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ABSTRACT. The objective of this study was to evaluate the efficiency 
of artificial neural networks (ANNs) for predicting genetic value in 
experiments carried out in randomized blocks. Sixteen scenarios were 
simulated with different values of heritability (10, 20, 30, and 40%), 
coefficient of variation (5 and 10%), and the number of genotypes per 
block (150 and 200 for validation, and 5000 for neural network training). 
One hundred validation populations were used in each scenario. 
Accuracy of ANNs was evaluated by comparing the correlation of 
network value with genetic value, and of phenotypic value with genetic 
value. Neural networks were efficient in predicting genetic value with 
a 0.64 to 10.3% gain compared to the phenotypic value, regardless the 
simulated population size, heritability, or coefficient of variation. Thus, 
the artificial neural network is a promising technique for predicting 
genetic value in balanced experiments.
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INTRODUCTION

Identification of superior genotypes requires selection methods able to efficiently ex-
ploit the available genetic material, maximizing the genetic gain in relation to the character-
istics of interest (Oda et al., 2007). Several screening methods have been used in breeding 
programs, especially selection among and within families (Paula et al., 2002), combined se-
lection (Martins et al., 2005), and selection by mixed models through the best linear unbiased 
prediction method (BLUP) (Garcia and Nogueira, 2005).

Additional genetic gains that enable the improvement of lines, hybrids, and commer-
cial varieties have become increasingly difficult when considering species that undergo long 
selection processes. Thus, besides resources related to the determination of genetic designs, 
selection methods, and good agricultural experimentation, there is a new trend: the use of 
more refined analytical procedures, such as linear mixed models (Hiraoka et al., 2011) and 
artificial neural networks (Mugnai et al., 2008), for detailed studies of components of the mean 
and variance of a character, and in order to predict heritable variance, i.e., the genetic value.

In general, the biggest concern in relation to genetic improvement is the genetic value of 
the individual, so that selection is carried out with maximum accuracy. For better predicting the 
genetic value of a characteristic, it is possible to use phenotypic information about the individual 
itself or its relatives (descendants or ancestors), or information about other correlated character-
istics. The combination of all this information has been studied by several biometricians.

Genetic value is based on the additive model, and has played an important role in 
selection gain of complex characteristics in plants and animals (Crossa et al., 2010). Besides 
this additive model, Bayesian interactions - BLUP (Piepho et al., 2008) and genomic selection 
(Jannink et al., 2010) - have been used in plants and animals (González-Recio et al., 2008).

A method that has recently been used for more efficient selection of families is the ar-
tificial neural network (ANN). It has been used by several researchers for image classification 
in remote sensing (Aitkenhead and Aalders, 2008), analysis of genetic diversity (Barbosa et 
al., 2011), identification of superior genotypes (Mugnai et al., 2008), and prediction of genetic 
value in animals (Ventura et al., 2012). However, there is no report on the use of ANNs for 
predicting genetic value in balanced experiments in plants. Therefore, the aim of this study 
was to evaluate the efficiency of ANNs in predicting genetic value in experiments with a ran-
domized block structure.

MATERIAL AND METHODS

Simulation data

The design used for simulation of experiments was randomized blocks with six rep-
lications. Sixteen scenarios were simulated (experiments). For each scenario, there was a set 
of values ​​for heritability (10, 20, 30, and 40%), simulated coefficient of variation (CV; 5 
and 10%), and number of genotypes per block (150 or 200 genotypes) (Table 1). In order to 
validate neural networks, 100 populations were simulated (repetitions), keeping constant the 
genetic structure (variance and covariance matrix, mean heritability, and CV). The statistical 
model used in the simulation process was:
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Table 1. Estimates of the parameters established for defining simulated populations. Experiments with two 
population sizes were simulated in randomized blocks with six replications (150 and 200 genotypes per block).

