

# Association between IL-1RN gene polymorphisms and susceptibility to ankylosing spondylitis: a large Human Genome Epidemiology review and meta-analysis

## G.X. Jin, J.Z. Duan, W.L. Guo, L. Li, S.Q. Cui and H. Wang

Department of Orthopedics Surgery, Shengjing Hospital of China Medical University, Shenyang, China

Corresponding author: H. Wang E-mail: cmu wh@163.com

Genet. Mol. Res. 12 (2): 1720-1730 (2013) Received May 14, 2012 Accepted March 2, 2013 Published May 21, 2013 DOI http://dx.doi.org/10.4238/2013.May.21.3

ABSTRACT. We made a Human Genome Epidemiology review and meta-analysis to examine a possible association between interleukin-1 receptor antagonist (IL-1RN) polymorphisms and susceptibility to ankylosing spondylitis (AS). Studies of IL-1RN polymorphisms and susceptibility to AS were found by searching the Pubmed, Cochrane library, Embase, Web of Science, Springerlink, CNKI, and CBM databases. Data were extracted by 2 independent reviewers. The metaanalysis was performed with the Review Manager Version 5.1.6 and STATA Version 12.0 software. The odds ratio (OR) and 95% confidence intervals (95%CI) were calculated based on the extracted data. Thirteen studies with 5391 AS cases and 5239 healthy controls were retrieved. Seven IL-1RN polymorphisms were addressed, including rs30735, rs31017, rs419598, rs315951, rs315952, rs27810, and VNTR. Metaanalysis showed that the rs30735\*C allele/carrier, the rs31017\*G carrier and the rs315952\*T carrier were positively and significantly associated with susceptibility to AS (OR = 1.45, 95%CI = 1.19-1.76; OR = 1.73,95%CI = 1.34-2.24; OR = 1.30, 95%CI = 1.01-1.69; OR = 1.54, 95%CI = 1.16-2.04). A subgroup analysis based on ethnicity revealed significant positive associations between the rs30735\*C allele/carrier and the

Genetics and Molecular Research 12 (2): 1720-1730 (2013)

rs31017\*G allele and susceptibility to AS in both Caucasian and Asian populations, while the positive association between the rs315952\*T carrier and AS susceptibility was significant only in Asian populations (OR = 1.54, 95%CI = 1.16-2.04). This meta-analysis suggests that IL-1RN polymorphisms are involved in the pathogenesis of AS. The rs30735\*C allele/carrier, and the rs31017\*G allele may be risk factors for ankylosing spondylitis in Caucasians and Asians, while the rs315952\*T carrier is associated with susceptibility to this disease only in Asians.

**Key words:** Interleukin-1 receptor antagonist; Genetic polymorphisms; Ankylosing spondylitis; Susceptibility; Meta-analysis

## **INTRODUCTION**

Ankylosing spondylitis (AS) is one of the most common chronic spondyloarthropathies and is characterized by inflammation of the spine and sacroiliac joints; it can be an outcome of any of the spondyloarthropathy subtypes (El Maghraoui, 2011). AS is a common cause of inflammatory arthritis, with a prevalence of 0.25% in European populations (Reveille et al., 2010); men are affected at half the rate of women (Feldtkeller et al., 2003). Most patients with AS develop the first symptoms at 25-45 years of age (Braun and Sieper, 2007). Although AS is the product of an interaction between environmental triggers, susceptibility genes, gender, age, and ethnicity (Zhang et al., 2011), the precise pathogenic mechanism of AS is unknown. Previous studies have confirmed HLA-B27 as the major genetic key associated with AS (16-40%) (Peloso et al., 2011). However, HLA-B27 cannot explain all patients with AS, as only 5% of HLA-B27-positive individuals develop AS (Duan et al., 2012), indicating that there are other contributing causes.

Familial clustering has often been considered as an indication of genetic factors in disease etiology (Baraliakos et al., 2008). The interleukin-1 (IL-1) family gene cluster consists of 3 genes: IL-1A, IL-1B, and IL-1RN. IL-1A and -B encode pro-inflammatory cytokines IL-1α and IL-1β, which have been implicated in joint destruction. IL-1RN encodes IL-1 receptor antagonist (IL-1Ra), an anti-inflammatory non-signaling molecule that prevents IL-1 receptor signaling by competitive inhibition (van der Paardt et al., 2002; Maksymowych et al., 2003; Timms et al., 2004; Kim et al., 2005). Several studies have addressed the association between members of the IL-1 gene cluster and AS susceptibility (Laval et al., 2001). Most of these studies focused on the IL-1A, IL-1B, and IL-1RN genes, especially the IL-1RN variable number of tandem repeat polymorphism (VNTR). None of these studies demonstrated a connection between AS susceptibility and the IL-1 gene cluster. Recently, 2 independent studies suggested associations between VNTR\*2 in intron 2 and single-nucleotide polymorphisms (SNPs) in exon 6 of the IL-1RN gene (McGarry et al., 2001; Maksymowych et al., 2003) and AS susceptibility. However, some of these studies yielded conflicting results (Guo et al., 2010). Since we could not draw definitive conclusions about IL-1RN polymorphisms and AS susceptibility from these studies, we decided to perform a meta-analysis.

#### MATERIAL AND METHODS

#### Literature search

Pubmed, Cochrane library, Embase, Web of Science, Springerlink, CNKI, and CBM

Genetics and Molecular Research 12 (2): 1720-1730 (2013)

databases were searched (last search was updated on March 30, 2012) to identify relevant studies. The search terms included ["ankylosing spondylitis" or "spondylitis, ankylosing" (Mesh)] and ["polymorphism, single nucleotide" or "polymorphism, genetic" (Mesh)] and ["Interleukin-1 receptor antagonist" or "IL-1RN" (Mesh)]. References in eligible studies or textbooks were also reviewed.

#### Inclusion and exclusion criteria

The included studies had to meet the following criteria: the type of study had to be a case-control study; the study must have focused on associations between IL-1RN polymorphisms and AS susceptibility; the diagnosis principle of AS had to strictly match with the modified New York criteria (1984); the frequencies of alleles or genotypes in case and control groups had to be capable of extraction; and the publication had to be in English or Chinese. Studies were excluded when they were not case-control studies of IL-RN polymorphisms and susceptibility to AS if they were based on incomplete data or if useless or overlapping data were reported.

#### **Data extraction**

Using a standardized form, data from published studies were extracted independently by 2 reviewers (W.L. Guo and L. Li) to collect information including: first author, year of publication, country, language, ethnicity, study design, diagnostic criteria, source of cases and controls, number of cases and controls, mean age, sample, detection methods, polymorphism genotype frequency, and evidence of Hardy-Weinberg equilibrium (HWE) in controls. In cases of conflicting evaluations, an agreement was reached following a discussion with a third reviewer (H. Wang).

#### Quality assessment of included studies

Two reviewers (G.X. Jin and J.Z. Duan) independently assessed the quality of the papers according to modified STROBE quality score systems (Vandenbroucke et al., 2007; Zhang et al., 2011). Forty quality appraisal items were used in this meta-analysis, with scores ranging from 0 to 40. Scores of 0-20, 20-30, and 30-40 were defined as low, moderate, and high quality, respectively. Disagreement was resolved by discussion.

#### **Statistical analysis**

Allele or genotype frequencies of IL-1RN SNPs were determined by the allele counting method. The odds ratio (OR) and 95% confidence intervals (95%CI) were calculated with Review Manager Version 5.1.6 (provided by the Cochrane Collaboration, available at: http:// ims.cochrane.org/revman/download) and STATA Version 12.0 (Stata Corp, College Station, TX, USA). Between-study variations and heterogeneities were estimated using the Cochran Q-statistic (Zintzaras and Ioannidis, 2005; Peters et al., 2006);  $P \le 0.05$  was considered to represent statistically significant heterogeneity. We also quantified the effect of heterogeneity by using a recently developed method called I<sup>2</sup>, which ranges from 0 to 100% and represents the proportion of inter-study variability that can be attributed to heterogeneity, a random-effect model was generated for meta-analysis. Otherwise, the fixed-effect model was used. To establish the effect of heterogeneity on meta-analysis conclusions, subgroup analysis was performed. The  $\chi^2$  test was used to determine whether the control genotype frequencies were in HWE. Fun-

Genetics and Molecular Research 12 (2): 1720-1730 (2013)

nel plots have often been used to detect publication bias. However, due to limitations of varied sample size and subjective reviews, the Egger linear regression test (Higgins and Thompson, 2002), which measures funnel plot asymmetry using a natural logarithm scale of OR, was used to evaluate publication bias. Publication bias was considered to be significant at P < 0.1.

#### RESULTS

#### The characteristics of included studies

According to the inclusion criteria, 13 studies (McGarry et al., 2001; van der Paardt et al., 2002; Maksymowych et al., 2003; Timms et al., 2004; Kim et al., 2005; Chou et al., 2006; Lin et al., 2006; Maksymowych et al., 2006; Yang et al., 2007; Agrawal et al., 2008; Liu et al., 2008; Sims et al., 2008; Guo et al., 2010) were included and 53 were excluded. A flow chart of the study selection process is shown in Figure 1. The total number of AS cases and healthy controls were 5391 and 5239 in the 13 case-control studies that evaluated the relationship between IL-1RN polymorphisms and AS susceptibility. Publication year ranged from 2001 to 2010. All patients fulfilled the 1984 modified New York criteria for diagnosis of AS. Seven IL-1RN polymorphisms were addressed, including rs30735, rs31017, rs419598, rs315951, rs315952, rs27810, and VNTR. The most common polymorphisms were VNTR, rs315952, rs31017, and rs30735. The HWE test was conducted for the controls in every study. Four studies of mainly Asian populations were not in HWE (P < 0.05) (McGarry et al., 2001; Lin et al., 2006; Agrawal et al., 2008; Liu et al., 2008); all others were in HWE (P > 0.05). All quality scores were >20 (moderately to high quality). The characteristics and methodological quality of the studies included are summarized in Table 1.





