6	
Heterogeneity: Tau² =	0.01; Chi ²		df = 2 (F	P = 0.33); I² = 109	6	
Heterogeneity: Tau² = Test for overall effect: .	0.01; Chi ²		df = 2 (F); I² = 109 100.0 %	6 1.11 [0.93, 1.32]	•
Total events Heterogeneity: Tau ² = Test for overall effect: . Total (95% CI) Total events	0.01; Chi ²	P = 0.58	df = 2 (F				•
Heterogeneity: Tau ² = Test for overall effect: . Total (95% CI) Total events	0.01; Chi ^z Z = 0.55 (F 1519	^o = 0.58 2782	, df = 2 (F 3) 1502	3004	100.0%	1.11 [0.93, 1.32]	•
Heterogeneity: Tau ² = Test for overall effect: . Total (95% Cl)	0.01; Chi ² Z = 0.55 (F 1519 0.03; Chi ²	^P = 0.58 2782 ² = 14.6	, df = 2 (F 3) 1502 2, df = 9 (3004	100.0%	1.11 [0.93, 1.32]	0.01 0.1 1 10 100 control asthma

Figure 4. Forest plot of asthma risk associated with the C-33T polymorphism in the stratified analyses by asthma status.

	cas		Contr			Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight I	VI-H, Random, 95% CI	Year	M-H, Random, 95% Cl
1.1.1 by adult								
/Valley 1996	82	248	29	108	3.9%	1.35 [0.82, 2.22]	1996	+-
Sandford 2000	96	466	45	286	4.4%	1.39 [0.94, 2.05]	2000	
Hijazi 2000	133	168	151	200	3.9%	1.23 [0.75, 2.02]	2000	+-
Cui 2003	371	482	280	350	4.7%	0.84 [0.60, 1.17]	2003	+
Cui 2003	149	196	166	206	4.0%	0.76 [0.47, 1.23]	2003	
Park 2004	862	1064	272	340	4.8%	1.07 [0.79, 1.45]	2004	+
Basehore-1 2004	68	466	69	490	4.6%	1.04 [0.73, 1.50]	2004	+
Basehore-2 2004	215	336	360	538	4.9%	0.88 [0.66, 1.17]	2004	+
asehore-3 2004	90	232	91	260	4.5%	1.18 [0.82, 1.70]	2004	+
Zhang-1 2005	236	290	262	312	4.3%	0.83 [0.55, 1.27]	2005	
Zhang-3 2005	43	170	44	198	4.0%	1.19 [0.73, 1.92]	2005	+-
Donfack-2 2005	278	410	235	366	4.9%	1.17 [0.87, 1.58]		+
2 2005 Chang-2	90	146	116	186	4.1%	0.97 [0.62, 1.52]		+
Donfack-1 2005	49	252	81	410	4.4%	0.98 [0.66, 1.46]		+
losseini 2007	18	60	12	100	2.5%	3.14 [1.39, 7.12]	2007	
fak 2007	453	584	459	584	5.0%	0.94 [0.71, 1.24]		+
(amali-Sarvestani 2007	68	406	20	224	3.7%	2.05 [1.21, 3.48]		
hiang 2007	313	334	176	224	3.6%	4.06 [2.36, 7.01]		
leghe 2009	72	598	42	352	4.3%	1.01 [0.67, 1.52]		+
Rad 2010	18	128	23	130	3.1%	0.76 [0.39, 1.49]		
Subtotal (95% CI)		7036		5864	83.5%	1.14 [0.98, 1.32]		•
Fotal events	3704		2933					
Heterogeneity: Tau ² = 0.06	: Chi ² = 48.	49. df =	19 (P =)	0.0002)	: I ² = 61%			
Fest for overall effect: Z = 1				,				
1.1.2 by child								
Fakabayashi 2000	188	200	141	200	3.1%	6.56 [3.40, 12.66]	2000	
_ee 2004	413	512	165	200	4.2%	0.88 [0.58, 1.35]	2004	
3aye-2 2011	209	630	48	102	4.3%	0.56 [0.37, 0.85]		
Baye-1 2011	161	826	69	596	4.8%	1.85 [1.36, 2.51]	2011	-
Subtotal (95% CI)		2168		1098	16.5%	1.52 [0.65, 3.54]		
Total events	971		423					
Heterogeneity: Tau ² = 0.69	; Chi ² = 47.	08, df=	3 (P < 0.	00001)	; l² = 94%			
	.97 (P = 0.3	33)		1				
Fest for overall effect: Z = 0				6962	100.0%	1.20 [1.01, 1.42]		•
		9204						
Fest for overall effect: Z = O Fotal (95% CI) Fotal events	4675	9204	3356					
Fotal (95% CI) Fotal events					I): I² = 77%			E
fotal (95% CI)	; Chi² = 98.	72, df=			l); l² = 77%			0.01 0.1 1 10 100 control asthma