		                                    Number of individuals per population

                                          150	                                                                                                                           200

Mean	 h2	 CV (%)	 Mean	 h2	 CV (%)

20	 10	   5	 20	 10	   5
20	 10	 10	 20	 10	 10
20	 20	   5	 20	 20	   5
20	 20	 10	 20	 20	 10
20	 30	   5	 20	 30	   5
20	 30	 10	 20	 30	 10
20	 40	   5	 20	 40	   5
20	 40	 10	 20	 40	 10

h2 = heritability; CV = coefficient of variation.

where Yij: simulated observation of a given characteristic; µ: overall mean of the characteristic, 
whose values ​​are shown in Table 1; Gi: effect associated with the ith genotype, being Gi ~ N (0, 
σ2g); Bj: effect associated with the jth block; εij: Random error, being. For data simulation with 
the normal distribution, we used the variables proposed by the Box-Muller transform:

with RND being an ANN random number. It has been shown that the x and y values obtained 
with the transform have a normal distribution with zero mean and variance V. As the simula-
tion process demanded to obtain n data points with mean µ and variance σ2, a strategy was 
used to generate data (z) by the following expression:

where θ is the repeatability of each simulated point. As the θ value is set higher by the pro-
gram’s user, the simulation becomes more accurate but slower.
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Simulation of block effects

The data set contained n values ​​in arithmetic progression, with ratio r and mean X , in 
which the first term is denoted by X1 and the last by Xn, and with variance given by:

Thus, for estimating block effects, there existed b fixed effects, whose values ​​consti-
tute an arithmetic progression of the ratio r, with the particularity that B1 = -Bb and . Therefore, 
the value Bb is estimated by:

and the other effects were established considering the ratio of the arithmetic progression are 
given by:

Simulation of effects of genotype

For estimating the effects of genotype, it was necessary to know the value of genetic 
variance, which was obtained from the information of heritability (h2), and the coefficient of 
variation (CV). Thus, we first obtained the environmental variance value by:

where σ2 is the environmental variance. Heritability (h2) is calculated by:
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σσ  is the genotypic variance. Consequently,

Random effect of genotype

The effect associated with the ith genotype was defined as ),0(~ 2
Gi NIDG σ . Once the 
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value of      was known, effects were estimated using the random function described above.

Simulation of random errors

Random errors are considered that θ. Since the CVe and characteristic mean are avail-
able, consequently the value of θ becomes known, and therefore, independent and random 
errors can be estimated using the random function described above.

All simulations were performed using the GENES software (Cruz, 2013).

Establishment of phenotypic and genotypic values

Once the mean value of the characteristic and the effects involved were known, the 
phenotypic values ​​of each variable were estimated by the model:

Genotypic values ​​were obtained as follows:

                                                        Zi = µ + Gi

Simulation of data for network training

For network training, simulated data were generated with the same characteristics as 
those for validation populations, defined by the mean, heritability, and CV.

For training purposes in this study, experiments with the same number of blocks (six) 
as the original experiments were simulated, but with an enhanced number of genotypes (5000). 
A larger number of genotypes will certainly benefit the process of predicting the correct value.

For this simulation, it was taken into account that each block represented a vector of 
phenotypic values ​​to be reproduced with the same mean, variance, and covariance. The vector 
of genotypic values ​​was also reproduced, considering that its variance and covariance together 
with the values of phenotypic vectors of blocks were represented by the estimate of the genetic 
variance. Thus, the concern was to obtain an enhanced data set [Zij ~ N (µ,σ2), where i = 1, 2, 
..., 5000, j = 1, 2, ..., 7, and a variance and covariance matrix sized 7 x 7, with Zi7 being the real 
genotypic value] from the original data [Yij ~ N (µ,σ2), where i = 1, 2, ..., 150 or 200, j = 1, 2, 
..., 6, and a variance and covariance matrix sized 6 x 6].

The effectiveness of the training process was assessed by the correlation between 
network values and genetic value (output) of evaluated genotypes.

Simulation of data for network validation

We used a procedure similar to that described in the simulation for training purposes; 
however, using a number of genotypes closer to the real test situation. We also used informa-
tion from new experiments simulated with the same characterization of the mean, heritability, 
CVe, and variance and covariance matrix. However, only 150 or 200 genotypes were used. It 
is noteworthy that tests for validation purposes, although also derived from the simulation, are 

(Equation 13)

2
Gσ

(Equation 12)
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not subsamples of the data set; i.e., they are new tests with environmental and genetic structure 
preserved.

