

Association between single-nucleotide polymorphisms and milk production traits in buffalo

G.C. Venturini¹, D.F. Cardoso¹, F. Baldi¹, A.C. Freitas¹, R.R. Aspilcueta-Borquis¹, D.J.A. Santos¹, G.M.F. Camargo¹, N.B. Stafuzza², L.G. Albuquerque¹ and H. Tonhati¹

¹Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP, Brasil
²Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, SP, Brasil

Corresponding author: G.C. Venturini E-mail: venturinigc@gmail.com

Genet. Mol. Res. 13 (4): 10256-10268 (2014) Received January 15, 2014 Accepted September 23, 2014 Published December 4, 2014 DOI http://dx.doi.org/10.4238/2014.December.4.20

ABSTRACT. The aim of this study was to identify single-nucleotide polymorphisms (SNPs) in buffaloes associated with milk yield and content, in addition to somatic cell scores based on the cross-species transferability of SNPs from cattle to buffalo. A total of 15,745 SNPs were analyzed, of which 1562 showed 1% significance and 4742 with 5% significance, which were associated for all traits studied. After application of Bonferroni's correction for multiple tests of the traits analyzed, we found 2 significant SNPs placed on cattle chromosomes BTA15 and BTA20, which are homologous to buffalo chromosomes BBU16 and BBU19, respectively. In this genome association study, we found several significant SNPs affecting buffalo milk production and quality. Furthermore, the use of the high-density bovine BeadChip was suitable for genomic analysis in buffaloes. Although extensive chromosome arm homology was described between cattle and buffalo, the exact chromosomal position of SNP

markers associated with these economically important traits in buffalo can be determined only through buffalo genome sequencing.

Key words: Cross-species transferability; Fat; Protein

INTRODUCTION

Buffaloes in Brazil are mainly bred for the production of milk to make dairy products for economic reasons. Compared with cow milk, buffalo milk has higher levels of fat, protein, and total solids (Verruma and Salgado, 1994; Ahamad et al., 2008). The concentration of these constituents is reflected in the high economic value of this milk. According to Tonhati et al. (2000, 2008), the favorable attributes of buffalo milk and the strong demand for mozzarella cheese have resulted in high profits from raising buffaloes in Brazil.

To identify high-quality genetic material for animal improvement programs, many researchers have used molecular genetics techniques to identify genes responsible for phenotypic variation associated with traits of economic interest. Methods have been developed for the selection of superior genotypes. However, even with the development of molecular genetic methods to study genomic associations between various animals, such as cattle (Meredith et al., 2012), poultry (Xie et al., 2012), and pigs (Schneider et al., 2012), molecular information and tools for buffaloes (*Bubalus bubalis*) is limited. Genomic techniques are particularly attractive for animal improvement because of the ability to directly use DNA information for selection, allowing higher selective efficiency, a faster rate of obtaining genetic gains, and low cost compared with traditional selection based on phenotypic data (Schaeffer, 2006). Among the available genomic tools, the use of single-nucleotide polymorphism (SNP) markers is particularly effective for selecting traits measured in a single sex, such as milk yield and milk composition.

Several studies have examined buffaloes to identify SNP markers associated with milk components. Otaviano et al. (2005), Riaz et al. (2008), and Feligini et al. (2009) reported the association between molecular markers and components of buffalo milk for several molecular isoforms of caseins (alpha s1-, alpha s2-, beta-, and kappa casein). Additionally, Ramesha et al. (2008) and Meignanalakshmi and Nainar (2009) found an important association between genetic markers and the beta-lactoglobulin and alpha-lactoglobulin genes, while Gil et al. (2013) and Zetouni et al. (2013) identified genes involved in feed intake.

The water buffalo *B. bubalis* and cattle (*Bos taurus*) belong to the subfamily Bovinae, with evolutionary divergence estimated to be 20 million years ago (Parma et al., 2004). An extensive chromosome arm homology between both species has been established through cytogenetic studies (Di Meo et al., 2008) and genetic mapping (Amaral et al., 2008). While the bovine genome consists of 29 acrocentric autosomes (single-armed) and a pair of sex chromosomes (X/Y), the buffalo genome contains 19 acrocentric (single-armed) and 5 submetacentric (biarmed) autosomes as well as the X and Y chromosomes. In buffalo, the 5 biarmed pairs originated from centric fusion translocations involving cattle (ancestral bovid) homologous chromosomes. Thus, the arm number is identical between both species, and all buffalo chromosome 1 (BBU1) is a fusion of *B. taurus* (BTA) chromosomes 1 and 27, BBU2 equals BTA2 and 23, BBU3 equals BTA8 and 19, BBU4 equals BTA5 and 28, and BBU5 equals BTA16 and 29. The remaining acrocentric chromosomes have a one-to-one correspondence between the 2 species: BBU6/BTA3, BBU7/BTA6, BBU8/BTA4, BBU9/BTA7, BBU10/BTA9, BBU11/

Genetics and Molecular Research 13 (4): 10256-10268 (2014)

G.C. Venturini et al.

BTA10, BBU12/BTA11, BBU13/BTA12, BBU14/BTA13, BBU15/BTA14, BBU16/BTA15, BBU17/BTA17, BBU18/BTA18, BBU19/BTA20, BBU20/BTA21, BBU21/BTA22, BBU22/BTA24, BBU23/BTA26, and BBU24/BTA25 (Cribiu et al., 2001).

