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Abstract. Following sequence alignment, clustering algorithms are 
among the most utilized techniques in gene expression data analysis. 
Clustering gene expression patterns allows researchers to determine 
which gene expression patterns are alike and most likely to participate 
in the same biological process being investigated. Gene expression 
data also allow the clustering of whole samples of data, which makes 
it possible to find which samples are similar and, consequently, which 
sampled biological conditions are alike. Here, a novel similarity mea-
sure calculation and the resulting rank-based clustering algorithm are 
presented. The clustering was applied in 418 gene expression samples 
from 13 data series spanning three model organisms: Homo sapiens, 
Mus musculus, and Arabidopsis thaliana. The initial results are strik-
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ing: more than 91% of the samples were clustered as expected. The 
MESs (most expressed sequences) approach outperformed some of the 
most used clustering algorithms applied to this kind of data such as 
hierarchical clustering and K-means. The clustering performance sug-
gests that the new similarity measure is an alternative to the traditional 
correlation/distance measures typically used in clustering algorithms.

Key words: Gene expression; Clustering; Similarity measure;
Most expressed sequences

Introduction

Unsupervised learning is the problem that involves learning patterns in the input data when 
no specific output information is supplied in order to guide the process (Russell and Norvig, 2003). 
Clustering is one kind of unsupervised learning where input data composed of instances of some 
concept are grouped together so that for any group (referred to as a cluster) every single instance is 
more similar to another one from its own cluster than to any other from a different cluster. Cluster-
ing is one of the most largely used approaches in gene expression data analysis (Eisen et al., 1998; 
Golub et al., 1999; D’haeseleer et al., 2000; Handley, 2002; Jiang et al., 2004; D’haeseleer, 2005). 
Among the most used methods for clustering gene expression data are K-means (McQueen, 1967), 
neural nets SOM (self organizing map) (Kohonen, 1984), very well known to the artificial intel-
ligence community, the hierarchical clustering (Eisen et al., 1998), and the graph-based approaches 
such as CLICK (Shamir and Sharan, 2000) and CAST (Ben-Dor et al., 2001). Applying a clustering 
method to gene expression data sampled at different points of time, a researcher can determine, for 
example, which genes have similar patterns of expression over time. Such genes are expected to 
be co-regulated and take place in the same biological process. Moreover, gene expression data can 
be used to cluster not only specific genes based on their common expression patterns over time or 
biological conditions, but also to cluster whole samples of data (Alon et al., 1999; Golub et al., 1999; 
Jiang et al., 2004). That kind of gene expression data clustering is very important in cancer classifica-
tion, for example, since drugs that work for one type of cancer may not work for a slightly different 
type (Golub et al., 1999). Besides, it allows for cell type classification, comparison of the whole cell 
or tissue expression at different time points, subject to different conditions, diseases, etc.

Clustering samples of gene expression data has specific and important features that 
must be considered when developing a clustering method (Jiang et al., 2004): 1) the number 
of samples is usually small (<100); 2) the number of characteristics (sequences) in the sample 
is high (thousands), and 3) the vast majority of sequences (characteristics) present in a sample 
cannot be informative (Golub et al., 1999), that is to say, do not contribute to computing 
the similarity measure based on which two samples are put in the same cluster. To address 
these features, one could depict an approach that would diminish the number of characteristics 
to concentrate on the most informative ones. The methodology presented here contemplates 
these three points by reducing the number of characteristics to be considered informative in 
the similarity measure calculation and using a hierarchical approach to clustering. The latter 
is best suited when a small number of objects must be grouped together, since statistical ap-
proaches can lose reliability when applied to a small number of objects (samples).

The main approaches to the clustering problem use some kind of statistical or Eu-
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clidean distance-based similarity measure (D’haeseleer, 2005). For example, in the K-means 
method, the similarity measure is the Euclidean distance from one object to the cluster cen-
troids (McQueen, 1967) and in the hierarchical clustering, Euclidean distance, Pearson cor-
relation, and ‘uncentered’ correlation (angular separation) (Eisen et al., 1998; D’haeseleer, 
2005) are frequently employed. As a case study, different tissues were clustered to test if their 
ontology would be reflected in the similarity of gene expression patterns.