Architecture of the neural network

In this study, we used multilayer neural networks. The proposed neural network has 1 
input layer, 3 intermediate layers, and 1 output layer. The input layer has 6 inputs (phenotypic 
value of the individual in the block). The input layer was based on a “n xm” matrix, where n is 
the number of blocks ranging from 1 to 6, and m the number of individuals in each block, which 
was 5000 in training experiments, and 150 or 200 in validation experiments. In the intermediate 
layer, the number of neurons per layer varied between one and 10 neurons in the first layer, one 
and 20 in the second, and one and 8 and in the third. The output layer consisted of one neuron, 
and the output was the genetic value of the population. This value was known in the training, 
but unknown in the validation. The best network architecture was established by the one with 
higher mean accuracy, considering the 43,200 possibilities, calculated by multiplying the num-
ber of neurons in each layer and the possible activation functions (10* 20* 8* 3* 3* 3). The ac-
tivation functions used were linear (purelin), hyperbolic tangent (tansig), logarithmic (Logsig), 
and Trainbr. Training lasted for 1000 epochs (iterations). The MATLAB 2011a software was 
used. The commands used for this ANN are found in Supplementary material.

Effectiveness of the ANN in genetic studies

The efficiency of the ANN was estimated by comparing the significance of correlation 
between network and genetic values in relation to the correlation between phenotypic means 
and genetic values. The square of the latter correlation represents the heritability of the char-
acteristic analyzed.

RESULTS AND DISCUSSION

Obtaining the experimental data

Applying spectral decomposition was effective in simulating populations with the 
same structure as the original ones, such as heritability, CV, mean, and variance and covari-
ance matrix. In a population with defined CV, h2, and mean, it was possible to simulate the 
population with characteristics very similar to these ones (Table 2).

The simulated mean was identical to the expected mean in all simulated populations. 
Thus, the simulation process ensures the preservation of the expected mean in 100% of the cases.

The simulated CV ranged from 4.97 to 5.4 for an expected CV of 5. For an expected 
CV of 10, the simulated CV ranged from 9.91 to 10.02. Thus, simulation produced a population 
where the simulated CV ranged from 1.2 to 1.8% for an expected CV of 5 and 10%, respectively.

The simulated heritability ranged from 8.65 to 11.19, 19.3 to 21.67, 28.73 to 31.04, 
and 39.05 to 40.86% for an expected heritability of 10, 20, 30, and 40%, respectively. Thus, 
we observed a variation in simulated h2 of 25.54, 11.84, 7.7, and 4.525%, for expected h2 of 
10, 20, 30, and 40%, respectively. Heritability was the parameter that presented the greatest 
variation. This fact is due to greater difficulty in keeping genetic variance constant. Once the 
expected h2

 increases, the variation of simulated h2
 decreases. Therefore, the present popula-

http://www.geneticsmr.com/year2015/vol14-2/pdf/gmr5403_supplementary.pdf
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tion simulation is more efficient for qualitative characteristics, i.e., it is less influenced by the 
environment since it is possible to keep the expected variances, and thus keep constant the 
heritability value.

The size of the simulated populations (150 or 200 individuals) did not influence the 
simulation process. The mean did not change for either population size. The simulated CV 
ranged from 4.97 to 5.04 and 4.98 to 5.4% in populations with 150 and 200 genotypes, respec-
tively, for an expected CV of 5%. With an expected CV of 10%, variation ranged from 9.93 to 
1.10 and 9.91 to 2.10% for populations with 150 and 200 genotypes, respectively.

Table 2. Characterization of original and simulated populations.