Because buffaloes and cattle are closely related, genomic studies have been developed for buffaloes based on the abundant genomic resources available for cattle. Amaral et al. (2008) obtained maps for the entire buffalo genome base on cattle-derived markers, with a total of 2621 markers mapped on the buffalo genome, of which 1734 were cattle-derived SNPs and the remaining 887 markers were classified as cattle sequence tagged site, including coding genes, expressed sequence tags, and microsatellites.

Genomic studies involving buffaloes have been carried out based on the bovine 50k chip. Michelizzi et al. (2011) and Wu et al. (2013) demonstrated the efficiency of Illumina BovineSNPS50 BeadChip (54,001 SNPs) to study buffaloes. Michelizzi et al. (2011) genotyped 10 water buffaloes and observed 1159 polymorphic markers, while Wu et al. (2013) genotyped 91 water buffaloes and found 935 polymorphic markers. The high-density bovine chip (Illumina Infinium[®] BovineHD BeadChip) contains more than 777,000 SNP markers spread throughout the bovine genome and more than 167,000 SNPs in buffaloes (Illumina, 2010; NBAGR, 2013). It can be used to develop strategies for conserving genetic variability, organization of genetic improvement programs, and evaluation of commercial herds to identify associations between the quantitative trait loci and traits of economic interest.

Using the buffalo-bovine chromosome homologies and the extensive resources available for cattle, the goal of this study was to identify SNPs in buffaloes associated with milk, protein, and fat yield, percentage of fat and protein, and somatic cell score using the777k chip developed for bovine (Illumina Infinium[®] BovineHD BeadChip).

MATERIAL AND METHODS

Herd data

The dataset used in the present study was provided by 384 female water buffaloes (*B. bubalis*), born in 2007 and 2008, from to 2 dairy farms in the states of Rio Grande do Norte and São Paulo, Brazil. These data are contained in the database maintained at the Department of Animal Science of Faculdade de Ciências Agrárias e Veterinárias of Universidade Estadual Paulista. The animals were raised on pastures with feed supplementation during the dry period from April to September.

Lactation records were unadjusted for days in milk and lactation records with a length above 305 days were truncated at this point, as suggested by Tonhati et al. (2000). Lactation records shorter than 90 days in milk were deleted. The first test-day milk record was measured from days 5-75 after calving. Primiparous buffaloes with an average age of 2.78 ± 0.28 years were utilized.

Studied traits included the 305-day accumulated yields of fat (FY305), protein (PY305), and milk (MY305), as well as the percentages of milk fat (%F) and protein (%P) and the somatic cell score (SCS). The %F, %P, and SCS values were obtained by averaging the monthly test-day records per lactation following the recommended by Tonhati et al. (2000). Somatic cells counts (SCC) were transformed to linear scores using the following equation: SCS = [log, (SCC/100.000)] + 3, as described by Dabdoub and Shook (1984).

Genetics and Molecular Research 13 (4): 10256-10268 (2014)

DNA extraction and quality control

DNA samples were collected from the hair follicles of each animal and stored at 4°C until DNA extraction. The DNA was extracted from the hair follicles using the phenol-chloro-form-isoamyl alcohol method. The quantity and quality of the DNA obtained were analyzed in a Nanodrop 1000 spectrophotometer (Thermo Scientific, Waltham, MA, USA). Stock DNA solution was diluted to 50 ng/mL for use later use.

Genotyping was performed using the Illumina BovineHD BeadChip, with the Infinium[®] HD assay kit and Illumina HiScan[™] system (Illumina Inc., San Diego, CA, USA). The BovineHD BeadChip contains 777,962 SNP markers spread through the genome and an average distance between markers of 3.43 kb. Although the BovineHD BeadChip was developed for bovines, there is strong homology between water buffalo and bovine chromosomes. initial analyses of the images and genotypes were carried out using the Genome Studio software (Illumina Inc.). A total of 1735 markers were excluded because of unknown genomic position. Only markers with a call frequency greater than 80% and heterozygote excess lower than -0.70 or greater than 0.70 were considered. The markers showing low average cluster intensity (AB_R, AA_R or BB_R mean <0.1; AB_T_mean <0.2 and AB_T_mean >0.8), GenTrain score <0.30, and cluster separation index <0.13 were excluded from the analysis. Similar criteria for filtering genomic data were implemented by Michelizzi et al. (2011) using the Illumina BovineSNPS50 BeadChip on DNA samples from 10 water buffaloes. In the present study, we only included markers in autosomal chromosomes with minor allele frequencies greater than 0.05. All quality control was performed using the UNIX language in the FEDORA operational system. This cleaning generated a file containing a total of 15,745 markers, which were used for genomic association.

Genome-wide association analyses

Association analyses were carried out considering only 1 marker at a time using the maximum restricted likelihood method and the MACRO command and the MIXED procedure of the SAS program (version 9.2, SAS Institute Inc., Cary, NC, USA). The fixed effects considered in the model were as follows: SNP marker [as linear covariable defined as 0 (AA); 1 (AB) and 2 (BB)], contemporary group (CG) and daily milking number (2 levels), and age of animals as a linear and quadratic covariables. CGs were defined as: farm, year, and calving season: dry season (April-September) and rainy season (October-March), generating a total of 33 CGs. After evaluating the consistency of the data, there were 358 phenotypic data remaining for each trait. The descriptive statistics of each trait are shown in Table 1.