Material and Methods

A novel similarity measure and clustering algorithm was developed to cluster samples 
of gene expression data. This kind of data can be arbitrarily divided into the least expressed 
sequences, most expressed sequences (MESs), and those sequences with intermediate expres-
sion. Regarding specifically the microarray technology, the least expressed sequences should 
be avoided since their expression level is not reliable. Intuitively, the more expressed a gene is, 
the more influence it has in cell functions disregarding the regulatory mechanisms. Thus, dif-
ferent kinds of cells enacting different functions are expected to have a different set of MESs, 
and similar cells are expected to pursue a like set of MESs. Using this premise, the algorithm 
presented below was developed and is described as follows.

For each of the N samples (called singletons because they are clusters of size 1), sort 
its sequences in decreasing order of expression. Afterward, count the shared (common) MESs 
among every possible pair of distinct samples. However, the counting is performed in incre-
ments of length I (like a “jumping” window of length I) and a percentage (number of shared 
MESs divided by I) is calculated. Each percentage value is divided by the window distance 
from the topmost increment (where the topmost increment distance equals 1, the second one 
2…) and summed to form the pair’s rank value. In order to count every common MESs, count-
ing is performed not only in the current window, but from the start of the MESs list to that in 
the current window, taking care not to double count any MES. Afterward, sort the pairs ac-
cording to the rank value to build a ranking. Merge the ranking topmost pair and treat it as one 
sample thereafter. Repeat all this merging process until all samples are clustered. This algo-
rithm has time complexity O ((M / I) × N2) using proper data structures in the implementation. 
The ranking value for samples s1 and s2 can be analytically described by

(Equation 1)

where d is the window distance and Ci, j(s1, s2) equals 1 if  and only if sequence i (in sample 
s1) is equal to sequence j (in sample s2) and they were not counted yet or equal 0, otherwise, 
considering samples s1 and s2.

When a pair of samples is merged, the list of pairs must be updated to remove pairs in-
volving the sample components of the merged pair. Let s[a, b] be the similarity (the rank value) 
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between samples a and b. Let k be a sample that has two pairings, one to a and one to b. Thus, 
the similarity between k and the merged pair (a, b) is: s[k, (a, b)] = max(s(k, a), s(k, b)). This is 
similar to the complete linkage option of hierarchical clustering (Eisen et al., 1998) if the rank 
value (derived from the MESs shared number) is interpreted as similarity (not distance) between 
two samples (so the two samples are at the smallest distance). It is the best-suited methodology 
for the present rank-based approach since the best-positioned pairs in the ranking are clustered 
first producing the clustering in which the common MES number (reflected by the ranking value) 
is the highest one for each sample pair.

Besides the expression ordering, it is possible to aggregate “clustering options” 
to the approach. Which kind of sequence should be considered in computing ranking val-
ues? Three kinds of sequences can be easily defined: 1) maintenance sequences, which 
are present in all samples being clustered, so-called housekeeping genes (Warrington et 
al., 2000; Hamalainen et al., 2001; Goossens et al., 2005; Mudado and Ortega, 2006; 
Pohjanvirta et al., 2006) and better called maintenance genes by Warrington et al. (2000); 
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2) non-maintenance sequences, those not present in at least one sample, and 3) all se-
quences, which do not exclude any sequence. Moreover, another useful option when clus-
tering samples from different sources is the Unigene id. For example, different Affymetrix 
GeneChips (Lockhart et al., 1996) can hold different probe set sequences under the same 
Unigene id. Grouping sequences with the same Unigene id and using it to count the com-
mon sequences can be used to cluster different datasets.

In order to determine the best values for the parameters I (the increment) and 
M (the number of MESs to consider), the following approach was taken. Two data se-
ries downloaded from the NCBI GEO database (Barrett et al., 2005) were chosen: one 
with easily definable and visualizable clusters (GEO accession gse607) and another with 
clusters that are difficult to define and visualize: gse2361 (see Table 1 for some details 
on each of the series). Combinations of I and M values were set and the corresponding 
ranking was built. The increment values were chosen to be I = 10, 30, 50,…M / 2  and 
the number of MESs were M = 100, 200, 300,…(MEAN / 4), where MEAN is the mean 
number of sequence expressed in all series’ samples. Considering the three kinds of 
sequences described above, I and M possible values, around one thousand tests were 
performed. The metric criterion used to select the values of the parameters was one that 
minimized the ranking positions of the samples. This is a reasonable metric criterion 
since the topmost pairs will have their samples clustered first. Hence, this metric is 
aimed at building a cluster as fast as possible by generating a ranking where the samples 
are nearest to the top. For these two series, the best combinations of I and M values were 
located around 100 and 1000, respectively, and those values were set as the defaults for 
the parameters I and M, respectively.