#### Association between IL-1RN polymorphisms and AS risk

A summary of the meta-analysis findings of the association between IL-1RN polymorphisms and AS susceptibility is provided in Table 2. The meta-analysis showed that the rs30735\*C allele/carrier, the rs31017\*G carrier and the rs315952\*T carrier had positive associations with AS susceptibility (OR = 1.45, 95%CI = 1.19-1.76, P = 0.0002; OR = 1.73, 95%CI = 1.34-2.24, P < 0.0001; OR = 1.30, 95%CI = 1.01-1.69, P = 0.04; OR = 1.54, 95%CI = 1.16-2.04, P = 0.003, respectively). However, there were no significant associations for rs27810\*C allele/carrier, rs31017\*G

Genetics and Molecular Research 12 (2): 1720-1730 (2013)

| First author          | Year | Country     | Ethnicity | Language | Case | No.     | Sample | Detection | SNP            | HV    | VE test |
|-----------------------|------|-------------|-----------|----------|------|---------|--------|-----------|----------------|-------|---------|
|                       |      |             |           |          | AS   | Control |        |           |                | Р     | Test    |
| McGarrry et al.       | 2001 | UK          | Caucasian | English  | 182  | 191     | Blood  | PCR-RFLP  | VNTR (X/2)     | <0.05 | Non-HWE |
| van der Paardt et al. | 2002 | Netherlands | Caucasian | English  | 104  | 104     | Blood  | PCR-RFLP  | VNTR (X/2)     | 0.05  | HWE     |
| Maksymowych et al.    | 2003 | Canada      | Caucasian | English  | 382  | 490     | Blood  | MassArray | rs27810 (T/C)  | 0.63  | HWE     |
|                       |      |             |           |          |      |         |        |           | rs30735 (T/C)  | 0.48  | HWE     |
|                       | 1000 | 1.117       |           | -        | 007  |         |        |           | rs31017 (C/G)  | 050   | HWE     |
| Limms et al.          | 2004 | UK          | Caucasian | English  | 480  | 10/     | Blood  | MassArray | VNIK (X/2)     | 0.21  | HWE     |
| Kim et al.            | 2002 | Canada      | Caucasian | English  | 213  | 364     | Blood  | PCK-KFLP  | VNTK (X/2)     | 0.83  | HWE     |
| Chou et al.           | 2006 | China       | Asian     | English  | 189  | 193     | Blood  | MassArray | rs41938 (1/C)  | 0.73  | HWE     |
|                       |      |             |           |          |      |         |        |           | VNTR (X/2)     | 0.68  | HWE     |
|                       |      |             |           |          |      |         |        |           | rs315952 (C/T) | 0.29  | HWE     |
|                       |      |             |           |          |      |         |        |           | rs315951 (C/G) | 0.28  | HWE     |
| Lin et al.            | 2006 | China       | Asian     | Chinese  | 100  | 92      | Blood  | PCR-SSP   | VNTR (X/2)     | <0.05 | Non-HWE |
| Maksymowych et al.    | 2006 | Canada      | Caucasian | English  | 394  | 500     | Blood  | PCR-SSP   | rs419598 (T/C) | 06.0  | HWE     |
|                       |      |             |           |          |      |         |        |           | rs315951 (C/G) | 0.99  | HWE     |
| Yang et al.           | 2007 | China       | Asian     | Chinese  | 48   | 33      | Blood  | Genechips | rs31017 (C/G)  | 0.78  | HWE     |
|                       |      |             |           |          |      |         |        |           | rs30735 (T/C)  | 0.10  | HWE     |
| Agrawal et al.        | 2008 | India       | Asian     | English  | 162  | 111     | Blood  | PCR-SSP   | VNTR (X/2)     | <0.05 | Non-HWE |
| Liu et al.            | 2008 | China       | Asian     | Chinese  | 162  | 162     | Blood  | PCR-RFLP  | rs419598 (T/C) | <0.05 | Non-HWE |
|                       |      |             |           |          |      |         |        |           | rs315952 (C/T) | 0.89  | HWE     |
| Sims et al.           | 2008 | Australia   | Caucasian | English  | 2675 | 2592    | Blood  | PCR-RFLP  | rs419598 (T/C) | 0.98  | HWE     |
|                       |      |             |           |          |      |         |        |           | VNTR (X/2)     | 0.98  | HWE     |
|                       |      |             |           |          |      |         |        |           | rs315952 (C/T) | 0.98  | HWE     |
|                       |      |             |           |          |      |         |        |           | rs315951 (C/G) | 0.99  | HWE     |
| Guo et al.            | 2010 | China       | Asian     | English  | 240  | 240     | Blood  | PCR-RFLP  | rs419598 (T/C) | 0.48  | HWE     |
|                       |      |             |           |          |      |         |        |           | VNTR (X/2)     | 0.10  | HWE     |
|                       |      |             |           |          |      |         |        |           | rs315952 (C/T) | 0.75  | HWE     |

# G.X. Jin et al.

Genetics and Molecular Research 12 (2): 1720-1730 (2013)

allele, rs315951\*G allele/carrier, rs315952\*T allele, rs419598\*C allele/carrier, and VNTR\*2 allele/carrier (all P > 0.05). In the subgroup analysis based on ethnicity, subjects were divided into Caucasian and Asian populations. There were positive associations between the rs30735\*C allele/ carrier, and the rs31017\*G allele and AS susceptibility in Caucasian populations (OR = 1.40, 95%CI = 1.14-1.71, P = 0.001; OR = 1.66, 95%CI = 1.27-2.18, P = 0.0002; OR = 1.24, 95%CI = 1.01-1.53, P=0.04, respectively). Similarly, the rs30735\*C allele/carrier and the rs31017\*G allele were significantly associated with AS susceptibility in Asian populations (OR = 2.27, 95%CI = 1.05-4.91, P = 0.04; OR = 2.74, 95%CI = 1.11-6.77, P = 0.03; OR = 2.67, 95%CI = 1.40-5.10, P = 0.003, respectively). In addition, a positive association was found between the rs315952\*T carrier and AS susceptibility only in Asian populations (OR = 1.54, 95% CI = 1.16-2.04, P = 0.003). Nevertheless, rs27810\*C allele/carrier, rs315951\*G allele/carrier, rs315952\*T allele, rs419598\*C allele/carrier, and VNTR\*2 allele/carrier also showed no association with AS susceptibility in Caucasian and Asian populations (all P > 0.05). Sensitivity analysis was performed by sequential omission of non-HWE studies. The significance of pooled OR in all individual analyses and subgroup analyses was not influenced excessively by omitting any single study. The positive associations between IL-1RN polymorphisms and AS susceptibility are shown in Figure 2.

| Polymorphisms      | Eligible studies | AS cases  | Controls  | OR (95%CI)       | Р        | Heterogeneity test          | Effect model |
|--------------------|------------------|-----------|-----------|------------------|----------|-----------------------------|--------------|
| Rs27810*C allele   | 1                | 225/764   | 312/980   | 0.89 (0.73-1.10) | 0.28     | -                           | Fixed        |
| Caucasian          | 1                | 225/764   | 312/980   | 0.89 (0.73-1.10) | 0.28     | -                           |              |
| Rs27810*C carrier  | 1                | 203/382   | 260/490   | 1.00 (0.77-1.31) | 0.98     | -                           | Fixed        |
| Caucasian          | 1                | 203/382   | 260/490   | 1.00 (0.77-1.31) | 0.98     | -                           |              |
| Rs30735*C allele   | 2                | 304/876   | 285/1048  | 1.45 (1.19-1.76) | 0.0002   | $P = 0.24, I^2 = 29\%$      | Fixed        |
| Caucasian          | 1                | 272/776   | 274/984   | 1.40 (1.14-1.71) | 0.001    | -                           |              |
| Asian              | 1                | 32/100    | 11/64     | 2.27 (1.05-4.91) | 0.04     | -                           |              |
| Rs30735*C carrier  | 2                | 269/438   | 252/525   | 1.73 (1.34-2.24) | < 0.0001 | $P = 0.30, I^2 = 6\%$       | Fixed        |
| Caucasian          | 1                | 237/388   | 239/492   | 1.66 (1.27-2.18) | 0.0002   | -                           |              |
| Asian              | 1                | 32/50     | 13/33     | 2.74 (1.11-6.77) | 0.03     | -                           |              |
| Rs31017*G allele   | 2                | 310/862   | 300/1042  | 1.71 (0.82-3.58) | 0.15     | $P = 0.03$ , $I^2 = 79\%$   | Random       |
| Caucasian          | 1                | 252/766   | 276/976   | 1.24 (1.01-1.53) | 0.04     | -                           |              |
| Asian              | 1                | 58/96     | 24/66     | 2.67 (1.40-5.10) | 0.003    | -                           |              |
| Rs31017*G carrier  | 2                | 247/431   | 260/521   | 1.30 (1.01-1.69) | 0.04     | $P = 0.28$ , $I^2 = 15\%$   | Fixed        |
| Caucasian          | 1                | 210/383   | 240/488   | 1.25 (0.96-1.64) | 0.10     | -                           |              |
| Asian              | 1                | 37/48     | 20/33     | 2.19 (0.83-5.77) | 0.11     | -                           |              |
| Rs315951*G allele  | 3                | 1858/3362 | 1955/3470 | 0.93 (0.79-1.10) | 0.38     | $P = 0.12, I^2 = 54\%$      | Random       |
| Caucasian          | 2                | 1716/2982 | 1784/3078 | 0.99 (0.86-1.14) | 0.86     | $P = 0.22$ , $I^2 = 34\%$   |              |
| Asian              | 1                | 142/380   | 171/392   | 0.77 (0.58-1.03) | 0.08     | -                           |              |
| Rs315951*G carrier | 1                | 117/190   | 130/196   | 0.81 (0.54-1.23) | 0.33     | -                           | Fixed        |
| Asian              | 1                | 117/190   | 130/196   | 0.81 (0.54-1.23) | 0.33     | -                           |              |
| Rs315952*T allele  | 4                | 2599/4424 | 2350/4140 | 1.08 (0.99-1.18) | 0.07     | $P = 0.69, I^2 = 0\%$       | Fixed        |
| Caucasian          | 1                | 1972/3246 | 1774/3004 | 1.07 (0.97-1.19) | 0.17     | -                           |              |
| Asian              | 3                | 627/1178  | 576/1136  | 1.11 (0.95-1.31) | 0.20     | $P = 0.52$ , $I^2 = 0\%$    |              |
| Rs315952*T carrier | 3                | 481/589   | 423/568   | 1.54 (1.16-2.04) | 0.003    | $P = 0.44, I^2 = 0\%$       | Fixed        |
| Asian              | 3                | 481/589   | 423/568   | 1.54 (1.16-2.04) | 0.003    | $P = 0.44$ , $I^2 = 0\%$    |              |
| Rs419598*C allele  | 5                | 1198/5222 | 1137/5122 | 1.03 (0.77-1.38) | 0.83     | $P = 0.0006$ , $I^2 = 80\%$ | Random       |
| Caucasian          | 2                | 1080/4046 | 1031/3944 | 1.01 (0.85-1.20) | 0.91     | $P = 0.13$ , $I^2 = 56\%$   |              |
| Asian              | 3                | 118/1176  | 106/1178  | 1.05 (0.44-2.47) | 0.91     | $P = 0.0002, I^2 = 88\%$    |              |
| Rs419598*C carrier | 3                | 110/588   | 95/589    | 1 14 (0 42-3 10) | 0.80     | $P < 0.0001$ $I^2 = 90\%$   | Random       |
| Asian              | 3                | 110/588   | 95/589    | 1.14 (0.42-3.10) | 0.80     | $P < 0.0001, I^2 = 90\%$    |              |
| VNTR*2 allele      | 9                | 1273/5904 | 1115/5344 | 1.10 (0.85-1.41) | 0.46     | $P < 0.0001, I^2 = 77\%$    | Random       |
| Caucasian          | 5                | 1115/4534 | 987/4078  | 1.08 (0.83-1.40) | 0.58     | $P = 0.004$ , $I^2 = 74\%$  |              |
| Asian              | 4                | 158/1370  | 128/1266  | 1 18 (0 59-2 34) | 0.64     | $P = 0.0003$ $I^2 = 84\%$   |              |
| VNTR*2 carrier     | 7                | 447/1451  | 243/1095  | 1.39 (0.86-2.24) | 0.18     | $P < 0.0001$ , $I^2 = 81\%$ | Random       |
| Caucasian          | 3                | 309/766   | 134/462   | 1.50 (0.89-2.51) | 0.12     | $P = 0.05$ $I^2 = 67\%$     |              |
| Asian              | 4                | 138/685   | 109/633   | 1 33 (0 55-3 21) | 0.53     | $P < 0.0001$ $I^2 = 88\%$   |              |