Table 1. Descriptive statistics for the yields of milk (MY305), fat (FY305) and protein (PY305), somatic cell score (SCS), fat percentage (%F), and protein percentage (%P).

Trait	Mean	SD	MIN	MAX	CV
MY305 (kg)	1578.90	508.54	570.00	3535.00	32.20
FY305 (g)	106.41	34.04	0.00	244.00	31.98
PY305 (g)	67.16	21.86	23.00	156.00	32.54
SCS	7.29	1.17	0.00	11.06	16.05
%F	6.84	1.04	3.62	10.28	15.20
%Р	4.26	0.28	3.53	5.53	6.57

Genetics and Molecular Research 13 (4): 10256-10268 (2014)

G.C. Venturini et al.

Manhattan graphs were constructed using the GAP instructions in the R software (R Development Core Team, 2012), considering 5 and 1% significance levels for the markers. In addition to these tests, the Bonferroni test was applied at 5% significance for all traits.

The false discovery rate (FDR) was estimated using the equation below (Benjamini and Hochberg, 1995):

$$FDR = \frac{nP}{k},$$

where *n* is the number of SNPs included in the association analysis, *P* is the level of significance (α) utilized, and *k* is the number of SNPs significantly associated with the trait of interest at that level (α).

RESULTS AND DISCUSSION

Figures 1-6 present the results of the association analyses for MY305, PY305, and FY305, %P and %F, and SCS, respectively. Of a total of 15,745 SNPs subjected to quality control, 1562 and 4742 SNP markers were significantly associated at the levels of P < 0.01 and P < 0.05 for all traits studied. A total of 452 SNPs for MY305, 192 SNPs for FY305, 449 SNPs for PY305, 161 SNPs for %F, 142 SNPs for %P, and 166 SNPs for SCS, at the levels of 1% were observed (a summary of these SNPs is shown in <u>Tables S1-S6</u>, respectively). At the level of 5%, we observed 1429 SNPs for MY305, 798 SNPs for FY305, 1448 SNPs for PY305, 860 SNPs for %F, 714 SNPs for %P, and 811 SNPs for SCS. Wu et al. (2013) identified 8 SNPs in milking buffaloes that were significantly associated with milk yield, but none of these SNPs was associated with this trait in the present study.

Figure 1. Manhattan graph of the genomic association with milk yield by chromosome.

Genetics and Molecular Research 13 (4): 10256-10268 (2014)

GWAS for milk production traits in buffalo

Figure 2. Manhattan graph of the genomic association for protein yield by chromosome.

Figure 3. Manhattan graph of the genomic association for fat yield by chromosome.

Figure 4. Manhattan graph of the genomic association for protein percentage by buffaloes.

Genetics and Molecular Research 13 (4): 10256-10268 (2014)

G.C. Venturini et al.

Figure 5. Manhattan graph of the genomic association for milk fat percentage by buffaloes.

Figure 6. Manhattan graph of the genomic association for somatic cell score by chromosome.

Our results indicate that a large number of SNPs influences yield traits in buffaloes. Similarly, in dairy cattle, numerous SNPs are related to these traits, as established by Meredith et al. (2012) in Holstein-Friesian cows in Ireland. These authors identified 370, 370, and 385 SNPs that were significantly associated with milk, fat, and protein yield. In the present study, the BTA20 and BTA22 chromosomes, which are homologous to BBU19 and BBU21, respectively, were present in the greatest numbers of significant SNP markers (P < 0.01) for the 3 yield traits (MY305, PY305, and FY305). These 2 chromosomes each contain a total of 30, 30, and 31 SNPs related to milk, protein, and fat yield, respectively. Furthermore, the chromosomes with the lowest number of significant SNPs (P < 0.01) were BTA19 and BTA27, corresponding to BBU3p and BBU1p, respectively, each containing only 6, 6, and 7 SNPs related to milk, pro-

Genetics and Molecular Research 13 (4): 10256-10268 (2014)

tein, and fat yield, respectively. In Danish Jersey dairy cows, Mai et al. (2010) detected a total of 98 SNPs significantly associated with milk yield on BTA27 using the BovineSNPS50 Bead-Chip. The small number of SNPs found on BTA27 in the present study indicates that although there is chromosomal similarity with cattle, the MY305 trait is influenced by different genomic regions in buffaloes, and that the SNPs may be fixed on BTA27 for buffaloes.

For %P and %F, the number of significant SNPs was also high but lower than that observed by Meredith et al. (2012) in dairy cattle, which was 229 and 216, respectively. The existence of SNPs significantly associated with these traits can be used in selective breeding of animals to produce high-quality milk, resulting in a better mozzarella cheese, which is the main product of buffalo milk. In this study, the chromosomes with the highest number of significant SNPs were BTA20 and BTA22, each containing 31 SNPs, and BTA19 and BTA27 with the lowest number, each containing 7 SNPs. Meredith et al. (2012) reported that most significant SNPs for milk traits, including %P and %F, were also found in BTA20. In dairy cattle, the BTA14 typically contains many SNPs that are strongly associated with milk traits, and are mainly close to the DGAT1 gene (Cole et al., 2011; Meredith et al., 2012), which has been suggested to be the primary gene affecting fat and milk yield (Grisart et al., 2002). In this study, BTA14 showed 21 significant SNPs associated with %F (P < 0.01); however, they were not the strongest associations for this trait. The number of significant SNPs on BTA14 for the other traits was even lower than for %F. This can be explained because the K232A, a polymorphism considered to be a quantitative trait nucleotide in dairy cattle, does not segregate in buffaloes (Tantia et al., 2006).