Pop	 h2
exp	 CVexp	 Xexp	 h2

sim	 CVSIM	 XSIM

150	 10	   5	 20	   11.02	   5.01	 20
150	 10	 10	 20	     9.21	 10.01	 20
150	 20	   5	 20	   21.67	   4.97	 20
150	 20	 10	 20	   20.28	 10.01	 20
150	 30	   5	 20	   30.82	   5.03	 20
150	 30	 10	 20	   30.18	 10.00	 20
150	 40	   5	 20	   39.05	   5.01	 20
150	 40	 10	 20	   40.86	   9.93	 20
200	 10	   5	 20	     8.65	   5.04	 20
200	 10	 10	 20	   11.19	 10.01	 20
200	 20	   5	 20	   21.12	   4.99	 20
200	 20	 10	 20	 19.3	 10.02	 20
200	 30	   5	 20	   31.04	   5.00	 20
200	 30	 10	 20	   28.73	 10.01	 20
200	 40	   5	 20	   40.00	   4.98	 20
200	 40	 10	 20	   39.38	   9.91	 20

Pop = number of genotypes per block; h2
exp = expected heritability; CVexp = expected coefficient of variation; Xexp 

= Expected mean; h2
sim = simulated heritability; CVSIM = simulated coefficient of variation; XSIM = simulated mean 

of the characteristic.

Obtaining enhanced data for network training

Obtaining training data becomes an extremely important practice for ensuring good 
efficiency in validating neural network estimations since networks require training data as a 
standard (Mather and Koch, 2011). Characteristics of training data selected for analysis are con-
siderably important for ANN performance. Training data must be defined for analysis as being 
representative data of its population. Quality and size of data sets for training are essential for the 
efficiency of ANNs (Kavzoglu, 2009). Therefore, it is very important that the training data used 
for predicting the genetic value are representative of the original experiment, since the network 
learns from these data for further estimation of genetic value in other experiments.

The size of the training set is crucial for the performance of networks. There is a direct 
relationship between the size of a dataset for training and the reliability of network valida-
tion estimate data. Sample size is related mainly to the statistical characteristics of the neural 
networks used for training. A sample with few individuals is not large enough for a neural 
network to recognize all possible classes. A larger sample can make the network more specific 
and improve the reliability of results; however, it requires longer computational time to per-
form network training (Kavzoglu, 2001).

There are two ways of obtaining an efficient training data set for use in an ANNs: 
the first is the use of time series, and the second is data simulation. The use of time series is 
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reported by Ventura et al. (2012), who worked with data from 19,240 Tabapuã cattle from 
152 farms located in several states between 1976 and 1995. They used the data to predict the 
genetic value of weight at 205 days of age, and used the Levenberg-Marquardt algorithm for 
network training. The authors concluded that genetic values ​​obtained by ANNs were highly 
correlated with those obtained by BLUP.

However, when it is not possible to obtain a time series for composing a set of training 
data, it is possible to obtain these data through the simulation process, as performed in this study.

Aiming at achieving a training population that retained the genetic structure of the ini-
tial experiment, the genetic structure of the initial experiment was used in the simulation pro-
cess of populations in the GENES software (Cruz, 2013). For simulation, the genetic structure 
of the initial experiment was maintained, i.e., mean, heritability, and CV were kept constant. 
Furthermore, it was possible to keep the matrix of variance and covariance consistent by us-
ing multivariate spectral decomposition. Thus, the training population was simulated with the 
same genetic structure as the initial population (Table 3).

We also observed that the training population simulated with 5000 genotypes per 
block kept the genetic structure of all populations initially simulated with 150 and 200 geno-
types, i.e., heritability, mean, and CV were kept constant despite an increase in the number of 
genotypes in the experiment. Therefore, it is possible through an experiment carried out either 
in the field or greenhouse, to obtain through simulation an experiment with a larger number of 
genotypes that retains the genetic structure of the initial experiment.

A remarkable characteristic of the simulation process, besides retaining genetic struc-
ture, is that the value of the training population is also simulated. Through simulated genetic 
value, the network will be able to learn about that experiment and predict the real genetic value 
of the initial experiment.

Table 3. Genetic structure of training population with 5000 genotypes per block.