In order to demonstrate that the above approach to clustering really works, 13 data 
series publicly available in the NCBI GEO database were downloaded and their features 
relevant to the present study are summarized in Table 1. Only series built on the top of 
Affymetrix GeneChips were used because the data stored in the GEO database are more 
uniform for those series than for those from other platforms. The series were randomly 
chosen provided they were generated not only from human tissues. Besides, some series re-
lated to cancer were included too. Series gse2361 and gse96 were chosen because they are 
composed almost entirely of samples from human normal tissues. All series were clustered 
separately, except for series gse1892, which was used only in arrangements with other 
series in cancer sample clustering (see “Cancer clustering” in the Results and Discussion 
section). The reason for excluding it is that the data available in the GEO database are not 
complete for that series: some samples are not present preventing a reliable clustering for 
it. Therefore, it was decided to keep it only for a more exploratory experiment. For compar-
ison’s sake, four well-known clustering algorithms were used: K-means (McQueen, 1967), 
EM (expectation maximization) (Russell and Norvig, 2003), farthest first (Hochbaum and 
Shmoys, 1985), and hierarchical clustering (Eisen et al., 1998). For the first three, WEKA 
(Witten and Frank, 2000) implementations were used running with default parameters, 
except for the number of clusters, which was adjusted accordingly (see Results and Discus-
sion).  Cluster 3.0 (de Hoon et al., 2004) and TreeView (Saldanha, 2004) programs were 
used for the hierarchical clustering. It is important to remark that the main objective of 
the tests is not to compare the clustering algorithms per se, but the clustering algorithms’ 
performance using the specified similarity measure.
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GEO	 Organism	   Number of	 Reference	 Biological hint and
accession		    samples		  short description

gse607	 Arabidopsis thaliana (ath)	   11	 Bergmann et al., 2004	 Analysis of gene expression
				    in three main structures of the
				    plant: leaf (harvested 15th day
				    post-germination), stem, and flower
				    (harvested 29th day post-germination).
gse1036	 Homo sapiens (hsa)	   12	 Addya et al., 2004	 Leukemia. Human K562 
				    erythroleukemia cell line 
				    treated/non-treated with hemin 
				    (an inducer of erythroid commitment).
gse1432	 Homo sapiens (hsa)	   24	 Rock et al., 2005	 Central nervous system cells. 
				    Response of human microglial
				    cells to interferon-γ at 1, 6, and
				    24 h after the start of treatment.
gse1493	 Homo sapiens (hsa)	     6	 Manfredini et al., 2005	 Human stem cells. Studies on 
				    the expression profiles of three 
				    different hematopoietic stem
				    cell categories.
gse1541	 Homo sapiens (hsa)	   20	 dos Santos et al., 2004	 Immortalized human pulmonary 
				    epithelial cells (A549) submitted 
				    to five different study conditions at
				    two different time points.
gse1614	 Homo sapiens (hsa)	   12	 Fleet et al., 2003	 Intestinal differentiation. Caco-2 
				    BBe cells expression profiles in
				    three different stages.
gse1982	 Homo sapiens (hsa)	 103	 Boni et al., 2005	 Cancer. Peripheral blood mononuclear
				    cells were profiled over time 
				    (3 time points) in the CCI-779 
				    treatment of 46 subjects with advanced 
				    renal cell carcinoma.
gse2361	 Homo sapiens (hsa)	   36	 Ge et al., 2005	 Expression profile of 36 different types 
				    of normal human tissues.
gse511	 Homo sapiens (hsa)	   30	 Vahey et al., 2002	 HIV infection. Peripheral blood 
				    mononuclear cells from three normal 
				    human donors were infected in vitro 
				    with the T cell tropic laboratory strain 
				    of HIV-1, RF
gse8692	 Homo sapiens (hsa)	   12	 Liu et al., 2007	 Cancer. Expression analysis of RNA 
				    extracted from 12 human brain
				    primary tumor biopsies.
gse96	 Homo sapiens (hsa)	   85	 Su et al., 2002	 Normal human (67 samples) and
				    cancerous (18 samples).
gse1912	 Mus musculus (mus)	   25	 Lin et al., 2004	 Temporal analysis of mouse hair
				    cycle gene expression (8 time points).
gse2195	 Mus musculus (mus)	   42	 Moggs et al., 2004	 Analysis of gene expression changes
				    during estrogen-induced growth of 
				    uterus (7 time points)

Table 1. The data series used in the present study.