For SCS, the largest number of significant SNPs at 1% was identified on BTA2 (14 SNPs) and BTA11 (16 SNPs), while the smallest number at that level was found on BTA26 and BTA29, each with only 1 significant SNP. However, at a significance level of 5%, the number of SNPs on BTA2 increased to 58. Cole et al. (2011) found a larger number of significant SNPs for SCS on BTA2 (11 SNPs), BTA7 (13 SNPs), and BTA16 (11 SNPs). Additionally, in a study by Meredith et al. (2012), of the 1529 SNPs analyzed, only 9 were significant for SCS. According to these authors, the small number of significant SNPs for this trait may be related to inherent problems of the phenotype, resulting in reduced association detection power. Table 2 presents a summary of the SNPs identified to have a significant association with 3 or 4 traits (Figure 7).

Figure 7. Relationship between SNPs and traits. Colored boxes contain the number of SNPs for each trait (MY = milk yield; PY = protein yield; FY = fat yield; PP = protein percentage; FP = fat percentage; SCS = somatic cell score). The white boxes show the number of SNPs significantly associated with more than 1 trait. The black, red, and green lines represent the number of SNPs significantly associated with 2, 3, and 4 characteristics, respectively.

Genetics and Molecular Research 13 (4): 10256-10268 (2014)

[©]FUNPEC-RP www.funpecrp.com.br

G.C. Venturini et al.

Table 2. Summary of SNPs identified to have a significant association with 3 or 4 traits.							
Traitª	SNP	BTA	Position ^b	Nearest genes	Allele		
FY, MY, PY	rs43437978	1	14379994	Between LOC100847925 and NCAM2	[A/C]		
FY, MY, PY	rs137173232	1	15684151	Within LOC101904189	[C/T]		
FY, MY, PY	rs136275783	1	16933095	Between TRNAC-GCA and TMPRSS15	[C/T]		
MY, PY, SCS	rs109306874	1	109558181	Between LOC101901911 and MFSD1	[C/T]		
MY, PY, SCS	rs135592668	1	127950541	Within TFDP2	[C/T]		
FY, MY, PY	rs134022992	1	132143793	Between DZIP1L and CLDN18	[A/C]		
FY, MY, PY	rs43275385	1	142588827	Between LOC101902044 and LOC101907727	[C/T]		
MY, PY, SCS	rs110949265	2	90784615	Within CDK15	[A/G]		
FY, MY, PY	rs136210465	2	92958299	Between ICOS and LOC101903301	[A/C]		
FY, MY, PY	rs133293221	3	3889359	Between LMX1A and PBX1	[A/G]		
FY, MY, PY	rs109027149	2	4151/94	Between LMATA and PBAT			
TI, MI, FI MV PV SCS	rs100047710	3	218/4134 54285171	Between GBP5 and LOC512486	[A/G]		
EV MV DV	rs100200576	3	69554270	Within SI C44A5	[A/G]		
FY MY PY	rs42422428	4	7959622	Within CDK14	[C/T]		
FY MY PY	rs135096651	4	85983830	Within KCND2	[C/T]		
MY PY SCS	rs109463863	4	99326320	Within LOC101902963	[A/G]		
FY. MY. PY	rs110534108	4	105324609	Within TMEM178B	[A/C]		
FY, MY, PY	rs29010249	5	41521945	Within SLC2A13	[C/T]		
FY, MY, PY	rs42393904	5	89568937	Within PDE3A	[C/T]		
FY, MY, PY	rs135470643	5	94463839	Within STRAP	[C/T]		
FY, MY, PY	rs109561595	5	103531563	Within PEX5	[C/T]		
FY, MY, PY	rs133677804	6	38235112	Between SPP1 and MEPE	[A/G]		
FY, MY, PY	rs41654988	6	82416284	Between LOC101904978 and LOC100337226	[C/T]		
FY, MY, PY, SCS	rs135755654	7	968325	Within LOC100848388	[A/C]		
MY, PY, SCS	rs133745641	7	15064262	Within LOC787383	[A/G]		
MY, PY, SCS	rs41656886	7	16277606	Within LOC101907575	[C/T]		
MY, PY, SCS	rs134480433	7	31571872	Within CSNK1G3	[C/T]		
FY, MY, PY	rs109197142	7	31763867	Within CEP120	[A/C]		
FP, MY, PY	rs109293607	0	9/364558	Within RHOBIB3	[A/G]		
FY, MY, PY	IS134900341	8	24775262	Within SLC24A2	[A/G]		
FY, MY, PY	IS133983348	8	34330420	Within LOC101004827	[A/G]		
FV MV PV	rs43548927	8	45549903	Between EXN and TIP2	[A/0]		
FV MV PV	rs110049283	8	48482796	Within C8H9orf85	[C/T]		
FY MY PY	rs135898479	8	52262391	Within PCSK5	[A/G]		
FY. MY. PY. SCS	rs42672728	8	89277018	Between LOC100336643 and LOC101903044	[A/G]		
FY. MY. PY	rs134484124	9	8146802	Within BAI3	[A/G]		
FY, MY, PY	rs135173753	9	13308743	Within SLC17A5	[C/T]		
FY, MY, PY	rs137577358	9	96732066	Between EZR and RSPH3	[C/T]		
FP, MY, PY	rs110550868	10	17788258	Within LRRC49	[C/T]		
FY, MY, PY	rs135730708	10	36212636	Between CHST14 and C10H15orf57	[C/T]		
FY, MY, PY	rs41663009	11	9385008	Between LOC101903987 and TACR1	[A/T]		
FY, MY, PY	rs135750699	11	49066004	Between LOC100300483 and LOC616323	[A/G]		
FY, MY, PY	rs109684958	11	77961760	Within APOB	[A/G]		
FY, MY, PY	rs109092556	11	92749440	Within TTLL11	[A/G]		
FY, MY, PY	rs136655257	11	92950202	Within TTLLTI	[C/T]		
FY, MY, PY	rs134257720	12	5022925	Between LOC101903521 and PCDH17	[A/G]		
FY, MY, PY	IS133034307	12	8398/28	Detween LOC101903582 and LOC101905935	[A/G]		
FY, MY, PY	rs110003033	12	18/40085	Within TPPC4	[G/T] [A/G]		
FI, MI, FI EV MV DV	18133093434 rs132873062	12	24111252	Within TRPC4 Between HSPH1 and LOC101006564	[A/G]		
FV MV DV	rs/3608055	12	40708434	Between LOC101906107 and LOC101900304	[C/T]		
FY MY PY	rs110817008	12	50461875	Between LOC101907044 and TBC1D4	[A/G]		
FY MY PY	rs110033298	12	51303337	Between LMO7 and LOC101902043	[C/T]		
FY MY PY	rs110923461	12	54045655	Between EDNRB and POU4F1	[C/T]		
FY, MY, PY	rs42476166	12	58629822	Between LOC782305 and TRNAC-GCA	[C/T]		
FY, MY, PY	rs43136089	12	72300227	Within LOC100337069	[C/T]		
MY, PY, SCS	rs135974209	12	72691813	Between LOC530803 and LOC100337108	[C/T]		
FP, MY, PY	rs110822690	12	79608691	Within SLC15A1	[G/T]		
FY, MY, PY	rs135894770	12	83309527	Between LOC101907090 and LOC100336939	[C/T]		
FY, MY, PY	rs134555254	12	85587789	Within LOC101907090	[C/T]		