Pop	 h2
sim	 CVSIM	 XSIM	 h2

sim	 CVSIM

150	 11.02	   5.01	 20	 10.78	   4.99
150	   9.21	 10.01	 20	 11.84	   9.96
150	 21.67	   4.97	 20	 21.13	   4.93
150	 20.28	 10.01	 20	 19.29	   9.99
150	 30.82	   5.03	 20	 29.19	   5.01
150	 30.18	 10.00	 20	 31.42	   9.89
150	 39.05	   5.01	 20	 38.18	   5.04
150	 40.86	   9.93	 20	 38.03	 10.05
200	   8.65	   5.04	 20	 10.77	   4.99
200	 11.19	 10.01	 20	 11.84	   9.96
200	 21.12	   4.99	 20	 18.98	   5.01
200	 19.30	 10.02	 20	 18.51	 10.00
200	 31.04	   5.00	 20	 30.84	   4.95
200	 28.73	 10.01	 20	 30.38	 10.00
200	 40.00	   4.98	 20	 40.10	   4.97
200	 39.38	   9.91	 20	 39.95	   9.98

POP = number of genotypes per block in the initial experiment; h2
sim = simulated heritability; CVSIM = simulated 

coefficient of variation; XSIM = characteristic simulated mean.

Performance of neural networks for predicting genetic value

For predicting genetic value, we found that neural networks were superior to the use 
of the mean phenotypic value (Table 4). In relation to the phenotypic value, the gain was 
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greater than 80% in 75% of simulated networks. Therefore, using neural networks for predict-
ing genetic value is better than using the phenotypic value since the network can reduce the 
environmental effect (noise) on a given experiment. Thus, the network value is closer to the 
real breeding value.

Table 4. Percentage of network gain (G) compared to the mean of 100 validation populations.

POP	 h2	 CV	 G* 

150	 10	   5	   82
150	 10	 10	 100
150	 20	   5	   61
150	 20	 10	   90
150	 30	   5	   66
150	 30	 10	   93
150	 40	   5	   99
150	 40	 10	   96
200	 10	   5	   83
200	 10	 10	 100
200	 20	   5	 100
200	 20	 10	   94
200	 30	   5	 100
200	 30	 10	   87
200	 40	   5	   71
200	 40	 10	   70

POP = number of individuals in each population; h2 = heritability; CV = coefficient of variation. *The gain of the 
network was calculated as the percentage of simulations in which the network value was higher than phenotypic 
value; G = 100* (number of populations where the network was superior/total number of populations).

Chen et al. (2010) verified the accuracy of ANNs in the range of 88-94% for the clas-
sification of maize seed. The high accuracy verified with the use of ANNs can be explained 
through the use of nonlinear models to generate an output (response) (Dai et al., 2011).

The use of ANNs is important in agriculture due to its potential in solving complex 
problems for conventional computational and mathematical techniques (Huang et al., 2010), 
and particularly in the selection of genotypes since environmental effects may disguise the 
potential of some genotypes; thus, selection is erroneous. ANNs can decrease these environ-
mental effects (noise) by backpropagation of error, which is a technique with great potential 
for prediction of genetic value.

We observed that there was no difference between simulated experiments with differ-
ent values of heritability (10, 20, 30, and 40%) and CV (5 and 10%). Therefore, even if the 
environmental effect is high in the experiment, the network value can approach the real breed-
ing value. Predictions of genetic value at different levels of heritability have been carried out 
by many researchers, especially for detecting quantitative train loci (Meuwissen et al., 2001; 
Bernardo and Yu, 2007).

ANNs were also efficient for predicting genetic value for low (10 and 20%) and mod-
erate (30 and 40%) heritability. Therefore, networks can be used for quantitative characteris-
tics (low heritability), being a promising alternative for predicting genetic value. Some authors 
have also found high efficiency in predicting genetic value ​​using neural networks (Cavero et 
al., 2008; Ventura et al., 2012).

The correlation between genetic value and network value was greater than the correla-
tion between phenotypic value and network value in all simulated scenarios. The difference 
between these correlations ranged from 0.64 to 10.3% (Table 5).
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Table 5. Correlation between genetic value and network value (r VG x VR), genetic value and phenotypic 
value (r VG x VF), and network value and phenotypic value (r VR x VF).