Results and Discussion

In order to test the MESs approach to clustering, 13 GEO series (Table 1) totaling 
418 samples were clustered one-by-one and/or in some arrangements. It is necessary to define 
what a “hit” is and what a “miss” is in order to evaluate the clusters found by the methodol-
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ogy presented here. What is a hit or a miss depends on each dataset and was defined according 
to the published reference paper for the corresponding series as shown in Table 2. Table 3 
presents the results considering the correct (a hit) and incorrect (a miss) pairing (not clusters) 
of each sample for each series subjected to clustering (only results for the series clustered 
alone are shown). One exception is the gse2361 series in which correct pairings are difficult 
to define. See “Dirty (fuzzy) clustering” in this section. Therefore, a hit occurs if a sample is 
paired to another one that fulfills the criteria defined in Table 2. Hence, the results in Table 3 
refer to that definition and are remarkable: 91% of the samples paired as expected. Regarding 
the clustering that was performed on datasets from three different organisms for many differ-
ent tissues and biological conditions (different stages of development, differentiation, normal 
and cancerous tissues, etc.), these results are very impressive. Some remarks about specific 
results follow.

Series	 What is a correct pairing?

gse607	 The samples belong to the same plant structure (leaf, stem or flower)
gse1036	 Two samples from the same time point should align
gse1432	 Two samples from controls or two samples from the same time point
gse1493	 Two replicates from the same cell type
gse1541	 Two samples from the same condition
gse1614	 Two replicates from the same time point
gse2361	 Undefined (see Results and Discussion section)
gse511	 Two samples from the same condition or two samples from the same time point
gse8692	 The samples extracted from the same kind of tumor
gse96	 Samples from the same tissue
gse1912	 Samples belonging to the same time point
gse2195	 Two samples from the same condition

Table 2. Definition of a correct pairing in each data series clustered alone.

Series 1982 was not included in these clusterings in which a correct pairing was identified. See text for details.

Series	   Samples	   Hits	   Misses

gse607	   11	     11 (100%)	   0 (0%)
gse1036	   12	     8 (67%)	   4 (33%)
gse1432	   24	   22 (92%)	   2 (8%)
gse1493	     6	       6 (100%)	   0
gse1541	   20	    19 (95%)a	   1 (5%)a

gse1614	   12	     12 (100%)	   0
gse511	   30	   21 (70%)	   9 (30%)
gse8692	   12	   10 (83%)	   2 (17%)
gse96	   85	   82 (96%)	   3 (4%)b

gse1912	   25	   23 (92%)	   2 (8%)
gse2195	   42	   39 (93%)	   3 (7%)
Total	 279	 253 (91%)	 26 (9%)
aThis dataset seems to have a very strong bias to time point pairing. The number of hits/misses refers to time point 
pairing. With regard to cell conditions, no sample paired to a sample of the same condition. bIn fact, the three 
samples were paired to a sample from a different tissue because there was no other sample from the cognate tissue. 
The cortex sample was paired to an amygdala sample that cannot be considered a totally incorrect decision.

Table 3. The number of correct (hits) and incorrect (misses) pairings for the series analyzed.
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The series gse1541 (dos Santos et al., 2004) is composed of data collected from lung 
alveolar tissue subjected to five different conditions. In fact, the clustering was not capable of 
distinguishing between different conditions but was good at distinguishing between different 
time points, which suggests that different conditions were not stronger in terms of the MESs 
than the different time points considered in that work. Even considering different numbers 
of MESs (1000, 500, 200, 100, 50, and 20), the pairings maintain the same pattern: samples 
from the same time point cluster preferentially. Another important point is related to gse96 
series (Su et al., 2002), where the three misses were due to the lack of a replicate to mate those 
samples. However, for one sample (from cortex) a good pair was found, amygdala. The other 
misses for this series are for the retinoblastoma and HepG2 (human hepatocellular carcinoma 
cell line) samples that paired to an umbilical vein endothelial cell (HUVEC) sample. Still, 
overall, 91% of the experimental data (Table 3) point to a model where the expression pattern 
of MESs represents the similarity of distinct cellular functions.