Cases and controls are reported as number of individuals/total individuals. AS = ankylosing spondylitis; OR = odds ratios; 95%CI = 95% confidence interval.

Genetics and Molecular Research 12 (2): 1720-1730 (2013)

G.X. Jin et al.

| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AS gro<br>Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | up<br>Total                                                                                | Control<br>Events                                                                                                                                                                                                                                                                               | group<br>Total                                                                                                                                                         | Weight                                                                                                                                 | Odds Ratio<br>M-H, Fixed, 95%CI                                                                                                                                                                                                                                                                                                                                       | Odds Ratio<br>M-H, Fixed, 95%CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Caucasian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                                                                                                                                                                                                                                                                                 | . otdi                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3 Maksymowych et al., 2003<br>Subtotal (95%Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 776<br>776                                                                                 | 274                                                                                                                                                                                                                                                                                             | 984<br>984                                                                                                                                                             | 94.5%<br>94.5%                                                                                                                         | 1.40 [1.14, 1.71]<br>1.40 [1.14, 1.71]                                                                                                                                                                                                                                                                                                                                | <b>◆</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| otal events<br>leterogeneity: Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                            | 2/4                                                                                                                                                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| est for overall effect: Z = 3.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (P = 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1)                                                                                         |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Isian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9 Yang et al., 2007<br>Subtotal (95%CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                        | 11                                                                                                                                                                                                                                                                                              | 64<br>64                                                                                                                                                               | 5.5%                                                                                                                                   | 2.27 [1.05, 4.91]                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| otal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                        | 11                                                                                                                                                                                                                                                                                              | 04                                                                                                                                                                     | 5.576                                                                                                                                  | 2.27 [1.05, 4.51]                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| leterogeneity: Not applicable<br>fest for overall effect: Z = 2.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (P = 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total (95%CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 876                                                                                        |                                                                                                                                                                                                                                                                                                 | 1048                                                                                                                                                                   | 100.0%                                                                                                                                 | 1.45 [1.19, 1.76]                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fotal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                            | 285                                                                                                                                                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Heterogeneity: Chi* = 1.40, d.t.<br>Fest for overall effect: Z = 3.69<br>Fest for subgroup differences:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 1 (P = 0.<br>(P = 0.00<br>Chi <sup>2</sup> = 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24); I*<br>02)<br>0. d.f.=                                                                 | = 29%<br>1 (P = 0.2                                                                                                                                                                                                                                                                             | 4), l <sup>2</sup> = 2                                                                                                                                                 | 8.7%                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       | 0.01 0.1 1 10 1<br>Favors control Favors AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| s30735*C carrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AS gro<br>Evente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | up<br>Total                                                                                | Control<br>Events                                                                                                                                                                                                                                                                               | group<br>Total                                                                                                                                                         | Weight                                                                                                                                 | Odds Ratio                                                                                                                                                                                                                                                                                                                                                            | Odds Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Caucasian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lyents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rotel                                                                                      | Lyents                                                                                                                                                                                                                                                                                          | Total                                                                                                                                                                  | reight                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 03 Maksymowych et al., 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 388                                                                                        | 239                                                                                                                                                                                                                                                                                             | 492                                                                                                                                                                    | 93.6%                                                                                                                                  | 1.66 [1.27, 2.18]                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Fotal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | აგგ                                                                                        | 239                                                                                                                                                                                                                                                                                             | 492                                                                                                                                                                    | 93.6%                                                                                                                                  | 1.00 [1.27, 2.18]                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Heterogeneity: Not applicable<br>Fest for overall effect: Z = 3.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (P = 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02)                                                                                        | 200                                                                                                                                                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Asian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9 Yang et al., 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50                                                                                         | 13                                                                                                                                                                                                                                                                                              | 33                                                                                                                                                                     | 6.4%                                                                                                                                   | 2.74 [1.11, 6.77]                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Subtotal (95%CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50                                                                                         |                                                                                                                                                                                                                                                                                                 | 33                                                                                                                                                                     | 6.4%                                                                                                                                   | 2.74 [1.11, 6.77]                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fotal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                            | 13                                                                                                                                                                                                                                                                                              |                                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test for overall effect: Z = 2.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (P = 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Fotal (95%CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 438                                                                                        |                                                                                                                                                                                                                                                                                                 | 525                                                                                                                                                                    | 100.0%                                                                                                                                 | 1.73 [1.34, 2.24]                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fotal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 201.12                                                                                     | 252                                                                                                                                                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Heterogeneity: Chi <sup>e</sup> = 1.07, d.f.<br>Test for overall effect: 7 = 4 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 1 (P = 0.)