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ABSTRACT. Microarray data were collected from bile duct samples 
from subjects with malignant biliary strictures by endoscopic retrograde 
cholangiopancreatography to screen for key genes associated with this 
disease. A predicted interaction network was constructed for these genes 
to interpret their functions. The gene expression dataset GSE34166 (10 
samples: 6 malignant and 4 benign control samples) was downloaded 
from the Gene Expression Omnibus database. R package scripts were 
used to process the data and screen for differentially expressed genes. 
Genes identified were uploaded to the analysis tool String 8.3 to generate 
a gene interaction network. A hub gene was identified by calculating the 
node degree. The interaction network of the hub gene with other genes 
in the human genome was constructed and screened (score >0.9), and 
pathway-enrichment analysis was performed to elucidate the hub gene 
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function. In total, 377 differentially expressed genes were identified and 
a network comprising 209 pairs of interactions was constructed. The 
most critical hub gene was identified as GSTA1, and a GSTA1-based 
interaction network was constructed consisting of 25 genes (containing 
the differentially expressed gene GSTA3). The cytochrome P450 
(CYP450)-metabolic pathway displayed the most significant enrichment. 
Additionally, 4 transcription factors and their binding sites were also 
identified. In conclusion, we have identified the differentially expressed 
genes GSTA1 (a hub gene) and GSTA3, which may cause abnormal gene 
expression and tumorigenesis through CYP450-metabolic pathways. 
The transcription factors and their binding sites in the promoter of the 
hub gene provide potential directions for future drug design.
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INTRODUCTION

Biliary strictures consist of abnormal narrowing of bile duct and are the result of 
different causes, the most common of which is surgical injury to the bile duct. Other risk 
factors include cancer of the bile duct (Gamblin et al., 2009), pancreatitis, and gallstones 
(Dooley, 2011). The condition can be divided into benign and malignant biliary strictures, 
the latter of which results from primary or metastatic cancers.

Endoscopic retrograde cholangiopancreatography (ERCP) is a minimally invasive 
surgery method to examine the pancreatic duct and was developed by McCune in 1968. 
Since then, endoscopic drainage, biliary lithotomy, endoscopic pancreatic duct drainage, 
and embolization have also been developed (Nourallah et al., 1999; Lehman, 2002). These 
new methods are used with additional techniques, such as high-frequency electric knife, 
laser, microwave, and electrohydraulic shock wave methods, which have further broadened 
the therapeutic range of ERCP. Today, ERCP is an important tool for diagnosing and treating 
pancreaticobiliary disease. Nevertheless, several risks remain especially serious postopera-
tive complications that require vigilance in clinical practice.

With the recent advance of life science technologies for diagnosis and treatment of 
various tumor diseases, such as lung cancer, thyroid tumor, the use of genetics approaches has 
increasingly attracted attention (Bernig and Chanock, 2006; Garcia and Folpe, 2010). Progress 
has also been made in detecting malignant biliary strictures. For example, previous studies 
have identified a point mutation in the KRAS gene that can be used for diagnosing malignant 
and benign biliary strictures. Nischalke et al. (2012) have shown that, in addition of cytology, 
the use of RT-PCR for measuring the expression of insulin-like growth factor 2 mRNA binding 
protein 3 (IGF2BP3), HOXB7, and NIMA (never in mitosis gene A)-related kinase 2 (NEK2) 
genes improves the detection of malignant biliary disorders. Hass et al. (2008) have shown that 
osteopontin was the most consistently overexpressed gene in intrahepatic cholangiocarcinoma.

However, few studies have used high-throughput screening for and functional anal-
ysis of genes differentially expressed in malignant biliary strictures. To this end, we ana-
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lyzed microarray data obtained from benign and malignant biliary stricture samples obtained 
by ERCP to identify hub and related genes through interaction network analysis by bioinfor-
matic methods. These genes may be potential targets for future drug design or detection of 
cholangiocarcinoma.

MATERIAL AND METHODS

Microarray data

The data set GSE34166 (Chapman et al., 2012), including raw files and probe annota-
tions, was downloaded from the Gene Expression Omnibus (GEO) database, which contains 
10 biliary stricture samples, representing 4 benign and 6 malignant tissues (cholangiocarci-
noma). Chip data were acquired by using the GPL570 [HG-U133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array. Probe annotation was obtained from Affymetrix that included 
information for all the probes on the Affymetrix ATH1 (25K) chip.