Continued on next page

Genetics and Molecular Research 13 (4): 10256-10268 (2014)

©FUNPEC-RP www.funpecrp.com.br

GWAS for milk production traits in buffalo

Table 2. Continued.

Traitª	SNP	BTA	Position ^b	Nearest genes	Allele
FY, MY, PY	rs109459785	12	88068269	Within MYO16	[A/G]
FY, MY, PY	rs136087625	13	24316133	Within ARMC3	[C/T]
FY, MY, PY	rs133498713	13	55950796	Within CDH4	[C/T]
FY, MY, PY, SCS	rs41708939	13	72473830	Between PTPRT and LOC101901917	[A/G]
FY, MY, PY	rs132705079	13	76579547	Within ZMYND8	[C/T]
FY, MY, PY	rs110438672	14	16312069	Between LOC783462 and TRIB1	[A/T]
FY, MY, PY	rs134901382	14	49491234	Between SLC30A8 and AARD	[A/G]
FY, MY, PY	rs133584285	14	72330522	Between RAD54B and GEM	[C/T]
FY, MY, PY	rs379091691	15	23570442	Between LOC100847772 and NCAM1	[A/G]
FY, MY, PY	rs134634450	15	34083678	Within C15H11orf63	[C/T]
FY, MY, PY	rs134110499	15	45616874	Within OVCH2	[A/G]
FY, MY, PY	rs136632034	15	45677285	Between PPFIBP2 and LOC531779	[G/T]
FY, MY, PY	rs133144332	15	51504336	Within LOC785574	[C/T]
FY, MY, PY	rs133619699	15	54696961	Within POLD3	[C/T]
FY, MY, PY	rs110179700	16	20588611	Between USH2A and ESRRG	[C/T]
FY, MY, PY	rs41802238	16	38379570	Within KIFAP3	[G/T]
FY, MY, PY	rs136000595	16	46646103	Within LOC100848595	[A/G]
FY, MY, PY	rs137070918	16	53817802	Within KAZN	[C/T]
FY, MY, PY	rs110894442	16	53926177	Within KAZN	[C/T]
FY, MY, PY	rs109639913	16	64227592	Within CACNATE	[A/G]
FY, MY, PY	rs136919579	16	67868936	Between IVNSTABP and LOC101904548	[C/T]
FY, MY, PY	rs41627700	16	/62/9318	Between LOC101908007 and TRNAW-CCA	[C/T]
FY, MY, PY	rs42309699	17	8588106	Between LOC1019033/9 and TRNAC-GCA	[C/1]
FY, MY, PY	rs136445948	17	40/85548	Between LOC101904594 and RPS2/	[A/G]
FY, MY, PY	rs109209365	17	59953742	Between KSR2 and NOS1	[C/1]
FY, MY, PY	12257((41	17	60289891	Within TESC	[A/G]
FY, MY, PY	IS133370041	17	0051/109	Within DNET2	[A/G]
FY, MY, PY	rs100585246	17	00400018	WILLIN KINF 12 Detween LDCAT2 and TDNAE CAA	[C/T]
FI, MI, FI	18109383340	10	20202722	Detween LOC785076 and LOC101002225	[C/T]
FI, MI, FI, SCS	rs125416524	10	26246242	Between WSCD1 and NLPD1	[C/T]
FV MV PV	rs100015477	20	5680843	Within HMP19	[C/T]
FV MV PV	rs42552377	20	38949062	Between LOC101907576 and PRLR	$[\Delta/G]$
FP MV PV	rs42375254	20	53124993	Between LOC781924 and CDH18	[A/G]
FV MV PV	rs137509412	20	54634401	Between LOC781394 and LOC781508	[C/T]
FV MV PV	rs137406593	20	55031281	Between LOC101905305 and LOC784462	$[\Delta/G]$
FY MY PY	rs41955304	20	61899885	Within CTNND?	[C/T]
FY MY PY	rs135487373	20	69925848	Between LOC100847985 and LOC101907411	[A/G]
MY PY SCS	rs132911517	21	9246456	Between LOC101907768 and LOC782362	[A/G]
FY MY PY	rs110880724	21	17434061	Within LOC100300175	[C/T]
FY MY PY	rs109929238	21	63986548	Between LOC101905545 and LOC100847341	[C/T]
FY, MY, PY	rs41996463	22	5080479	Between MIR1814B and LOC100140865	[A/G]