Figure 5. Forest plot of asthma risk associated with the C-589T polymorphism in the stratified analyses by age.

Genetics and Molecular Research 13 (1): 1383-1394 (2014)

Heterogeneity and publication bias

There was heterogeneity for C-589T, the T allele, and genotype in the meta-analysis. Significant heterogeneity was found with respect to Asian origin, asthma status, and age. Sensitivity analysis excluding individual studies was performed if the meta-analysis achieved similar results, which indicated the robustness of the meta-analysis. Furthermore, the Egger test revealed no evidence of publication bias (Table 2).

DISCUSSION

In the present study, we conducted a meta-analysis to assess the genetic association between the IL-4 promoters C-589T, C-33T, and G-1098T polymorphisms and asthma. The results of this meta-analysis provide strong evidence of association between C-589T and C-33T with asthma in certain populations.

IL-4 is an important factor in the pathogenesis of allergies, which has been verified using animal models (Pessi et al., 2005). IL-4 has clearly been shown to play a crucial role in the pathogenesis of allergic diseases including asthma, and IL-4 increases airway responsiveness by recruiting eosinophils into the airway in patients with allergic asthma (Dizier et al., 1999).

It is reasonable to infer that scaling expression of IL-4 might lead to atopic diseases. Therefore, it is highly possible that polymorphisms of the IL-4 promoter region would most likely contribute to its increasing expression. A large number of SNPs of IL-4 have been identified, which have shown to be significantly correlated with disease risks. For example, two general SNPs have been implicated in allergic diseases (including asthma) in many studies. rs2243250 (-589C/T) was reported to be associated with increased binding of a nuclear transcription factor. The other SNP (-33C/T; rs2070874) was located in the 5'-UTR. Both SNPs were found to be in linkage disequilibrium in European and Asian populations (Donfack et al., 2005; Yang et al., 2011).

In the present meta-analysis, we investigated 21 studies (6421 cases and 4755 controls) to assess the association of IL-4 gene promoter polymorphisms with asthma. Compared with a previous meta-analysis by Li et al. (2008), we found a significant association of IL-4 promoter polymorphisms (C-589T and C-33T) with asthma. The IL-4-589T allele has been shown to be associated with pathogenesis of asthma in populations and family-based cohorts (Noguchi et al., 1998; Beghe et al., 2003). Genetic heterogeneity or statistical power may contribute to the different results of case-control and family-based studies. For C-589T, the TT+CT genotype, and not the TT genotype, was significantly associated with asthma. Although the dominant model (CC+CT/TT) was not associated with asthma (OR = 0.90, 95%CI = 0.69-1.184, P = 0.44), the recessive model (CC/CT+TT) was significantly associated with asthma (OR = 1.30, 95%CI = 1.11-1.53, P = 0.001). This result may suggest a recessive effect of the C allele. However, for C-33T, no significant association was found between genotypes and asthma, which may be due to the limitation of the available studies.

The association between IL-4 C-589T and asthma was only found among individuals of European origin, and not in individuals of Asian or African-American origin (OR = 1.31, 95%CI = 0.99-1.74, P = 0.06 and OR = 0.85, 95%CI = 0.58-1.25, P = 0.42, respectively). Ethnic differences may not affect the pathogenesis of asthma in different populations. Furthermore, the discrepancy of individual studies may be due to small sample sizes, poor statistical power (power <80), or clinical heterogeneity.