<br>(P < 0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30); I*<br>01)                                                                             | = 6%                                                                                                                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       | 0.01 0.1 1 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test for subaroup differences:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chi <sup>2</sup> = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. df =                                                                                    | 1 (P = 0.3                                                                                                                                                                                                                                                                                      | 0). I <sup>2</sup> = 6                                                                                                                                                 | .3%                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                       | Favors control Favors AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test for suboroup differences:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chi <sup>2</sup> = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. df =                                                                                    | 1 (P = 0.3<br>Control g                                                                                                                                                                                                                                                                         | 0). I <sup>2</sup> = 6                                                                                                                                                 | .3%                                                                                                                                    | Odds Ratio                                                                                                                                                                                                                                                                                                                                                            | Favors control Favors AS Odds Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Test for subaroup differences:<br>Rs31017*G allele<br>Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chi <sup>2</sup> = 1.0<br>AS grou<br>Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7. df =<br>ip<br>Total                                                                     | 1 (P = 0.3<br>Control g<br>Events                                                                                                                                                                                                                                                               | 0). I <sup>2</sup> = 6<br>roup<br>Total                                                                                                                                | .3%<br>Weight                                                                                                                          | Odds Ratio<br>M-H. Random. 95%C                                                                                                                                                                                                                                                                                                                                       | Favors control Favors AS<br>Odds Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test for subaroup differences:<br>Rs31017*G allele<br>Study or Subgroup<br>Caucasian<br>3 Makeymowych et al. 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chi <sup>2</sup> = 1.0<br>AS grou<br>Events<br>252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7. df =<br>ip<br>Total                                                                     | 1 (P = 0.3<br>Control g<br>Events<br>276                                                                                                                                                                                                                                                        | 0). I <sup>2</sup> = 6<br>roup<br><u>Total</u>                                                                                                                         | 3%<br>Weight                                                                                                                           | Odds Ratio<br>M-H. Random. 95%C                                                                                                                                                                                                                                                                                                                                       | Favors control     Favors AS       Odds Ratio       I     M-H. Random, 95%CI                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test for subgroup differences: -<br>Rs31017°G allele<br>Study or Subgroup<br>Caucasian<br>30 Maksymowych et al., 2003<br>Subtotal (95%CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chi <sup>2</sup> = 1.0<br>AS grou<br>Events<br>252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7. df =<br>ip<br>Total<br>766<br>766                                                       | 1 (P = 0.3<br>Control g<br>Events<br>276                                                                                                                                                                                                                                                        | 0). I <sup>2</sup> = 6<br>roup<br><u>Total</u><br>976<br>976                                                                                                           | 3%<br>Weight<br>58.4%<br>58.4%                                                                                                         | Odds Ratio<br>M-H. Random, 95%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]                                                                                                                                                                                                                                                                                             | Favors control     Favors AS       Odds Ratio       M-H. Random, 95%Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test for subgroup differences:<br>Rs31017*G allele<br>Study or Subgroup<br>Caucasian<br>33 Maksymowych et al., 2003<br>Subtotal (95%CI)<br>Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chi <sup>2</sup> = 1.0<br>AS grou<br>Events<br>252<br>252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7. df =<br>Ip<br>Total<br>766<br>766                                                       | 1 (P = 0.3<br>Control g<br>Events<br>276<br>276                                                                                                                                                                                                                                                 | 0). I <sup>2</sup> = 6<br>roup<br><u>Total</u><br>976<br>976                                                                                                           | 3%<br>Weight<br>58.4%<br>58.4%                                                                                                         | Odds Ratio<br>M-H. Random, 95%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]                                                                                                                                                                                                                                                                                             | Odds Ratio       M-H. Random, 95%Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Test for suboroun differences :<br><b>R\$31017'G allele</b><br>Study or Subgroup<br>Zaucasian<br>30 Maksymowych et al., 2003<br>Subtota (95%CI)<br>Total events<br>reterogeneity: Not applicable<br>Test for overall effect: Z = 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chi <sup>2</sup> = 1.0<br>AS grou<br>Events<br>252<br>252<br>(P = 0.04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control g<br>Events<br>276<br>276                                                                                                                                                                                                                                                 | 0). I <sup>2</sup> = 6<br>roup<br><u>Total</u><br>976<br>976                                                                                                           | 3%<br>Weight<br>58.4%<br>58.4%                                                                                                         | Odds Ratio<br><u>M-H. Random. 95%C</u><br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]                                                                                                                                                                                                                                                                                      | Codds Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test for suboroun differences: -<br>Res1017°G allele<br>Study or Subgroup<br>Zaucasian<br>33 Maksymowych et al., 2003<br>Subtata (18% zaucasian<br>detorogeneity: Not applicable<br>Test for overall effect: Z = 2.08  <br>Stain<br>Dy Yang et al., 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chi <sup>2</sup> = 1.0<br>AS grou<br>Events<br>252<br>252<br>(P = 0.04)<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control g<br><u>Events</u><br>276<br>276<br>276                                                                                                                                                                                                                                   | 0). I <sup>2</sup> = 6<br>roup<br><u>Total</u><br>976<br>976<br>66                                                                                                     | .3%<br><u>Weight</u><br>58.4%<br>58.4%<br>41.6%                                                                                        | Odds Ratio<br><u>M-H. Random, 95%C</u><br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]                                                                                                                                                                                                                                                                 | Codds Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test for suboroun differences: -<br>Re31017'G allele<br>Study or Subgroup<br>Zaucasian<br>13 Maksymowych et al., 2003<br>Subtotal (85%CI)<br>Fotal events<br>rest for overall effect Z = 2.08<br>Kalan<br>19 Yang et al., 2007<br>Subtotal (85%CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chi <sup>2</sup> = 1.0<br>AS grou<br>Events<br>252<br>252<br>(P = 0.04)<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control g<br>Events<br>276<br>276<br>276                                                                                                                                                                                                                                          | 0). I <sup>2</sup> = 6<br>roup<br><u>Total</u><br>976<br>976<br>976<br>66<br>66                                                                                        | .3%<br>Weight<br>58.4%<br>58.4%<br>41.6%<br>41.6%                                                                                      | Odds Ratio<br>M.H. Random. 95%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]                                                                                                                                                                                                                                                   | Favors control Favors AS Odds Ratio M-H. Random. 95%CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test for suboroun differences:<br><b>Rs31017'G allele</b><br>Study or Subgroup<br>Jaucesian<br>J3 Maksymowych et al., 2003<br>Subotal (95%CI)<br>Total events<br>Test for overall effect. Z = 2.08<br><b>Stan</b><br>J9 Yang et al., 2007<br>Subotat (95%CI)<br>Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chi <sup>2</sup> = 1.0<br>AS grou<br>Events<br>252<br>252<br>(P = 0.04)<br>58<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control g<br><u>Events</u><br>276<br>276<br>24<br>24<br>24                                                                                                                                                                                                                        | 0). I <sup>2</sup> = 6<br>roup<br><u>Total</u><br>976<br>976<br>976<br>66<br>66                                                                                        | .3%<br>Weight<br>58.4%<br>58.4%<br>41.6%<br>41.6%                                                                                      | Odds Ratio<br>M.H. Random, 95%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]                                                                                                                                                                                                                                                   | Favors control Favors AS Odds Ratio M-H. Random, 95%CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test for subaroun differences: -<br>Rs31017'G allele<br>Study or Subgroup<br>Zaucasian<br>33 Maksymowych et al., 2003<br>Subtotal (95%CI)<br>Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 2.8<br>Subtotal (95%CI)<br>Total events<br>Fotal events<br>Fotal events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 2.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chi <sup>2</sup> = 1.0<br>AS grou<br>Events<br>252<br>252<br>(P = 0.04)<br>58<br>58<br>(P = 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control g<br><u>Events</u><br>276<br>276<br>24<br>24                                                                                                                                                                                                                              | 0). I <sup>2</sup> = 6<br>roup<br><u>Total</u><br>976<br>976<br>66<br>66                                                                                               | .3%<br>Weight<br>58.4%<br>58.4%<br>41.6%<br>41.6%                                                                                      | Odds Ratio<br>M-H. Random. 35%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]                                                                                                                                                                                                                                                   | Favors control Favors AS Odds Ratio M-H. Random, 95%CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test for suboroun differences: -<br>Rs31017°G allele Study or Subgroup Zaucasian J3 Maksymowych et al., 2003 Subtotal (95%) Total events -teterogeneity: Not applicable Test for overall effect: Z = 2.98 Total events -teterogeneity: Not applicable Test for overall effect: Z = 2.98 Total effect: Z = 2.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chi <sup>2</sup> = 1.0<br>AS grou<br>Events<br>252<br>252<br>(P = 0.04)<br>58<br>58<br>(P = 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control g<br>Events<br>276<br>276<br>24<br>24<br>24                                                                                                                                                                                                                               | 0). I <sup>2</sup> = 6<br>roup<br><u>Total</u><br>976<br>976<br>976<br>66<br>66<br>66<br>66                                                                            | .3%<br><u>Weight</u><br>58.4%<br>58.4%<br>41.6%<br>41.6%<br>100.0%                                                                     | Odds Ratio<br>M-H. Random. 35%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]                                                                                                                                                                                                                                                   | Avors control Favors AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test for suboroun differences: -<br><b>Rs31017'G allele</b><br>Study or Subgroup<br>Caucasian<br>33 Maksymowych et al., 2003<br>Subtota (95% CI)<br>Fotal events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 2.08  <br>Asian<br>09 Yang et al., 2007<br>Subtota (95% CI)<br>Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 2.98  <br>Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chi <sup>2</sup> = 1.0<br>AS grou<br>Events<br>252<br>252<br>(P = 0.04)<br>58<br>58<br>(P = 0.003<br>310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control g<br>Events<br>276<br>276<br>24<br>24<br>24<br>300                                                                                                                                                                                                                        | 0). I <sup>2</sup> = 6<br>Toup<br>Total<br>976<br>976<br>976<br>66<br>66<br>66                                                                                         | .3%<br>Weight<br>58.4%<br>58.4%<br>41.6%<br>41.6%                                                                                      | Odds Ratio<br>M-H. Random, 95%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>1.71 [0.82, 3.58]                                                                                                                                                                                                                              | Favors control Favors AS Odds Ratio M-H. Random. 