Data processing and identification of differentially expressed genes

Raw data were processed using the package Affy of R, including filling in of missing 
data with the KNN method (Marques et al., 2011) and data normalization with the median 
method (Fujita et al., 2006). The LIMMA package (Smyth, 2005) was used to identify dif-
ferentially expressed gene, followed by multiple-testing corrections with Bayesian methods 
(Benjamini and Hochberg, 1995). A P value of <0.01 and fold-changes in expression of >2 or 
<-2 were used as cutoffs to identify differentially expressed genes.

Screening for hub genes

All genes identified as differentially expressed were uploaded to String (Szklarczyk et 
al., 2011), to identify interactions between gene products using database information as well as 
characteristics of the input sequence. According to known protein interaction networks, most 
of them possess a scale-free property (Albert, 2005), i.e., most nodes have only a few connec-
tions, and a few nodes in the network have a large number of connections. These few nodes are 
called critical network nodes (hub nodes). After the interaction network was generated, a node 
analysis was performed to screen of hub protein by using the scale-free property.

Construction of the interaction network for the hub gene

The hub gene was analyzed again by String to establish its predicted interaction net-
work. Interaction pairs with score >0.9 were considered hub gene candidates.

Pathway-enrichment analysis

All of the genes in the predicted interaction network were uploaded to the DAVID 
software (Huang et al., 2009), to calculate enriched pathways using hypergeometric distribution 
algorithm (false-discovery rate [FDR] <0.05 and count >2).
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Hub gene-related transcription factors (TFs)

The DNA-binding domain in transcription factors binds to cis-acting elements in 
DNA sequences (Stower, 2011), to inhibit or enhance gene expression. The text mining-based 
function of the free online tool EpiTect ChIP qPCR Primers (Han et al., 2010) was used to 
extract TFs of the hub gene from the published literature and other public resources.

RESULTS

Differentially expressed genes

Raw data were normalized (see Figure 1) and then screened for differentially ex-
pressed genes. In total, 377 differentially expressed genes were identified according to the 
pre-set criteria (P < 0.01, |logFC| > 1): 212 of these genes displayed down-regulated and 165 
up-regulated expression.

Figure 1. Box plots for the normalized chip data, 4 blue boxes for benign biliary stricture samples and 6 pink boxes 
for malignant samples. Black line in the box represents the median of data set. The black lines are almost on the 
same line, indicating good effectiveness of normalization.
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Screening for hub genes

The protein interaction network for the differentially expressed genes was generated 
using the String software and 209 pairs of interaction were identified. Topological analysis 
was performed on the network and showed a scale-free property (Figure 2). Fitting of the 
power law generated the following equation: y = 117.8x(-1.81) (see curve in Figure 2), wherein 
the x-axis is the node degree (k) and the y-axis is the number of nodes with degree k. As shown 
in figure, GSTA1 (9) had the highest number of nodes, indicating its important role in the net-
work and suggesting that GSTA1 is a hub gene.

Determining the functions for the hub gene

The newly identified hub gene GSTA1 was set at the center to construct an interaction 
network consisting of 25 nodes against the background of the entire human genome (Figure 
3). The differentially expressed gene GSTA3 was included in the network, whereas most of the 
other gene members belonged to the cytochrome P450 (CYP450) family.

Figure 2. Distribution of node degree for the interaction network. The x-axis is the node degree (k), i.e., number of 
node directly connected to the specific node, and the y-axis is the number of node with degree k. The red line is a 
power function curve fitting the data points.
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The 25 nodes were analyzed with the DAVID software, which uncovered 3 signifi-
cantly enriched pathways (FDR < 0.05) (Table 1), in which metabolism of exogenous chemi-
cals by CYP450 was the most significant pathway. As shown in Figure 3, most nodes interact-
ing with GSTA1 and GSTA3 belonged to the CYP450 family. Thus, we speculate that the hub 
gene GSTA1 and the differentially expressed gene GSTA3 interact with CYP450 members and 
cause tumorigenesis through the pathways of exogenous metabolism by CYP450.

In addition, 4 transcription factors including Sp-1, Ap-1, c-Jun, and c-Fos that bind 
to the promoter of the key gene GSTA1 and their corresponding binding sites were identified 
(Figure 4).

Figure 3. Predicted interaction network for the hub gene GSTA1.

ID Term Count P value FDR

hsa00980 Metabolism of xenobiotics by cytochrome P450 22 1.24E-39 8.41E-37
hsa00982 Drug metabolism 20 8.35E-34 5.67E-31
hsa00480 Glutathione metabolism 15 1.97E-23 1.34E-20

Table 1. Pathway-enrichment analysis result for all the genes in the predicted interaction network.