Genetics and Molecular Research 13 (1): 1383-1394 (2014)

Results of the association between C-33T and asthma were slightly different. The association between IL-4 C-33T and asthma was identified in the European origin group but not in the Asian origin group. Genotype analysis revealed no significant association between C-33T and asthma, although we could not elucidate the genetic effect on the pathogenesis of asthma due to insufficiency of studies. The contradictory results among the European origin, Asian origin, and African-American origin groups might indicate genetic heterogeneity of asthma among these three populations.

Results based on asthma status and age differed from the combined results, which might imply that asthma status and age may not be contributing factors on the pathogenesis of asthma. To clarify the association between IL-4 promoter SNPs and asthma, more research with more SNPs needs to be considered.

Heterogeneity was detected both in the allele and genotype analyses, while the sensitivity analysis and publication bias analysis demonstrated the authenticity of this study. Since no significant associations were detected between the C-589T and C-33T polymorphisms and asthma in most published studies reported, publication bias is likely not a major problem for this meta-analysis.

Nevertheless, several limitations of this meta-analysis should be considered. First, considering the association between C-589T and asthma, heterogeneity was discovered in the Asian origin group. However, based on the sensitivity analysis, the overall effect was not influenced by heterogeneity. Second, the number of studies and subjects included in this meta-analysis were relatively small. There were less than three studies included for the polymorphism meta-analysis in subgroups. Therefore, more studies are needed for further analysis. Third, due to lack of sufficient studies, we eliminated the meta-analysis of G-1098T, and it is possible that several other variants in the IL-4 promoter may be associated with asthma susceptibility. Therefore, further research is required.

In conclusion, this meta-analysis, which included 13,536 subjects, demonstrated that IL-4 promoter polymorphisms were associated with asthma susceptibility only in European groups. To identify associations between polymorphisms in IL-4 promoter SNPs and asthma susceptibility, more studies with a larger number of patients are needed.

ACKNOWLEDGMENTS

Research supported by the Education Department Project of Hunnan Province (grant #12C0523).

REFERENCES

- Amirzargar AA, Movahedi M, Rezaei N, Moradi B, et al. (2009). Polymorphisms in IL4 and IL4RA confer susceptibility to asthma. J. Invest. Allergol. Clin. Immunol. 19: 433-438.
- Basehore MJ, Howard TD, Lange LA, Moore WC, et al. (2004). A comprehensive evaluation of IL4 variants in ethnically diverse populations: association of total serum IgE levels and asthma in white subjects. J. Allergy Clin. Immunol. 114: 80-87.
- Baye TM, Butsch KM, Biagini Myers JM, Martin LJ, et al. (2011). Differences in candidate gene association between European ancestry and African American asthmatic children. *PLoS One* 6: e16522.

Beghe B, Barton S, Rorke S, Peng Q, et al. (2003). Polymorphisms in the interleukin-4 and interleukin-4 receptor alpha chain genes confer susceptibility to asthma and atopy in a Caucasian population. *Clin. Exp. Allergy* 33: 1111-1117.

Beghe B, Hall IP, Parker SG, Moffatt MF, et al. (2010). Polymorphisms in IL13 pathway genes in asthma and chronic

obstructive pulmonary disease. Allergy 65: 474-481.