Clean clustering?

It is not a very simple task to evaluate clustering quality, even more complicated if 
the objects to be clustered are samples of gene expression data composed of thousands of at-
tributes (genes). In fact, even for humans, it is very difficult to identify clusters inside a gene 
expression dataset. That is a very laborious and difficult task due to two main factors: the 
amount and complexity of the data. Table 4 summarizes the expected number of clusters to 
four data series presented in Table 1 where the clusters are clean, that is to say, very easy to 
define. The column “Expected clusters” reflects that difficulty. Only for three datasets (gse607, 
gse1493, and gse1614) is it easy to identify the clusters. For gse8692 the expected clusters are 
defined a bit arbitrarily since one of the samples in that dataset presents phenotypic features 
that allow one to include it in two clusters. The series gse2361 and gse96 simply cannot have 
easily defined clusters (see next subsection) and the clustering of such kind of dataset falls into 
what we call dirty clustering (fuzzy should be a better term than dirty, but to avoid confusion 
for the savvy artificial intelligence reader, we decided to use dirty).

Series	 Organism	 Samples	 Expected clusters

gse607	 Ath	 11	 3
gse1036	 Hsa	 12	 2(d)/6(t)
gse1432	 Hsa	 24	 4(d)/3(t)
gse1493	 Hsa	   6	 3
gse1541	 Hsa	 20	 5(d)/2(t)
gse1614	 Hsa	 12	 3
gse2361	 Hsa	 36	 ?
gse511	 Hsa	 30	 3(d)/5(t)
gse8692	 Hsa	 12	 3
gse96	 Hsa	 85	 ?
gse1912	 Mus	 25	 3(d)/8(t)
gse2195	 Mus	 42	 3(d)/7(t)

Table 4. The expected number of clusters for the series presented in Table 1.

(d) refers to the expected clusters considering different kinds of donors, tissues, replicates, etc., that can be used to 
cluster samples. (t) refers to the number of time points analyzed by the researchers in a time series study and that 
can be also used to cluster samples.
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Table 5 presents a comparison of MESs clustering with the four well-known clus-
tering algorithms: K-means, EM, farthest first, and hierarchical clustering. The “Samples 
in clusters” column gives the number of samples in each cluster (all series have three 
expected clusters). The number of correct clustered samples and the percentage of hits are 
shown, where a hit means a correct attribution of a sample to its expected cluster (e.g., 
for the gse607 series there are three clusters with 3, 4, and 4 samples in each one). Con-
sidering hierarchical clustering, for each series, single/average/complete linkage options 
were run using Euclidean distance measure. Besides, self organizing map (SOM) ordering 
before hierarchical clustering was run. Additionally, Pearson (uncentered) correlation was 
used as distance measure. The linkage type does not matter, whereas the Pearson correla-
tion is crucial: the best results used that distance measure. An important additional remark 
is that the results for hierarchical clustering are not totally precise because it is not pos-
sible to retrieve the correct pairings of every clustered sample from the results produced 
by the Cluster and TreeView programs. Therefore, only those samples undoubtedly as-
signed to the correct cluster were considered. The results shown in Table 5 are those using 
the arrangement of options that produced the best possible results for each algorithm, and 
similarity measure is restricted to MESs only for the procedure proposed here. Besides, 
for K-means, EM, and farthest first, the correct expected number of clusters was previ-
ously set for each run.

Series	 Samples in clusters	 MESs	 K-means	 EM	 Farthest	 Hierarchical
					     first	 clustering*

gse607	 {3, 4, 4}	 11 (100%)	    8 (72.7%)	   9 (81.8%)	 11 (100%)	 11 (100%)
gse1493	 {2, 2, 2}	   6 (100%)	 3 (50%)	   6 (100%)	   6 (100%)	  6 (100%)
gse1614	 {4, 4, 4}	 12 (100%)	 9 (75%)	 12 (100%)	  11 (91.7%)	 11 (91.7%)
gse8692	 {3, 3, 6}	  10 (83.3%)	 9 (75%)	 6 (50%)	 9 (75%)	 6 (50%)*

Averaged hit rate	 -	              95.1%	              70.7%	             80.5%	             90.2%	              82.9%

Table 5. The percentage of hits (correct clustering) for four series when clustered by four different clustering 
algorithms.