POP	 h2	 CV	 r VG x VR	 r VG x VF	 r VR x VF

150	 10	   5	 0.1536	 0.1254	 0.7758
150	 10	 10	 0.1205	 0.0984	 0.8124
150	 20	   5	 0.1972	 0.1683	 0.5962
150	 20	 10	 0.2338	 0.2111	 0.9414
150	 30	   5	 0.4069	 0.3689	 0.6699
150	 30	 10	 0.3506	 0.3313	 0.9376
150	 40	   5	 0.4283	 0.3982	 0.9334
150	 40	 10	 0.4501	 0.4075	 0.8927
200	 10	   5	 0.2242	 0.1574	 0.5496
200	 10	 10	 0.1714	 0.1173	 0.6295
200	 20	   5	 0.2142	 0.1985	 0.9184
200	 20	 10	 0.2505	 0.2302	 0.9346
200	 30	   5	 0.3385	 0.3175	 0.9414
200	 30	 10	 0.3436	 0.2989	 0.8273
200	 40	   5	 0.4278	 0.4071	 0.9179
200	 40	 10	 0.3402	 0.3294	 0.9669

POP = number of individuals in each population; h2 = heritability; CV = coefficient of variation.

Heritability is defined as the square of the genetic correlation. Thus, heritability cal-
culated by the network was higher than that calculated by the phenotypic mean. Therefore, 
selection gain will be higher if the correlation between network value and genotypic value is 
used since selection gain is correlated with heritability.

There was no difference between experiments containing 150 or 200 genotypes per 
block (Table 5). Thus, it is possible to use artificial neural networks for predicting genetic val-
ue in experiments with a reduced number of genotypes (such as experiments at the final stage 
of a breeding program), or even with an enhanced number of genotypes (as in pre-breeding 
experiments that evaluate a large number of families).

Crossa et al. (2010) found correlations between BLUP and phenotypic values of 0.41 
to 0.51. In this study, the correlation between network value and phenotypic value ranged 
between 0.5 and 0.98. This high correlation value is important since it was found that the 
network value is very close to the real value measured in the field. Heffner et al. (2009) con-
cluded that the correlation between real ​and estimated genetic values ​​is enough to consider 
the selection of the best genotypes in a breeding program, especially using genomic selection 
through molecular markers.

Crossa et al. (2010) concluded that the greatest gain selection, achieved by greater ef-
ficiency in the prediction of genetic value, may occur for the largest number of characteristics, 
or evaluated markers, or for the improvement of methods used for the prediction of genetic 
value. In the present study, ANNs were effective due to their high correlation with genetic 
value. Therefore, using ANNs for predicting genetic value can more accurately evaluate each 
genotype with no environmental effect. Thus, selection of the superior progenies in a breed-
ing program will be more efficient using the superior genotypic value, and not the superior 
phenotypic value.

There was no difference in the prediction of genetic values ​​for ANNs when the CV 
varied (5:10%) (Table 5). Therefore, it is possible to estimate the genetic value through neural 
networks, even when the variation within the block is high. Efficiency of selection in a breed-
ing program depends on the prediction of genetic value from phenotypic value or from the 
efficiency of another criterion used (Lorenzana and Bernardo, 2009). Thus, ANNs may ease 
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the selection of genotypes based on genetic value, and reduce the error caused by the effect of 
environment on phenotype.

We found that in simulated experiments with lower heritability (10 and 20%), the 
difference between the correlation between network value and genetic value and the correla-
tion between phenotypic value and genetic value was higher (Table 5). This is because when 
heritability is lower, the environmental effect of this characteristic is increased, i.e., noise is 
increased. Thus, the network can reduce the noise that occurs for characteristics with low heri-
tability. When heritability is higher (30 and 40%), the environmental effect is lower, as is the 
noise. Thus, even if the network reduces noise, such a reduction is miniscule.

The standard genetic model, resulting in a phenotypic value, is the sum of genetic and 
environmental values (Crossa et al., 2010). Thus, since the value obtained in experiments is 
the phenotypic value, it is difficult to obtain the real genetic value if the environmental value 
is too high. For a breeding program, which aims at selecting the best genotypes, estimated 
genetic value is extremely important for decision making, with no influence from the environ-
ment. As ANNs use nonlinear equations for estimating genetic value, it is possible to get closer 
to the real genetic value.

CONCLUSIONS

Artificial neural networks were effective at predicting genetic value in balanced experi-
ments in random blocks for quantitative characteristics (heavily influenced by the environment).
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