FDR = false-discovery rate.
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DISCUSSION

Our analysis of the chip data from cholangiocarcinoma tissues (Chapman et al., 2012) 
identified several differentially expressed genes, including GSTA1 and GSTA3. According to 
the network analysis, these two genes interacted with CYP450 members and thus participate 
in the CYP450 exogenous chemical metabolism.

Both GSTA1 and GSTA3 encode glutathione S-transferases (GST), which are in-
volved in detoxification of electrophilic compounds, including drugs, toxins, and carcino-
gens, by conjugating these compounds with glutathione (Khan et al., 2011). Kobayashi et 
al. (2000) reported a GST as a new sensitive marker of hepatocellular damage in biliary 
atresia, and Nakajima et al. (2003) reported that GST-pi is involved in resistance to anti-
cancer drugs used for treating cholangiocarcinoma. Daorueang et al. (2012) uncovered the 
underlying mechanism for GST-promoted cell proliferation that accelerates the formation 
of cholangiocarcinoma.

CYP450 is a protein family widely distributed in human tissues and requires an iron 
porphyrin as prosthetic group. Most members are monooxygenases that catalyze a variety of 
metabolic reactions (Bruno and Njar, 2007). The CYP450 superfamily can be broadly divided 
into two categories according to the metabolic substrates used: one contains P450s for the 
metabolism of endogenous compounds (such as steroids), and the other for the metabolism of 
exogenous substances (such as drugs, poisons, and carcinogens or mutagens). The pathway 
interacting with the hub gene is involved in oxidation, reduction of exogenous substances, as 
well as oxidative metabolism, and thus plays an important role in activating prodrugs or car-
cinogens or degrading drugs or poisons (Karlgren et al., 2006). CYP450 enzymes frequently 
produce intermediates or final products that have strong affinities for electrons and these in-
termediates may interact with nucleophilic groups in intracellular macromolecules, such as 
DNAs, RNAs, or proteins. This may cause destruction of cell structures, enzyme inactivation, 
gene mutations, or suppression of gene expression, and ultimately result in cell damage, pro-
grammed death, or tumorigenesis (Iizasa et al., 2005). Changes in CYP450 genes can lead to 
increased or decreased P450 activity or complete inactivation of the affected enzyme (Klotz, 
2006), and increased expression of CYP450 has been associated with cancer (Gharavi and El-

Figure 4. Transcription factors and binding sites for the hub gene GSTA1. Red arrow indicates the starting site of 
the transcription, and green bars indicate the binding sites for each transcription factor.
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Kadi, 2004; Bandala et al., 2012). Several studies have reviewed the association of CYP450 
polymorphisms with susceptibility to cancer (Han and Zhou, 2000; Sergentanis et al., 2012), 
and because CYP450 enzymes are involved in the metabolism of many drugs, CYP450 activi-
ties have to be considered in the design of anticancer therapies (van Schaik, 2008). 

Because GSTA1, GSTA3, and CYP450 have similar functions, it is not unexpected 
that these proteins strongly interact with each other. Several studies have indicated that these 
proteins are involved in drug metabolism and are therefore associated with susceptibility to 
cancer (Forrester et al., 1990; Lin et al., 1998; Tan et al., 2000) and other diseases (Burim et 
al., 2004). We believe that further studies are needed to investigate the associations between 
these proteins to improve our understanding of the mechanisms and processes underlying the 
formation of malignant biliary strictures.

In addition, TFs have attracted increasing attention because they are involved in regu-
lating gene expression and thus play an important role in the onset, development, invasion, 
and metastasis of tumors. Because TFs are potential targets of new anticancer drugs (Darnell 
Jr., 2002), we screened for the TFs that control expression of the GSTA1 gene and for their 
binding sites in the GSTA1 promoter. This analysis yielded identification of the 4 TFs includ-
ing Sp1 (Ebert et al., 2003), AP-1 (Romero et al., 2006), c-Jun (Hayes and McMahon, 2001), 
and c-Fos (Tang et al., 2008) and of their binding sites in the GSTA1 promoter. The differential 
expression in GSTA1 genotypes defined by the C-69T substitution has been attributed to an 
alteration of the Sp1 transcription factor (Tijhuis et al., 2005). c-Jun participates in transducing 
chemical stresses like chemopreventive blocking agents (Hayes and McMahon, 2001). There-
fore, these TFs may be potential drug targets worthy of further characterization.
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