FY, MY, PY	rs137067188	22	35502731	Within MAGI1	[C/T]
FY, MY, PY	rs110705879	22	40180970	Within LOC100847295	[A/G]
FY, MY, PY	rs110136061	22	40183216	Within LOC100847295	[A/G]
FY, MY, PY	rs42228969	22	41907855	Within FHIT	[A/G]
FY, MY, PY	rs132798979	22	42047912	Within FHIT	[A/C]
FY, MY, PY	rs132790503	22	42141919	Between FHIT and LOC101906556	[C/T]
FY, MY, PY	rs110278307	22	44742047	Within ARHGEF3	[A/G]
FY, MY, PY	rs133168024	22	47390650	Between LOC101903208 and LOC782954	[A/G]
FY, MY, PY	rs108970230	22	48858472	Within NT5DC2	[A/C]
FY, MY, PY	rs109560518	22	61258859	Between ALDH1L1 and LOC101905897	[A/G]
FY, MY, PY	rs136/91625	23	22085517	Between C23H6ort141 and RHAG	[A/G]
FI, MY, PY	TS13/558/31	24	16494539	Between LUC/83699 and TRNAK-UUU	$\left[C/T \right]$
FI, WIY, PY	18133034948	24	10904/32	Detween LUC/83099 and TKNAK-UUU Detween TDNAS CCA and LOC101004(04	
FI, MII, FI EV MV DV	181328882/9 re137211597	24	2//28348	Within DLGAP1	[A/G] [C/T]
FY MY PV	rs135377476	24 24	40275084	Within ARHGAP28	$[\Delta/G]$
FY MY PV	rs137773433	24	45523260	Between LOC101903366 and SLC1442	[A/G]
FY MY PY	rs136056070	24	53900956	Between LOC101905900 and LOC101905958	[C/T]
FY, MY, PY	rs135142529	26	5851757	Between LOC613570 and MBL2	[A/C]

Continued on next page

Genetics and Molecular Research 13 (4): 10256-10268 (2014)

G.C. Venturini et al.

Table 2. Continued.						
Trait ^a	SNP	BTA	Position ^b	Nearest genes	Allele	
FY, MY, PY	rs135475459	26	38712148	Between LOC101902040 and FAM204A	[C/T]	
FY, MY, PY	rs109720878	26	40086416	Within LOC101905098	[C/T]	
FY, MY, PY	rs133129209	26	45761602	Within FANK1	[A/G]	
FY, MY, PY	rs42377290	26	48853131	Between LOC101903468 and LOC101903522	[A/G]	
FY, MY, PY	rs109870686	27	12509477	Within ODZ3	[C/T]	
FY, MY, PY	rs110793767	27	13487815	Between LOC101903882 and LOC101907167	[A/G]	
FY, MY, PY	rs133005688	27	29035235	Between DUSP26 and LOC101903926	[C/T]	
FY, MY, PY	rs42136038	28	15018920	Within FAM13C	[A/G]	
FY, MY, PY	rs134416594	28	38625846	Between NRG3 and LOC101901969	[A/G]	
FY, MY, PY	rs109806568	29	35423224	Within NTM	[G/T]	

^aMY = milk yield; PY = protein yield; FY = fat yield; PP = protein percentage; FP = fat percentage; SCS = somatic cell score. ^bThe position was assigned according to the *Bos taurus* UMD 3.1 assembly in base pairs.

A total of 118 SNPs were related to the 3 yield traits (MY305, FY305, PY305) at 1% significance. Ten SNPs were related to MY305, FY305, PY305, and SCS at 1% significance. Four SNPs were related to %F, MY305, and PY305, of which rs109293607, rs110550868, and rs110822690 were located on the RHOBTB3, LRRC49, and SLC15A1 genes, respectively, and rs42375254 was between the LOC781924 and CDH18 genes. One SNP (rs132925552) was related to %P and MY305 and FY305, located on an uncharacterized gene named LOC101904827.