*Only the samples undoubtedly assigned to their correct clusters were considered when using hierarchical clustering. 
MESs = most expressed sequences; EM = expectation maximization.

In general, the MESs suitably clustered the four datasets, whereas the others per-
formed very well on some sets and poorly on others. Farthest first was the best overall 
among the other three, even though hierarchical clustering demonstrated a comparable 
result. Farthest first is the best possible heuristics for a problem similar to clustering 
(Hochbaum and Shmoys, 1985) and proved to be more adequate for gene expression 
data than EM and K-means. The main problem with the three algorithms used in this 
comparison is that they are not able to determine what is the correct number of clusters 
presented in the data. That number must be provided before the algorithm execution. 
Figure 1 shows the clustering produced by MESs working on these four data series. In 
the figure, the column “Common MESs” gives the number of MESs shared only by the 
pair of samples shown in each line, and “Rank” is the position of that pair in the original 
ranking for the data set.
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Figure 1. Most expressed sequences (MESs) clustering of the four data series in Table 5.  Samples belonging to 
the same (expected) cluster have the same color. Samples are numbered for easy pairing localization. The two 
numbers in the same line indicate the pair of samples responsible for joining the clusters. All clusterings were run 
with increments of 100. Dashed lines mean that the pairing was not expected at that order in the ranking. A. gse607 
(maximum number of MESs: 1000). Expected clusters: leaf (3 samples), stem (4 samples), flower (4 samples). B. 
gse1493 (maximum number of MESs: 786). Expected clusters: lin+CD34+, lin-CD34+, lin-CD34- (2 samples in 
each cluster). C. gse1614 (maximum number of MESs: 1000). Expected clusters: 2D, 8D, 15D (representing three 
time points, 4 samples in each cluster). Clustering produced two unexpected pairings: day 8 (8D) to day 15 (15D) 
and day 2 (2D) to day 8 before day 15 to day 15 pairing. D. gse8692 (maximum number of MESs: 1000). Expected 
clusters: glioblastoma (6 samples), glioma (3 samples), and gliosarcoma (3 samples).

A

B

C

D
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MESs clustering performed very well over the four series (Figure 1 and Table 5). In 
gse607 and gse1493, it clustered 100% of samples as expected in the works presenting the 
datasets (Bergmann et al., 2004; Manfredini et al., 2005). In the gse1614 series (Figure 1C) 
two pairings took place before one would expect (JF8DR2-JF15DR2 and JF8DR2-JF2DR2 
appeared well in the ranking, being clustered before the first pair involving JF15DR4). That 
should not be considered a miss since the JF15DR4 sample was firstly paired to the JF15R1 
sample, that is to say, it was correctly clustered even though it shares a smaller number of 
MESs with a sample of its cluster than other samples not in the same cluster share with sam-
ples in its cluster (e.g., JF8DR2-JF15DR2). gse8692 (Figure 1D) was the most difficult dataset 
to be clustered. In fact, none of the clustering algorithms tested was perfect with that dataset, 
but MESs outperformed the others with an 83.3% hit rate. 

Dirty (fuzzy) clustering?

As described above, many datasets are difficult to evaluate with regard to clus-
tering quality, simply because it is very difficult to define clusters in the dataset. The 
series gse2361 and gse96 are two such examples. For gse96, clusters could be defined 
(see Table 2) because the dataset includes replicates for almost every tissue sampled, 
and thus the replicates should cluster themselves first. However, looking from a physi-
ological point of view, how could someone group tissues in clusters? Of course, the sim-
plest answer to this question is to cluster together samples of tissues with similar known 
physiology. For example, tissues from CNS should cluster together as should the tissues 
belonging to the reproductive tract. Figure 2 presents the results of MESs clustering for 
series gse2361 showing the pair, the number of shared MESs (1000 were analyzed), and 
the ranking position for each sample. The two trees correspond to the MES tree (dashed 
lines) and to the tree presented by Ge et al. (2005) (continuous lines), which was pro-
duced by the average linkage option of the hierarchical clustering method (Eisen et al., 
1998) using Pearson’s correlation as distance measure. The results are similar: expected 
clusters such as CNS tissues, reproductive tract tissues (uterus, prostate, placenta, ovary, 
etc.), hematopoietic tissues (spleen, thymus, bone marrow) are present, but there are dif-
ferences. For example, testis does not cluster with CNS tissues, but with the reproductive 
tract cluster, neither do the pair heart-skeletal muscle. Besides, the clustering order is 
quite different.