- Berenguer AG, Camara RA, Brehm AD, Oliveira S, et al. (2012). Distribution of polymorphisms IL4-590 C/T and IL4 RP2 in the human populations of Madeira, Azores, Portugal, Cape Verde and Guinea-Bissau. *Int. J. Mol. Epidemiol. Genet.* 3: 179-183.
- Chiang CH, Tang YC, Lin MW and Chung MY (2007). Association between the IL-4 promoter polymorphisms and asthma or severity of hyperresponsiveness in Taiwanese. *Respirology* 12: 42-48.
- Cui TP, Wang L and Wu JM (2003a). Polymorphisms in the IL-4 and IL-4R genes and allergic asthma in adult. *Immunol.* J. 19: 454-459.
- Cui TP, Wu J, Pan S and Xie J (2003b). Polymorphisms in the IL-4 and IL-4R [alpha] genes and allergic asthma. *Clin. Chem. Lab. Med.* 41: 888-892.
- Dizier MH, Sandford A, Walley A, Philippi A, et al. (1999). Indication of linkage of serum IgE levels to the interleukin-4 gene and exclusion of the contribution of the (-590 C to T) interleukin-4 promoter polymorphism to IgE variation. *Genet. Epidemiol.* 16: 84-94.
- Dmitrieva-Zdorova EV, Voronko OE, Latysheva EA, Storozhakov GI, et al. (2012). Analysis of polymorphisms in T(H)2associated genes in Russian patients with atopic bronchial asthma. J. Investig. Allergol. Clin. Immunol. 22: 126-132.
- Donfack J, Schneider DH, Tan Z, Kurz T, et al. (2005). Variation in conserved non-coding sequences on chromosome 5q and susceptibility to asthma and atopy. *Respir. Res.* 6: 145.
- Elliott K, Fitzpatrick E, Hill D, Brown J, et al. (2001). The -590C/T and -34C/T interleukin-4 promoter polymorphisms are not associated with atopic eczema in childhood. J. Allergy Clin. Immunol. 108: 285-287.
- Freidin MB, Kobyakova OS, Ogorodova LM and Puzyrev VP (2003). Association of polymorphisms in the human IL4 and IL5 genes with atopic bronchial asthma and severity of the disease. *Comp. Funct. Genomics* 4: 346-350.
- Gervaziev YV, Kaznacheev VA and Gervazieva VB (2006). Allelic polymorphisms in the interleukin-4 promoter regions and their association with bronchial asthma among the Russian population. Int. Arch. Allergy Immunol. 141: 257-264.
- Haller G, Torgerson DG, Ober C and Thompson EE (2009). Sequencing the IL4 locus in African Americans implicates rare noncoding variants in asthma susceptibility. J. Allergy Clin. Immunol. 124: 1204-1209.
- Hijazi Z and Haider MZ (2000). Interleukin-4 gene promoter polymorphism [C590T] and asthma in Kuwaiti Arabs. *Int. Arch. Allergy Immunol.* 122: 190-194.
- Hosseini-Farahabadi S, Tavakkol-Afshari J, Rafatpanah H, Farid-Hosseini R, et al. (2007). Association between the polymorphisms of IL-4 gene promoter (-590C/T), IL-13 coding region (R130Q) and IL-16 gene promoter (-295T/C) and allergic asthma. *Iran J. Allergy Asthma Immunol.* 6: 9-14.
- Isidoro-García M, Dávila I, Laffond E, Moreno E, et al. (2005). Interleukin-4 (IL4) and Interleukin-4 receptor (IL4RA) polymorphisms in asthma: a case control study. *Clin. Mol. Allergy* 3: 15.
- Kamali-Sarvestani E, Ghayomi MA and Nekoee A (2007). Association of TNF-α -308 G/A and IL-4 -589 C/T gene promoter polymorphisms with asthma susceptibility in the south of Iran. J. Investig. Allergol. Clin. Immunol. 17: 361-366.
- Kim BS, Park SM, Uhm TG, Kang JH, et al. (2010). Effect of single nucleotide polymorphisms within the interleukin-4 promoter on aspirin intolerance in asthmatics and interleukin-4 promoter activity. *Pharmacogenet. Genomics* 20: 748-758.
- Laitinen T, Kauppi P, Ignatius J, Ruotsalainen T, et al. (1997). Genetic control of serum IgE levels and asthma: linkage and linkage disequilibrium studies in an isolated population. *Hum. Mol. Genet.* 6: 2069-2076.
- Lee SG, Kim BS, Kim JH, Lee SY, et al. (2004). Gene-gene interaction between interleukin-4 and interleukin-4 receptor alpha in Korean children with asthma. *Clin. Exp. Allergy* 34: 1202-1208.
- Li Y, Guo B, Zhang L, Han J, et al. (2008). Association between C-589T polymorphisms of interleukin-4 gene promoter and asthma: a meta-analysis. *Respir. Med.* 102: 984-992.
- Liu X, Beaty TH, Deindl P, Huang SK, et al. (2003). Associations between total serum IgE levels and the 6 potentially functional variants within the genes IL4, IL13, and IL4RA in German children: the German Multicenter Atopy Study. J. Allergy Clin. Immunol. 112: 382-388.
- Mak JC, Ko FW, Chu CM, Leung HC, et al. (2007). Polymorphisms in the IL-4, IL-4 receptor alpha chain, TNF-alpha, and lymphotoxin-alpha genes and risk of asthma in Hong Kong Chinese adults. *Int. Arch. Allergy Immunol.* 144: 114-122.
- Michel S, Liang L, Depner M, Klopp N, et al. (2010). Unifying candidate gene and GWAS approaches in asthma. *PLoS One* 5: e13894.
- Noguchi E, Shibasaki M, Arinami T, Takeda K, et al. (1998). Association of asthma and the interleukin-4 promoter gene in Japanese. *Clin. Exp. Allergy* 28: 449-453.
- Noguchi E, Nukaga-Nishio Y, Jian Z, Yokouchi Y, et al. (2001). Haplotypes of the 5' region of the IL-4 gene and SNPs in the intergene sequence between the IL-4 and IL-13 genes are associated with atopic asthma. *Hum. Immunol.* 62:

1251-1257.

- Park BL, Kim LH, Choi YH, Lee JH, et al. (2004). Interleukin 3 (IL3) polymorphisms associated with decreased risk of asthma and atopy. J. Hum. Genet. 49: 517-527.
- Pessi T, Virta M, Adjers K, Karjalainen J, et al. (2005). Genetic and environmental factors in the immunopathogenesis of atopy: interaction of *Helicobacter pylori* infection and IL4 genetics. *Int. Arch. Allergy Immunol.* 137: 282-288.
- Rad IA, Bagheri M, Rahimi-Rad MH and Moradi Z (2010). IFN-γ +874 and IL-4 -590 polymorphisms and asthma susceptibility in North West of Iran. *Tanaffos* 9: 22-27.
- Renauld JC (2001). New insights into the role of cytokines in asthma. J. Clin. Pathol. 54: 577-589.
- Rosenwasser LJ, Klemm DJ, Dresback JK, Inamura H, et al. (1995). Promoter polymorphisms in the chromosome 5 gene cluster in asthma and atopy. *Clin. Exp. Allergy* 25 (Suppl 2): 74-78.
- Sandford AJ, Chagani T, Zhu S, Weir TD, et al. (2000). Polymorphisms in the IL4, IL4RA, and FCERIB genes and asthma severity. J. Allergy Clin. Immunol. 106: 135-140.
- Suzuki I, Hizawa N, Yamaguchi E and Kawakami Y (2000). Association between a C+33T polymorphism in the IL-4 promoter region and total serum IgE levels. *Clin. Exp. Allergy* 30: 1746-1749.
- Takabayashi A, Ihara K, Sasaki Y, Suzuki Y, et al. (2000). Childhood atopic asthma: positive association with a polymorphism of IL-4 receptor alpha gene but not with that of IL-4 promoter or Fc epsilon receptor I β gene. *Exp. Clin. Immunogenet.* 17: 63-70.
- Walley AJ and Cookson WO (1996). Investigation of an interleukin-4 promoter polymorphism for associations with asthma and atopy. J. Med. Genet. 33: 689-692.
- Wang XH, Zhao W, Liu SG and Feng XP (2009). Correlation of IL-4 and IL-13 gene polymorphisms with asthma and total serum IgE levels. *Zhonghua Jie. He. Hu Xi. Za Zhi.* 32: 161-164.
- Yang XX, Li FX, Wu YS, Wu D, et al. (2011). Association of TGF-β1, IL-4 and IL-13 gene polymerphisms with asthma in a Chinese population. *Asian Pac. J. Allergy Immunol.* 29: 273-277.
- Zhang WD, Zhang XZ and Qiu DW (2005). Association of interleukin-4 and interleukin-4 receptor gene polymorphism and serum IgE levels in Chinese, Malayan and Hindoo. *Zhonghua Jie He Hu Xi Za Zhi*. 28: 489-490.
- Zhu S, Chan-Yeung M, Becker AB, Dimich-Ward H, et al. (2000). Polymorphisms of the IL-4, TNF-α, and Fcα-RIβ genes and the risk of allergic disorders in at-risk infants. *Am. J. Respir. Crit. Care Med.* 161: 1655-1659.

Genetics and Molecular Research 13 (1): 1383-1394 (2014)