A total of 4 SNPs (rs135755654, rs42672728, rs41708939, and rs110964263) were identified to have a significant effect on 4 of the traits simultaneously (yield traits and SCS).

After applying Bonferroni multiple-comparison correction ($P < 3.16 \times 10^{-6}$), only the milk vield trait had 2 significant SNPs, located on BTA15 and BTA20, which are homologous to BBU16 and BBU19, respectively. No SNPs were significantly associated with other traits after this correction. The significant SNPs for milk yield after Bonferroni's correction were rs133144332 on BTA15 and rs137406593 on BTA20. These SNPs may affect the productive traits. This correction aims to reduce problems of multiple tests and false-positives. For SNP positions in the bovine genome, rs133144332 was located within a pseudo gene (LOC785574) and 12 kb upstream of the OR52B4 (olfactory receptor, family 52, subfamily B, member 4) transcription start site. The OR52B4 gene may influence feed intake and milk production in this herd. It may also be linked to major histocompatibility complex genes in the immune system. The animals choose their sexual partners according to the alleles from major histocompatibility complex genes. A larger number of differences is preferred as it guarantees genetic variability in the offspring to face infection diseases. The perception of the major histocompatibility complex alleles is captured by the olfactory system. The intensive use of artificial insemination may indicate the importance of this gene. BTA15 was suggested to have an SNP stringer associated with milk and fat yield by Zielke et al. (2011). The SNPs described by these authors were close to the brain-derived neurotrophic factor gene and 8 Mb away from rs133144332.

In this study, the BTA20 contained the largest number of significant SNPs (P < 0.01) and the most significant SNPs for milk yield. Chromosome 20 contains the growth hormone receptor gene, which influences lactation, but rs137406593 is located quite far from the growth hormone receptor gene, suggesting the participation of other genes in the same chromosome on this trait. rs1377406593 is located between 2 genes with unknown function, LOC784462 (aurora kinase B-like) and LOC101905305 (uncharacterized).

According with Kim et al. (2011), Bonferroni's correction is conservative and presents

Genetics and Molecular Research 13 (4): 10256-10268 (2014)

a high level of restriction, limiting the identification of markers associated with productive traits.

In many situations with multiple tests, the FDR with more appropriate correction criterion could be least conservative (Weller et al., 1998). In this study, the FDR values found for the MY305, PY305, FY305, %P, %F, and SCS traits were: 35% (452), 35% (449), 82% (192), 111% (142), 98% (161), and 95% (166), respectively (P < 0.01).

CONCLUSIONS

In the present study, a total of 1562 SNP markers were found to affect the production and/or quality of milk. These results show the transferability of the 770k chip for studying buffalo. Additionally, the use of high-density bovine chips is useful for genomic studies of buffaloes, after which functional SNP markers in buffaloes can be found that affect productive traits. Although an extensive genome homology was described between cattle and buffalo, the exact chromosomal position of SNP markers associated with these economic important traits in buffalo could be determined using buffalo genome sequencing. Therefore, additional studies are necessary to clarify the role of these SNPs in buffalo.

Supplementary material

REFERENCES

- Ahamad S, Gaucher I, Rousseau F, Beaucher E, et al. (2008). Effects of acidification on physic-chemical characteristics of buffalo milk: A comparison with cow's milk. *Food Chem.* 106: 11-17.
- Amaral ME, Grant JR, Riggs PK, Stafuzza NB, et al. (2008). A first generation whole genome RH map of the river buffalo with comparison to domestic cattle. BMC Genomics 9: 631.
- Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate: A pratical and powerful approach to multiple testing. J. R. Statist. Soc. 57: 289-300.
- Cole JB, Wiggans GR, Ma L, Sonstegard TS, et al. (2011). Genome-wide association analysis of thirty-one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. *BMC Genomics* 12: 408-424.
- Cribiu EP, Di Bernardino D, Di Meo GP, Eggen A, et al. (2001). International system for chromosome nomenclature of domestic bovids (ISCNDB 2000). Cytogenet. Cell Genet. 92: 283-299.
- Dabdoub A and Shook G (1984). Phenotypic relationships among milk yield, somatic cell count, and clinical mastitis. J. Dairy Sci. 67 (Suppl 1): 163-164.
- Di Meo GP, Perucatti A, Floriot S, Hayes H, et al. (2008). An extended river buffalo (*Bubalus bubalis*, 2n = 50) cytogenetic map: assignment of 68 autosomal loci by FISH-mapping and R-banding and comparison with human chromosomes. *Chromosome Res.* 16: 827-837.
- Feligini M, Bonizzi I, Buffoni JN, Cosenza G, et al. (2009). Identification and quantification of alphaS1, alphaS2, beta, and kappa-caseins in water buffalo milk by reverse phase-high performance liquid chromatography and mass spectrometry. J. Agric. Food Chem. 57: 2988-2992.
- Gil FM, de Camargo GM, Pablos de Souza FR, Cardoso DF, et al. (2013). Polymorphisms in the ghrelin gene and their associations with milk yield and quality in water buffaloes. J. Dairy Sci. 96: 3326-3331.
- Grisart B, Coppieters W, Farnir F, Karim L, et al. (2002). Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. *Genome Res.* 12: 222-231.
- Illumina (2010). BovineHD Genotyping BeadChip. Available at [http://www.illumina.com/Documents/%5Cproducts%5 Cdatasheets%5Cdatasheet_bovineHD.pdf]. Accessed October 15, 2013.
- Kim Y, Ryu J, Woo J, Kim JB, et al. (2011). Genome-wide association study reveals five nucleotide sequence variants for carcass traits in beef cattle. *Anim. Genet.* 42: 361-365.
- Mai MD, Sahana G, Christiansen FB and Guldbrandtsen B (2010). A genome-wide association study for milk production traits in Danish Jersey cattle using a 50K single nucleotide polymorphism chip. J. Anim. Sci. 88: 3522-3528.
- Meignanalakshmi S and Nainar AM (2009). PCR-RFLP analysis of beta-lactoglobulin gene in Murrah buffaloes. J. Vet.