Cancer clustering

Some series analyzed are composed of data from cancer studies (see Table 1). We 
applied MESs clustering to gse1036, gse1982, gse8692 (cancer types), gse1493 (stem cells), 
gse1614 (intestinal differentiation), and gse2361 (normal tissues) in order to determine what 
samples are more alike amongst them. The clustering was run considering the three classes 
of sequences depicted in Material and Methods section (all, maintenance, non-maintenance 
MESs) grouped by Unigene identifiers. In every execution performed, each sample was al-
ways paired to a sample of its own series as expected, reinforcing the idea of using microarray 
technology as a tool to help in cancer class determination (Golub et al., 1999). The following 
remarks concern the pairing of samples from different series.
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Figure 2. A superimposing of the clustering trees resulting from the most expressed sequences (MESs) clustering (dashed 
lines) and from the hierarchical clustering as detailed in Ge et al. (2005). The CNS tissues are enhanced. Samples are 
numbered for easier pairing localization. The two numbers on the same line indicate the pair of samples responsible for 
joining the clusters. MESs clustering was run with increments of 100 and number of MESs equals 1000.

Considering only non-maintenance sequences,  pairing was done with low sharing 
of sequences (the topmost pair shared only 24%), but a striking fact is the topmost pairing of 
eleven gse1036 samples (leukemia cells) to normal fetal liver (gse2361) and the remaining 
one sample to normal uterus. In relation to the maintenance sequences, it is notable that all 36 
normal human tissue samples (gse2361) share between 51 and 62% of their MESs mainly with 
some brain tumor sample (gse8692) and the rate rises to 70% when all sequences are consid-
ered. It is noteworthy that CD34 cell line samples (gse1493) preferentially pair to intestinal 
differentiation cells (gse1614).
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When things are not fine

Although the results of MESs clustering presented above are promising, there is 
at least a well-defined situation where the algorithm faces difficulties: when the dataset is 
composed of samples in which the number and/or the expression levels of the expressed se-
quences vary from expected cluster to expected cluster. For instance, in the gse511 series the 
authors report that the number of expressed genes rises considerably from one time point to 
another (Vahey et al., 2002). Thus, two samples from different time points can present large 
variation in the number of MESs, leading to a bad clustering. In fact, the MES algorithm 
reached only 70% accuracy for that dataset (Table 3).

Conclusions and Future research

A novel similarity measure calculation and clustering algorithm was presented as well as 
some preliminary results of its application to cluster samples of gene expression data. As far as 
we know, the MESs approach is the first one to exploit intrinsic characteristics of the gene expres-
sion data produced by the present high throughput technologies aligned with the intuitive notion 
that the most expressed sequences play a major role in defining cell physiology, being very well 
suited for inferring similarities among different kinds of cells, tissues or organisms. Even though 
Eisen et al. (1998) affirm that the standard correlation coefficient conforms well to the intuitive 
biological notion of what it means for two genes being clustered to be “co-expressed”, the MESs 
similarity presented here is claimed to be the first biologically inspired similarity measure used 
for clustering expression data samples. The results of MESs clustering applied to data series from 
different organisms and conditions are very good: more than 91% of the samples were correctly 
clustered, which suggests that the expression patterns of the MESs can be reliably used to infer 
similarity among different cell types and conditions. The MESs approach outperformed the de 
facto standard used in clustering expression data (D’haeseleer, 2005), Eisen’s hierarchical cluster-
ing, raising the hit percentage by 13% (Table 5).

Currently, we are starting to adapt the algorithm to work with both Affymetrix 
GeneChips (Lockhart et al., 1996), SAGE (Serial Analysis of Gene Expression; Velculescu, 
1995) data and expression of protein clusters measured by EST hits (Mudado and Ortega, 
2006). This will allow the comparison of different technologies as well as higher quality clus-
tering since the algorithm can benefit from patterns obtained by two different and highly pre-
cise technologies. Besides, another research from our laboratory (Mudado and Ortega, 2006) 
has found that 25% of the most expressed clusters of proteins (KOGs) are highly shared among 
four model organisms. Hence, the clustering of samples from different organisms is possible 
if sequence similarity is exploited in order to relate sequences from different platforms and 
organisms. With such orthologous relationship, the clustering technique can be used to study, 
for example, the gene expression resemblance of different species.
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