95%CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test for suboroun differences: -<br><b>ks31017'G allele</b><br>Study or Subgroup<br>Zaucasian<br>33 Maksymowych et al., 2003<br>Subtota (195%)<br>Total events<br>-tetorogenei(y: Not applicable<br>Test for overall effect: Z = 2.08<br>Statan<br>Dy Yang et al., 2007<br>Subtota (195%CI)<br>Total events<br>-tetorogenei(y: Not applicable<br>Test for overall effect: Z = 2.98<br>Total (95%CI)<br>Total events<br>-tetorogenei(y: Tau <sup>2</sup> = 0.23; Chi<br>-test for overall effect: Z = 1.42]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chi <sup>2</sup> = 1.0<br>AS grou<br>Events<br>252<br>252<br>(P = 0.04)<br>58<br>58<br>(P = 0.003<br>310<br><sup>2</sup> = 4.87, d<br>(P = 0.15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control g<br>Events<br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>24<br>24                                                                                                                                                                                                       | 0). I <sup>2</sup> = 6<br>roup<br><u>Total</u><br>976<br>976<br>976<br>66<br>66<br>66<br>1042<br>I <sup>2</sup> = 79%                                                  | .3%<br>Weight<br>58.4%<br>58.4%<br>41.6%<br>41.6%<br>100.0%                                                                            | Odds Ratio<br>M-H. Random. 95%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>1.71 [0.82, 3.58]                                                                                                                                                                                                                              | Pavors control Favors AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test for suboroun differences:<br>Rs31017'G allele<br>Study or Subgroup<br>Saucasian<br>33 Maksymowych et al., 2003<br>Subtota (18%): At applicable<br>Test for overall effect: Z = 2.08<br>State<br>Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 2.98<br>Total events<br>Heterogeneity: Total applicable<br>Test for overall effect: Z = 2.98<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.23; Chi<br>Test for suboroun differences. N<br>Rs31017'G carrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chi <sup>2</sup> = 1.0<br>AS grou<br>Events<br>252<br>252<br>(P = 0.04)<br>58<br>58<br>(P = 0.003<br>310<br><sup>2</sup> = 4.87, d<br>(P = 0.15)<br>Not applica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control g<br>Events<br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>24<br>24                                                                                                                                                                                                       | 0).   <sup>2</sup> = 6<br>roup<br><u>Total</u><br>976<br>976<br>66<br>66<br>66<br>1042<br><sup>2</sup> = 79%                                                           | .3%<br>Weight<br>58.4%<br>58.4%<br>41.6%<br>41.6%                                                                                      | Odds Ratio<br>M-H. Random. 55%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>1.71 [0.82, 3.58]                                                                                                                                                                                                                              | Pavors control Favors AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test for suboroun differences: -<br><b>Rs31017'G allele</b><br>Study or Subgroup<br>Study or Subgroup<br>Studsawmowych et al., 2003<br>Subtota (195% ct)<br>Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 2.08<br>Asian<br>Dy Yang et al., 2007<br>Subtotal (95% Ct)<br>Total events<br>Heterogeneity: Nat applicable<br>Test for overall effect: Z = 1.28<br>Total (95% Ct)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.23; Chi<br>Test for overall effect: Z = 1.21<br>Test for subbroup differences: N<br>Rs31017'G carrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chi <sup>2</sup> = 1.0<br>AS grou<br>Events<br>252<br>252<br>(P = 0.04)<br>58<br>58<br>(P = 0.003<br>310<br><sup>2</sup> = 4.87, d<br>(P = 0.15)<br>Not applications<br>AS groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control g<br>Events<br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>24<br>Control 3<br>276<br>276<br>276<br>276<br>276<br>276<br>276<br>276                                                                                                                                        | 0).   <sup>2</sup> = 6<br>roup<br><u>Total</u><br>976<br>976<br>66<br>66<br>66<br>1042<br>  <sup>2</sup> = 79%<br>group                                                | .3%<br>Weight<br>58.4%<br>58.4%<br>41.6%<br>41.6%                                                                                      | Odds Ratio<br>M-H. Random, 95%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>1.71 [0.82, 3.58]<br>0.645 Ratio                                                                                                                                                                                                               | Pavors control Pavors AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test for suboroun differences: -<br>Re31017'G allele<br>Study or Subgroup<br>Zaucasian<br>J3 Maksymowych et al., 2003<br>Subtotal (85%CI)<br>Total events<br>Heterogeneity: Not applicable<br>Test for overall offect: Z = 2.08<br>Subtotal (85%CI)<br>Total events<br>Heterogeneity: Nat applicable<br>Test for overall offect: Z = 2.98<br>Total (95%CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.23, Chi<br>Test for overall offect: Z = 1.42<br>Test for overall offect: Z = 1                                                                                                                                                     | Chi <sup>2</sup> = 1.0<br>AS grou-<br>Events<br>252<br>252<br>(P = 0.04)<br>58<br>58<br>(P = 0.003<br><sup>2</sup> = 4.87, d<br>(P = 0.15)<br>Not application<br>AS groups<br>Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control g<br>Events<br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>Control g<br>Events                                                                                                                                                                                | 0).   <sup>2</sup> = 6<br>roup<br>Total<br>976<br>976<br>976<br>66<br>66<br>66<br>1042<br><sup>2</sup> = 79%<br>group<br>Total                                         | .3%<br>Weight<br>58.4%<br>58.4%<br>41.6%<br>41.6%<br>100.0%<br>Weight                                                                  | Odds Ratio<br>M-H. Random, 95%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>1.71 [0.82, 3.58]<br>0.dds Ratio<br>M-H. Fixed, 95%C1                                                                                                                                                                                          | Pavors control Pavors AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test for suboroun differences: -<br>Re31017'G allele<br>Study or Subgroup<br>Zaucasian<br>Ja Maksymowych et al., 2003<br>Subtotal (85%Cl)<br>Total events<br>Total events<br>Total events<br>Subtotal (85%Cl)<br>Total events<br>Total events<br>Subtota (10%Cl)<br>Total events<br>Subtota (10%Cl)<br>Total events<br>Total events<br>Tot | AS groot<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control g<br>Events<br>276<br>276<br>24<br>24<br>24<br>24<br>Control<br>Events<br>240<br>200<br>200                                                                                                                                                                               | 0).    <sup>2</sup> = 6<br>roup<br>Total<br>976<br>976<br>976<br>66<br>66<br>66<br>66<br>66<br>1042<br>  <sup>2</sup> = 79%<br>group<br>Total<br>488<br>33             | .3%<br>Weight<br>58.4%<br>58.4%<br>41.6%<br>41.6%<br>100.0%<br>Weight<br>94.6%<br>5.4%                                                 | Odds Ratio<br>M-H. Random, 95%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>1.71 [0.82, 3.59]<br>0.dds Ratio<br>M-H. Fixed, 95%C1<br>1.25 [0.96, 1.64]<br>2.19 [0.83, 5.77]                                                                                                                                                | Pavors control Favors AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test for suboroun differences: -<br><b>Rs31017'G allele</b><br>Study or Subgroup<br>Zaucasian<br>Total events<br>Total events<br>Total events<br>Subtotal (95%CI)<br>Total events<br>Subtotal (95%CI)<br>Total events<br>Total (95%CI)<br>Total events<br>Sudy or Subgroup<br>33 Maksymowych et al., 2007<br>Total (95%CI)<br>Total events<br>Total events<br>Total events<br>Total (95%CI)<br>Total (95%CI)<br>Total events<br>Total (95%CI)<br>Total (95%CI)<br>Total events<br>Total e    | AS groot<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7. df =<br>up<br>Total<br>766<br>766<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96 | 1 (P = 0.3<br>Control g<br>Events<br>276<br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>Control g<br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24                                                                                                                     | 0).   <sup>2</sup> = 6<br>roup<br>Total<br>976<br>976<br>976<br>66<br>66<br>66<br>66<br>66<br>1042<br>1042<br>12 = 79%<br>group<br>Total<br>33<br>35                   | .3%<br><u>Weight</u><br>58.4%<br>41.6%<br>41.6%<br>100.0%<br><u>Weight</u><br>94.6%<br>5.4%                                            | Odds Ratio<br>M-H. Random, 35%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>1.71 [0.82, 3.58]<br>Odds Ratio<br>M-H. Fixed, 95%C1<br>1.25 [0.96, 1.64]<br>2.19 [0.83, 5.77]                                                                                                                                                 | Favors control Favors AS<br>Odds Ratio<br>M-H. Random, 95%CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test for suboroup differences: -<br><b>Rs31017'G allele</b><br>Study or Subgroup<br>Zaucasian<br>33 Maksymowych et al., 2003<br>Subtotal (95%/CI)<br>Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 2.08<br>Subtotal (95%/CI)<br>Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 2.98<br>Total (95%/CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.23; Chi<br>Test for suboroup differences: N<br><b>Rs31017'G carrier</b><br>Study or Subgroup<br>J9 Maksymowych et al., 2003<br>J9 Yang et al., 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AS groot<br>Evonts<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7. df =<br>up<br>Total<br>766<br>766<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96 | 1 (P = 0.3<br>Control g<br>Events<br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>24<br>20<br>Control g<br>276<br>24<br>24<br>24<br>24<br>20<br>20<br>20<br>20<br>20<br>21<br>24<br>24<br>26<br>276<br>276<br>24<br>24<br>26<br>276<br>24<br>26<br>276<br>276<br>276<br>276<br>276<br>276<br>276 | 0)).   <sup>2</sup> = 6<br>roup<br><u>Total</u><br>976<br>976<br>976<br>66<br>66<br>66<br>1042<br>  <sup>2</sup> = 79%<br>group<br><u>Total</u><br>488<br>33<br>521    | .3%<br>Weight<br>58.4%<br>58.4%<br>41.6%<br>41.6%<br>41.6%<br>41.6%<br>100.0%                                                          | Odds Ratio<br>M-H. Random, 35%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>1.71 [0.82, 3.58]<br>Odds Ratio<br>M-H. Fixed, 95%C[<br>1.25 [0.96, 1.64]<br>2.19 [0.83, 5.77]<br>1.30 [1.01, 1.69]                                                             | Pavors control Favors AS<br>Odds Ratio<br>M-H. Random, 95%CI<br>0.01 0.1 10 1<br>Favors control Favors AS<br>Odds Ratio<br>M-H. Fixed, 95%CI                                                                                                                                                                                                                                                                                                                                                                                     |
| Test for suboroun differences: -<br><b>Rs31017'G allele</b><br>Study or Subgroup<br>Zaucasian<br>13 Maksymowych et al., 2003<br>Subtota (195% CI)<br>Fotal events<br>Heterogeneity: Not applicable<br>fest for overall effect: Z = 2.08<br>Asian<br>99 Yang et al., 2007<br>Subtota (185% CI)<br>Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 2.98<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.23; Chi<br>Test for overall effect: Z = 1.24<br>Test for subgroup.<br>Study or Subgroup.<br>31 Maksymowych et al., 2007<br>Total (95% CI)<br>Total (95% CI)<br>Total (95% CI)<br>Total (95% CI)<br>Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AS groot<br>Events<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control g<br><u>Events</u><br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>24<br>20<br>Control<br><u>Events</u><br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24                                                                                          | 0)).    <sup>2</sup> = 6<br>roup<br><u>Total</u><br>976<br>976<br>66<br>66<br>66<br>1042<br>   <sup>2</sup> = 79%<br><u>group</u><br><u>Total</u><br>488<br>33<br>521  | .3%<br><u>Weight</u><br>58.4%<br>41.6%<br>41.6%<br>100.0%<br><u>Weight</u><br>94.6%<br>5.4%<br>100.0%                                  | Odds Ratio<br>M-H. Random, 95%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>1.71 [0.82, 3.58]<br>Odds Ratio<br>M-H. Fixed, 95%C<br>1.25 (0.96, 1.64)<br>2.19 [0.83, 6.77]<br>1.30 [1.01, 1.69]                                                                                                                             | Pavors control Pavors AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test for suboroun differences: -<br><b>Rs31017'G allele</b><br>Study or Subgroup<br>Caucasian<br>33 Maksymowych et al., 2003<br>Subtota (195% CI)<br>Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 2.08<br>Asian<br>Dy Yang et al., 2007<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.23; Chi<br>Test for overall effect: Z = 1.42;<br>Test for subgroup<br>Study or Subgroup<br>Study or Subgroup<br>Stady et al., 2007<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.23; Chi<br>Test for overall effect: Z = 1.42;<br>Test for subgroup<br>Study or Subgroup<br>D3 Maksymowych et al., 2003<br>D9 Yang et al., 2007<br>Total (95% CI)<br>Total effect: Z = 1.17, d.f.<br>Test for overall effect: Z = 2.02<br>Catageneity: Chi <sup>2</sup> = 1.17, d.f.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AS groups and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7, df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control g g<br>276<br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>Control<br>Events<br>Control<br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24                                                                                                          | 0).    <sup>2</sup> = 6<br>roup<br><u>Total</u><br>976<br>976<br>66<br>66<br>66<br>1042<br><sup>12</sup> = 79%<br>group<br><u>Total</u><br>488<br>33<br>521            | .3%<br>Weight<br>58.4%<br>58.4%<br>41.6%<br>41.6%<br>41.6%<br>41.8%<br>100.0%                                                          | Odds Ratio<br>M-H. Random, 95%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>1.71 [0.82, 3.58]<br>Odds Ratio<br>M-H. Fixed, 95%, 164]<br>1.25 [0.96, 564]<br>2.19 [0.83, 6.77]<br>1.30 [1.01, 1.69]                                                                                                    | Pavors control Favors AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test for suboroup differences: -<br><b>Rs31017'G allele</b><br>Study or Subgroup<br>Zaucasian<br>33 Maksymowych et al., 2003<br>Subtota (195% CI)<br>Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 2.08<br>Asian<br>39 Yang et al., 2007<br>Subtota (195% CI)<br>Total events<br>Heterogeneity: Nat applicable<br>Test for overall effect: Z = 2.98<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.23; Chi<br>Test for subgroup<br>Study or Subgroup<br>30 Maksymowych et al., 2003<br>39 Yang et al., 2007<br>Total (95% CI)<br>Total effect: Z = 2.02<br>Rs315952''T carrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AS group:<br>252<br>252<br>252<br>252<br>(P = 0.04)<br>58<br>58<br>(P = 0.03)<br><sup>2</sup> = 4.87, d<br>(P = 0.15)<br><sup>3</sup> = 4.87, d<br>4.5 grc<br>210<br>37<br>247<br>= 1(P = 0.04)<br><sup>3</sup> = 0.15<br><sup>3</sup> = 0 | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control gr<br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24                                                                                                                                                                                              | 0).  * = 6<br>roup<br>Total<br>976<br>976<br>976<br>66<br>66<br>66<br>1042<br>* = 79%<br>group<br>Total<br>33<br>521                                                   | .3%<br>Weight<br>58.4%<br>58.4%<br>41.6%<br>41.6%<br>41.6%<br>41.6%<br>41.6%<br>100.0%                                                 | Odds Ratio<br>M-H. Random, 95%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>1.71 [0.82, 3.58]<br>Odds Ratio<br>M-H. Fixed, 95%C<br>1.25 (0.96, 1.64)<br>2.19 [0.83, 6.77]<br>1.30 [1.01, 1.69]                                                                                                        | Pavors control Pavors AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test for suboroun differences: -<br><b>Re31017'G allele</b><br>Study or Subgroup<br>Zaucasian<br>33 Maksymowych et al., 2003<br>Subtotal (85% CI)<br>Total events<br>telerogeneity: Not applicable<br>rest for overall effect: Z = 2.08  <br><b>Kalan</b><br>99 Yang et al., 2007<br>Subtotal (95% CI)<br>Total events<br>telerogeneity: Nat applicable<br>Test for overall effect: Z = 2.98  <br>Total (95% CI)<br>Total events<br>telerogeneity: Tau <sup>2</sup> = 0.23; Chi<br>Test for overall effect: Z = 1.42<br>Feat for suboroun differences: N<br><b>R31017'G carrier</b><br>Study or Subgroup<br>30 Maksymowych et al., 2007<br>Total (95% CI)<br>Total events<br>telerogeneity: Chi <sup>2</sup> = 1.17, d.f.<br>Test for overall effect: Z = 2.02<br><b>R315952'T carrier</b><br>All<br>Study or Subgroup<br>All<br>Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chi <sup>2</sup> = 1.0<br>AS group<br>Events.<br>252<br>252<br>(P = 0.04)<br>58<br>58<br>(P = 0.003<br>310<br>P = 4.87, G<br>(P = 0.14)<br>AS group<br>AS group<br>= (P = 0.04)<br>37<br>74<br>240<br>37<br>74<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control gr<br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>2003); I<br>Control<br>Events<br>240<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                       | 0).  P = 6<br>roup<br>Total<br>976<br>976<br>66<br>66<br>1042<br>P = 79%<br>group<br>Total<br>33<br>521<br>Dup<br>Total V                                              | .3%<br>Weight<br>58.4%<br>58.4%<br>41.6%<br>41.6%<br>41.6%<br>100.0%<br>Weight<br>100.0%<br>Yeight                                     | Odds Ratio<br>M-H. Random, 95%CC<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>1.71 [0.82, 3.58]<br>Odds Ratio<br>M-H. Fixed, 95%CC<br>1.25 [0.96, 1.64]<br>2.19 [0.83, 5.77]<br>1.30 [1.01, 1.69]<br>Odds Ratio                                                                                                             | Avors control Favors AS<br>Odds Ratio<br>M-H. Random, 95%Cl<br>M-H. Random, 95%Cl<br>0.01 0.1 1 10 1<br>Favors control Favors AS<br>Odds Ratio<br>M-H. Fixed, 95%Cl<br>0.01 0.1 1 10 1<br>Favors control Favors AS                                                                                                                                                                                                                                                                                                               |
| Test for suboroup differences: -<br>Rs31017'G allele Study or Subgroup Zaucasian J3 Maksymowych et al., 2003 Subtota (195%CI) Total events -tetorogeneity: Not applicable Test for overall effect: Z = 2.08 Value 14, 2007 Subtota (195%CI) Total events -tetorogeneity: Tau <sup>2</sup> = 0.23; Chi Test for overall effect: Z = 1.42 Test for subgroup J3 Maksymowych et al., 2007 Study or Subgroup J3 Maksymowych et al., 2007 Total (95%CI) Total events -tetorogeneity: Chi <sup>2</sup> = 1.17, d.f. Test for overall effect: Z = 2.02 Rs315952'' Carrier Astion Subgroup Study or Subgroup Ext of Subgroup Study or Subgroup Chi a vents -tetorogeneity: Chi <sup>2</sup> = 1.27, d.f. Test for overall effect: Z = 2.02 Rs315952'' Carrier Astion Subgroup Chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AS group<br>Events<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control g g<br>Events<br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24                                                                                                                                                                                   | 0).  2 = 6<br>roup<br>Total -<br>976<br>976<br>976<br>66<br>66<br>66<br>1042<br>2 <sup>2</sup> = 79%<br>group<br>Total 4<br>488<br>33<br>521<br>521<br>521             | .3%<br>Weight<br>58.4%<br>58.4%<br>41.6%<br>41.6%<br>41.6%<br>100.0%<br>Weight<br>100.0%<br>Veight<br>29.7%                            | Odds Ratio<br>M-H. Random, 55%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>1.71 [0.82, 3.58]<br>Odds Ratio<br>M-H. Eixed, 95%CI<br>1.25 [0.96, 1.64]<br>2.19 [0.83, 5.77]<br>1.30 [1.01, 1.69]<br>Odds Ratio<br>M-H. Fixed, 95%CI<br>1.62 [0.97, 2.70]                                               | Avors control Favors AS  Odds Ratio M-H. Random, 95%CI  Odds Ratio Odds Ratio M-H. Fixed, 95%CI Odds Ratio |
| Test for suborcup differences:           Rs31017'G allele           Study or Subgroup           Saucasian           Jawasaian           Jawasaian           Jawasayan           Subota(165%CI)           Total events           Heterogeneity: Tau² = 0.23; Chi           Test for overall effect: Z = 1.20;           Study or Suboroup           Ja Maksymowych et al., 2003           Ja Maksymowych et al., 2003           Ja Maksymowych et al., 2003           Total (95%CI)           Total 95%CI)           Total 95%CI           Total 95%CI           Total 95%CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AS group<br>Events<br>252<br>252<br>(P = 0.04)<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control gg<br>Events<br>276<br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24                                                                                                                                                                             | 0).  ? = 6<br>roup<br>Total<br>976<br>976<br>976<br>66<br>66<br>1042<br>P = 79%<br>group<br>Total<br>488<br>33<br>521<br>521<br>521<br>521<br>521<br>521<br>521<br>521 | .3%<br>Weight<br>58.4%<br>58.4%<br>41.8%<br>41.8%<br>41.8%<br>100.0%<br>Weight<br>100.0%<br>Veight<br>29.7%<br>28.3%                   | Odds Ratio<br>M-H. Random, 95%CC<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>1.71 [0.82, 3.58]<br>Odds Ratio<br>M-H. Fixed, 95%CI<br>1.25 [0.96, 1.64]<br>Cdds Ratio<br>M-H. Fixed, 95%CI<br>1.20 [0.97, 2.70]<br>1.20 [0.97, 2.70]                                                                   | Pavors control Pavors AS Odds Ratio M-H. Random, 95%Cl 0.01 0.1 1 0 1 Favors control Pavors AS Odds Ratio M-H. Fixed, 95%Cl 0.01 0.1 1 10 1 Favors control Pavors AS Odds Ratio M-H. Fixed, 95%Cl 0.01 0.1 1 10 1 Favors Control Pavors AS Odds Ratio M-H. Fixed, 95%Cl 0.01 0.1 1 10 1 Favors Control Pavors AS Odds Ratio                                                                                                                                                                                                      |
| Test for suboroun differences: -<br><b>Rs31017'G allele</b><br>Study or Subgroup<br>Zaucasian<br>33 Maksymowych et al., 2003<br>Subtota (195% CI)<br>701al events<br>1eterogeneity: Not applicable<br>fest for overall effect Z = 2.08<br><b>Value</b><br>19' Yang et al., 2007<br>Subtota (195% CI)<br>701al events<br>1eterogeneity: Not applicable<br>701 (195% CI)<br>701al events<br>1eterogeneity: Nat' applicable<br>701 (195% CI)<br>701al events<br>1eterogeneity: Rat' = 0.23; Chi<br>Fest for overall effect: Z = 2.98<br>701 (195% CI)<br>701al events<br>1eterogeneity: Chi <sup>2</sup> = 0.23; Chi<br>Fest for overall effect: Z = 2.98<br>1014 (195% CI)<br>701al events<br>1eterogeneity: Chi <sup>2</sup> = 0.21;<br>19 Yang et al., 2007<br>701al (195% CI)<br>701al events<br>19 Yang et al., 2007<br>All<br>Study or Subgroup<br>All<br>Study or Subgroup<br>All<br>11 Liu et al., 2006<br>13 Guo et al., 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control g g<br>Events<br>276<br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>24<br>20<br>20<br>20<br>20<br>215<br>215<br>215<br>215<br>215<br>215<br>215<br>215                                                                                                                    | 0).  * = 6<br>roup<br>Total 1<br>976<br>976<br>976<br>66<br>66<br>66<br>1042<br>* = 79%<br>group<br>Total 48<br>33<br>521<br>521<br>521<br>521<br>521<br>521           | .3%<br>Weight<br>58.4%<br>58.4%<br>41.6%<br>41.6%<br>41.6%<br>100.0%<br>Weight<br>100.0%<br>Veight<br>29.7%<br>28.3%                   | Odds Ratio<br>M-H. Random, 95%CC<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>1.71 [0.82, 3.59]<br>Odds Ratio<br>M-H. Fixed, 95%CI<br>1.25 [0.96, 1.64]<br>2.19 [0.83, 5.77]<br>1.30 [1.01, 1.69]<br>Odds Ratio<br>M-H. Fixed, 95%CI<br>1.62 [0.97, 2.70]<br>1.72 [0.63, 1.99]<br>1.77 [1.16, 2.69]    | Avors control Favors AS<br>Odds Ratio<br>M-H. Random, 95%Cl<br>0.01 0.1 1 10 1<br>Favors control Favors AS<br>Odds Ratio<br>M-H. Fixed, 95%Cl<br>M-H. Fixed, 95%Cl<br>M-H. Fixed, 95%Cl                                                                                                                                                                                                                                                                                                                                          |
| Test for suboroun differences: -<br>Rs31017'G allele Study or Subgroup Zaucasian J3 Maksymowych et al., 2003 Subtota (85%C) Total events -tetorogeneity: Not applicable Test for overall effect: Z = 2.08 Stat Verson (95%C) Total events -tetorogeneity: Not applicable Test for overall effect: Z = 2.98 Total events -tetorogeneity: Tota applicable Test for overall effect: Z = 2.98 Total events -tetorogeneity: Tota applicable Test for overall effect: Z = 2.98 Stat -tetorogeneity: Tota applicable Test for overall effect: Z = 2.98 Total events -tetorogeneity: Tau <sup>2</sup> = 0.23; Chi Test for overall effect: Z = 1.42 Test for suboroun differences: N ts31017'G carrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AS group<br>Events<br>252<br>252<br>(P = 0.04)<br>58<br>58<br>(P = 0.04)<br>310<br>P = 0.003<br>310<br>P = 0.003<br>210<br>P = 0.003<br>210<br>P = 0.003<br>210<br>210<br>210<br>210<br>210<br>210<br>210<br>210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control gr<br>276<br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>20<br>20<br>200<br>20                                                                                                                                                                                | 0).  * = 6<br>roup<br>Total<br>976<br>976<br>976<br>976<br>66<br>66<br>1042<br>* = 79%<br>group<br>Total<br>488<br>33<br>521<br>568<br>161<br>161<br>5568<br>1         | .3%<br>Weight<br>58.4%<br>58.4%<br>41.6%<br>41.6%<br>41.6%<br>100.0%<br>Weight<br>100.0%<br>Veight<br>29.7%<br>22.3%<br>22.0%<br>00.0% | Odds Ratio<br>M-H. Random, 95%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>1.71 [0.82, 3.58]<br>Odds Ratio<br>M-H. Fixed, 95%CI<br>1.25 [0.96, 1.64]<br>2.19 [0.83, 5.77]<br>1.30 [1.01, 1.69]<br>Odds Ratio<br>M-H. Fixed, 95%CI, 1.62 [0.97, 2.70]<br>1.77 [1.16, 2063, 1.96]<br>1.77 [1.16, 2.04] | Pavors control Favors AS<br>Odds Ratio<br>M-H. Random, 95%CI<br>0.01 0.1 10 1<br>Favors control Favors AS<br>Odds Ratio<br>M-H. Fixed, 95%CI<br>Favors control Favors AS<br>Odds Ratio<br>M-H. Fixed, 95%CI<br>M-H. Fixed, 95%CI<br>0.01 0.1 10 1<br>Favors Sontrol Favors AS                                                                                                                                                                                                                                                    |
| Test for suboroup differences: -<br><b>Rs31017'G allele</b> Study or Subgroup Jacucasian J3 Maksymowych et al., 2003 Subtota (195%CI) Total events - telerogeneity: Not applicable feest for overall effect: Z = 2.08 Jatian Dy Yang et al., 2007 Subtota (195%CI) Total events - telerogeneity: Tau <sup>2</sup> = 0.23; Chi Test for suboroup differences: N Rs31017'G carrier Study or Subgroup J3 Maksymowych et al., 2007 Total events - telerogeneity: Chi <sup>2</sup> = 1.17, d.f. Test for overall effect: Z = 2.02 Rs315952'T carrier A: Study or Subgroup List for overall effect: Z = 2.02 Rs315952'T carrier A: Study or Subgroup List for overall effect: Z = 2.02 Rs315952'T carrier A: Study or Subgroup List for overall effect: Z = 2.02 Rs315952'T carrier A: Study or Subgroup List for overall effect: Z = 2.02 Rs315952'T carrier A: Study or Subgroup List for overall effect: Z = 2.02 Rs315952'T carrier A: Study or Subgroup List for overall effect: Z = 2.02 Rs315952'T carrier A: Study or Subgroup List for overall effect: Z = 2.02 Rs315952'T carrier A: Study or Subgroup List for overall effect: Z = 2.02 Rs315952'T carrier A: Study or Subgroup List for overall effect: Z = 2.02 Rs315952'T carrier A: Study or Subgroup List for overall effect: Z = 2.02 Rs315952'T carrier A: Study or Subgroup List for overall List et al., 2006 List List et al.                                                                                                                                                                                                                                                                  | AS group<br>Events<br>252<br>252<br>252<br>(P = 0.04)<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7. df =<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 1 (P = 0.3<br>Control g g<br>276<br>276<br>276<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24                                                                                                                                                                                      | 0).  P = 6<br>roup<br>Total -<br>976<br>976<br>976<br>66<br>66<br>66<br>1042<br>P = 79%<br>group<br>Total 48<br>33<br>521<br>521<br>548<br>185<br>161<br>222<br>568 1  | 33%<br>Weight<br>58.4%<br>58.4%<br>41.6%<br>41.6%<br>41.6%<br>100.0%<br>Weight<br>100.0%<br>Yeight<br>28.3%<br>42.0%<br>00.0%          | Odds Ratio<br>M-H. Random, 95%C<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>1.24 [1.01, 1.53]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>2.67 [1.40, 5.10]<br>1.71 [0.82, 3.58]<br>Odds Ratio<br>M-H. Fixed, 95%C1<br>1.26 [0.63, 6.77]<br>1.30 [1.01, 1.69]<br>Odds Ratio<br>M-H. Fixed, 95%C1<br>1.20 [0.63, 1.99]<br>1.77 [1.16, 2.69]                          | Avors control Favors AS<br>Odds Ratio<br>M-H. Random, 95%Cl<br>0.01 0.1 0.1 0.1 0.1 10 1<br>Favors control Favors AS<br>Odds Ratio<br>M-H. Fixed, 95%Cl<br>0.01 0.1 1 00 1<br>Favors AS<br>Odds Ratio<br>M-H. Fixed, 95%Cl<br>0.01 0.1 1 00 1                                                                                                                                                                                                                                                                                    |