Genetics and Molecular Research 13 (4): 10256-10268 (2014)

Anim. Sci. 5: 194-197.

- Meredith BK, Kearney FJ, Finlay EK, Bradley DG, et al. (2012). Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland. *BMC Genet.* 13: 21.
- Michelizzi VN, Wu X, Dodson MV, Michal JJ, et al. (2011). A global view of 54,001 single nucleotide polymorphisms (SNPs) on the Illumina Bovine SNPS50 BeadChip and their transferability to water buffalo. *Int. J. Biol. Sci.* 7: 18-27.
- NBAGR (National Bureau of Animal Genetic Resources Karnal) (2013). Agricultural Innovation Project NAIP. Available at [http://buffalogtl.org/]. Accessed September 2, 2013.
- Otaviano AR, Tonhati H, Desidério Sena JA and Cerón-Muñoz, MF (2005). Kappa-casein gene study with molecular markers in female buffaloes (*Bubalus bubalis*). Genet. Mol. Biol. 28: 237-241.
- Parma P, Erra-Pujada M, Feligini M, Greppi G, et al. (2004). Water buffalo (*Bubalus bubalis*): complete nucleotide mitochondrial genome sequence. DNA Seq. 15: 369-373.
- Ramesha KP, Khosravinia H, Gowda S and Rao MRS (2008). Alpha-lactalbumin gene polymorphism: a preliminary study of two breeds of the river buffalo (*Bubalus bubalis*). Asia Pac. J. Mol. Biol. Biotechnol. 16: 47-52.
- Riaz MN, Malik NA, Nasreen F and Qureshi JA (2008). Molecular marker assisted study of kappa-casein gene in Nili-Ravi (Buffalo) of Pakistan. *Pakistan Vet. J.* 28: 106.
- Schaeffer LR (2006). Strategy for applying genome-wide selection in dairy cattle. J. Anim. Breed. Genet. 123: 218-223.
- Schneider JF, Rempel LA and Rohrer GA (2012). Genome-wide association study of swine farrowing traits. Part I: genetic and genomic parameter estimates. J. Anim. Sci. 90: 3353-3359.
- Tantia MS, Vijh RK, Mishra BP, Mishra B, et al. (2006). DGAT1 and ABCG2 polymorphism in Indian cattle (*Bos indicus*) and buffalo (*Bubalus bubalis*) breeds. *BMC Vet. Res.* 2: 32-37.
- Tonhati H, Céron-Muñoz MF, Oliveira JA, Duarte JMC, et al. (2000). Parâmetros Genéticos para a Produção de Leite, Gordura e Proteína em Bubalinos. *Rev. Bras. Zootec.* 29: 2051-2056.
- Tonhati H, Cerón-Muñoz MF, Oliveira JA, El Faro L, et al. (2008). Test-day milk yield as a selection criterion for dairy buffaloes (*Bubalus bubalis* Artiodactyla, Bovidae). *Genet. Mol. Biol.* 31: 679.
- Verruma MR and Salgado JM (1994). Análise química do leite de búfala em comparação ao leite de vaca. Sci. Agric. 51: 131-137.
- Weller JI, Song JZ, Heyen DW, Lewin HA, et al. (1998). A new approach to the problem of multiple comparisons in the genetic dissection of complex traits. *Genetics* 150: 1699-1706.
- Wu JJ, Song LJ, Wu FJ, Liang XW, et al. (2013). Investigation of transferability of BovineSNP50 BeadChip from cattle to water buffalo for genome wide association study. *Mol. Biol. Rep.* 40: 743-750.
- Xie L, Luo C, Zhang C, Zhang R, et al. (2012). Genome-wide association study identified a narrow chromosome 1 region associated with chicken growth traits. *PLoS One* 7: 30910.
- Zetouni L, de Camargo GM, da Silva Fonseca PD, Gil FM, et al. (2013). Effects of a single nucleotide polymorphism in the leptin gene on the productive traits of dairy buffaloes (*Bubalus bubalis*). *Mol. Biol. Rep.* 40: 5159-5163.
- Zielke LG, Bortfeldt RH, Tetens J and Brockmann GA (2011). BDNF contributes to the genetic variance of milk fat yield in german holstein cattle. *Front Genet.* 2: 16.

Genetics and Molecular Research 13 (4): 10256-10268 (2014)