**Figure 2.** Association of rs30735\*C allele, rs30735\*C carrier, rs31017\*G allele, rs31017\*G carrier, and rs315952\*T carrier with susceptibility to AS. The squares and horizontal lines correspond to the study-specific OR and 95%CI. The diamond represents the summary OR and 95%CI.

©FUNPEC-RP www.funpecrp.com.br

Genetics and Molecular Research 12 (2): 1720-1730 (2013)

## **Publication bias**

All Begger funnel plots appeared to be symmetrical (Figure 3). The Egger test also showed no statistical significance for all evaluations of publication bias (all P > 0.05). The findings of the Egger publication bias test are shown in Table 3.



Figure 3. The Begger funnel plot of publication bias for the association between VNTR, rs419598, rs315952, rs315951, and susceptibility to AS.

| Table 3. Evaluation of publication bias by the Egger linear regression test. |             |       |         |       |                  |  |  |  |
|------------------------------------------------------------------------------|-------------|-------|---------|-------|------------------|--|--|--|
| SNP                                                                          | Coefficient | SE    | t       | Р     | 95%CI            |  |  |  |
| VNTR                                                                         | 1.371       | 1.257 | 1.090   | 0.311 | (-1.601, 4.343)  |  |  |  |
| rs419598                                                                     | -0.281      | 2.012 | -0.140  | 0.898 | (-6.685, 6.123)  |  |  |  |
| rs315952                                                                     | 0.241       | 0.880 | 0.270   | 0.810 | (-3.543, 4.026)  |  |  |  |
| rs315951                                                                     | -3.397      | 0.096 | -35.480 | 0.018 | (-4.613, -2.180) |  |  |  |

SE = standard error; 95%CI = 95% confidence interval. For other abbreviations, see legend to Table 1.

# DISCUSSION

AS is a common, chronic, inflammatory arthritis, and autoimmune disease that mainly affects joints in the spine and the sacroiliac joint in the pelvis, causing eventual fusion of the spine (El Maghraoui, 2011). Its global prevalence ranges from 0 to 1.9%, and is more prevalent in males (Feldtkeller et al., 2003; Baek et al., 2004). Although the exact cause of AS is unknown, we do know that genetic factors play a key role (Stewart and Ralston, 2000). The

Genetics and Molecular Research 12 (2): 1720-1730 (2013)

#### G.X. Jin et al.

HLA-B27 genotype is expressed in about 90% of AS patients, meaning that there is a strong genetic association. However, only 5% of individuals with the HLA-B27-positive genotype develop the disease (Reveille, 2006). Recently, a study conducted in Scotland found an association between the IL-1RN VNTR\*2 allele and AS risk (McGarry et al., 2001). IL-1RN encodes the IL-1Ra protein, a member of the IL-1 cytokine family. This protein inhibits IL-1 $\alpha$  and IL-1 $\beta$  activities and modulates a variety of IL-1-related immune and inflammatory responses (Perrier et al., 2006). Although many relevant studies have indicated an association between IL-1RN SNPs and increased risk of AS (Brown et al., 2000), the results are controversial.

In our meta-analysis, we found 3 SNPs in IL-1RN with strong evidence of association with AS risk after adjustment of multiple testing in the IL-1RN gene, including rs30735, rs31017, and rs315952. Our study showed that rs30735\*C allele/carrier, rs31017\*G carrier, and rs315952\*T carrier have significant associations with AS risk after adjustment for multiple testing. The rs315952\*T carrier was significantly associated with AS risk (OR = 1.54) in 3 studies, but no association was found between the rs315952\*T allele and AS risk. There was also no association between rs315951 and AS risk (all P > 0.05). However, Chou et al. (2006) reported substantially stronger haplotype associations with AS risk by combining rs315952 and rs315951 using linkage disequilibrium statistics, because of under-representation of C homozygosity among AS cases. It is therefore likely that the association of these SNPs with disease reflects linkage disequilibrium with the primary disease locus, as implied by the association with specific inferred haplotypes. In addition, rs30735\*C allele/carrier and rs31017\*G carrier were associated with AS risk with 1.45, 1.73, and 1.30 OR based on 2 published studies (Lin et al., 2006; Maksymowych et al., 2006). Unfortunately, although a recent collaborative study found an association of AS with IL-1RN SNPs and their haplotypes, pooled analyses have not examined the relationship between rs27810\*C allele/carrier, rs31017\*G allele, rs315951\*G allele/carrier, rs315952\*T allele, rs419598\*C allele/carrier, VNTR\*2 allele/carrier with AS risk. Some studies showed that ethnicity might influence AS susceptibility through variations in genetic background and environmental exposure, leading to various gene-gene and gene-environment interactions. In the subgroup analysis based on ethnicity, the rs30735\*C allele/carrier, and the rs31017\*G allele appear to be risk factors for AS in both Caucasians and Asians, while the rs315952\*T carrier was associated with AS susceptibility only in an Asian population. Ethnicity-specific disease associations may arise from differences in genetic linkage disequilibrium structure across populations or due to other unknown environmental or genetic contributors. This influence may only involve susceptibility to and not severity of disease. Thus, meaningful studies in different ethnic backgrounds and in families of AS patients are needed to further establish or adjust this association.

Limitations in our meta-analysis should be addressed. First, because only published studies were included in the meta-analysis, the relevant research articles are few and the sample size was not large. Second, although the funnel plot and the Egger test showed no publication bias, selection bias could have occurred because only studies published in English or Chinese were included. Third, we could remove some variability by performing ethnicity-specific analysis, but there were other sources of heterogeneity, and the genotype distribution deviated from HWE in some studies. In addition, analyses were not conducted for all variants ever evaluated in the context of AS susceptibility. Most important, our meta-analysis was based on unadjusted OR estimates because not all publications presented adjusted ORs and when they did, the ORs were not adjusted by the same potential confounders, such as ethnicity,

Genetics and Molecular Research 12 (2): 1720-1730 (2013)

gender, geographic distribution, etc. Given these results, additional investigation in these areas is needed, and our conclusions should be interpreted cautiously.

In conclusion, this meta-analysis of 13 case-control studies demonstrated that 3 IL-1RN polymorphisms are associated with susceptibility to AS. The rs30735\*C allele/carrier and the rs31017\*G allele are potential risk factors for AS in Caucasians and Asians, while only the rs315952\*T carrier was associated with AS susceptibility in the Asian population. Since only a few studies are available in this field and evidence remains limited, we emphasize the necessity to conduct large studies with adequate methodological quality and proper control of confounding factors to obtain valid results.

## REFERENCES

- Agrawal S, Srivastava R, Sharma B, Pandya S, et al. (2008). IL1RN\*2 allele of IL-1receptor antagonist VNTR polymorphism is associated with susceptibility to ankylosing [corrected] spondylitis in Indian patients. *Clin. Rheumatol.* 27: 573-576.
- Baek HJ, Shin KC, Lee YJ, Kang SW, et al. (2004). Clinical features of adult-onset ankylosing spondylitis in Korean patients: patients with peripheral joint disease (PJD) have less severe spinal disease course than those without PJD. *Rheumatology* 43: 1526-1531.
- Baraliakos X, Listing J, Rudwaleit M, Sieper J, et al. (2008). The relationship between inflammation and new bone formation in patients with ankylosing spondylitis. *Arthritis Res. Ther.* 10: R104.
- Braun J and Sieper J (2007). Ankylosing spondylitis. Lancet 369: 1379-1390.
- Brown MA, Laval SH, Brophy S and Calin A (2000). Recurrence risk modelling of the genetic susceptibility to ankylosing spondylitis. Ann. Rheum. Dis. 59: 883-886.
- Chou CT, Timms AE, Wei JC, Tsai WC, et al. (2006). Replication of association of IL1 gene complex members with ankylosing spondylitis in Taiwanese Chinese. *Ann. Rheum. Dis.* 65: 1106-1109.
- Duan Z, Pan F, Zeng Z, Zhang T, et al. (2012). Interleukin-23 receptor genetic polymorphisms and ankylosing spondylitis susceptibility: a meta-analysis. *Rheumatol. Int.* 32: 1209-1214.
- El Maghraoui A (2011). Extra-articular manifestations of ankylosing spondylitis: prevalence, characteristics and therapeutic implications. *Eur. J. Intern. Med.* 22: 554-560.
- Feldtkeller E, Khan MA, van der Heijde D, van der Linden S, et al. (2003). Age at disease onset and diagnosis delay in HLA-B27 negative vs. positive patients with ankylosing spondylitis. *Rheumatol. Int.* 23: 61-66.
- Guo ZS, Li C, Lin ZM, Huang JX, et al. (2010). Association of IL-1 gene complex members with ankylosing spondylitis in Chinese Han population. Int. J. Immunogenet. 37: 33-37.

Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558.

- Kim TH, Stone MA, Rahman P, Yoo DH, et al. (2005). Interleukin 1 and nuclear factor-kappaB polymorphisms in ankylosing spondylitis in Canada and Korea. J. Rheumatol. 32: 1907-1910.
- Laval SH, Timms A, Edwards S, Bradbury L, et al. (2001). Whole-genome screening in ankylosing spondylitis: evidence of non-MHC genetic-susceptibility loci. Am. J. Hum. Genet. 68: 918-926.
- Lin L, Chen WG and Hu FP (2006). Interleukin-1R and interleukin-1 receptor antagonist gene polymorphisms in Hu'nan Han nationoality ankylosing spondylitis patient. *Clin. J. Rheumatol.* 10: 726-728.
- Liu H, Kong XD, Cai Q, Lu HQ, et al. (2008). The effect of single nucleotide polymorphism in interleukin-1 gene on the susceptibility of ankylosing spondylitis in Chinese Han population. *Chin. J. Rheumatol.* 12: 304-308.
- Maksymowych WP, Reeve JP, Reveille JD, Akey JM, et al. (2003). High-throughput single-nucleotide polymorphism analysis of the IL1RN locus in patients with ankylosing spondylitis by matrix-assisted laser desorption ionizationtime-of-flight mass spectrometry. *Arthritis Rheumatol.* 48: 2011-2018.
- Maksymowych WP, Rahman P, Reeve JP, Gladman DD, et al. (2006). Association of the IL1 gene cluster with susceptibility to ankylosing spondylitis: an analysis of three Canadian populations. *Arthritis Rheumatol.* 54: 974-985.
- McGarry F, Neilly J, Anderson N, Sturrock R, et al. (2001). A polymorphism within the interleukin 1 receptor antagonist (IL-1Ra) gene is associated with ankylosing spondylitis. *Rheumatology* 40: 1359-1364.
- Peloso PM, Gammaitoni A, Smugar SS, Wang H, et al. (2011). Longitudinal numbers-needed-to-treat (NNT) for achieving various levels of analgesic response and improvement with etoricoxib, naproxen, and placebo in ankylosing spondylitis. *BMC Musculoskelet. Disord.* 12: 165.

Perrier S, Darakhshan F and Hajduch E (2006). IL-1 receptor antagonist in metabolic diseases: Dr Jekyll or Mr Hyde?

Genetics and Molecular Research 12 (2): 1720-1730 (2013)

FEBS Lett. 580: 6289-6294.

- Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in metaanalysis. JAMA 295: 676-680.
- Reveille JD (2006). Major histocompatibility genes and ankylosing spondylitis. Best. Pract. Res. Clin. Rheumatol. 20: 601-609.
- Reveille JD, Sims AM, Danoy P, Evans DM, et al. (2010). Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. *Nat. Genet.* 42: 123-127.
- Sims AM, Timms AE, Bruges-Armas J, Burgos-Vargas R, et al. (2008). Prospective meta-analysis of interleukin 1 gene complex polymorphisms confirms associations with ankylosing spondylitis. Ann. Rheum. Dis. 67: 1305-1309.
- Stewart TL and Ralston SH (2000). Role of genetic factors in the pathogenesis of osteoporosis. J. Endocrinol. 166: 235-245.
- Timms AE, Crane AM, Sims AM, Cordell HJ, et al. (2004). The interleukin 1 gene cluster contains a major susceptibility locus for ankylosing spondylitis. *Am. J. Hum. Genet.* 75: 587-595.
- van der Paardt M, Crusius JB, Garcia-Gonzalez MA, Baudoin P, et al. (2002). Interleukin-1beta and interleukin-1 receptor antagonist gene polymorphisms in ankylosing spondylitis. *Rheumatology* 41: 1419-1423.
- Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, et al. (2007). Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. *Epidemiology* 18: 805-835.
- Yang Y, Su ZW, Ma WS, Cai AJ, et al. (2007). Single nucleotide polymorphism of IL-1RN and TNF-α in ankylosing spondylitis. J. Trop. Med. 7: 948-951.
- Zhang L, Liu JL, Zhang YJ and Wang H (2011). Association between HLA-B\*27 polymorphisms and ankylosing spondylitis in Han populations: a meta-analysis. *Clin. Exp. Rheumatol.* 29: 285-292.
- Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. *Genet. Epidemiol.* 28: 123-137.

Genetics and Molecular Research 12 (2): 1720-1730 (2013)