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ABSTRACT. This study used Bayesian inference to investigate the 
genotype x environment interaction in common bean grown in Mato 
Grosso do Sul State, and it also evaluated the efficiency of using 
informative and minimally informative a priori distributions. Six trials 
were conducted in randomized blocks, and the grain yield of 13 common 
bean genotypes was assessed. To represent the minimally informative 
a priori distributions, a probability distribution with high variance 
was used, and a meta-analysis concept was adopted to represent the 
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informative a priori distributions. Bayes factors were used to conduct 
comparisons between the a priori distributions. The Bayesian inference 
was effective for the selection of upright common bean genotypes 
with high adaptability and phenotypic stability using the Eberhart and 
Russell method. Bayes factors indicated that the use of informative 
a priori distributions provided more accurate results than minimally 
informative a priori distributions. According to Bayesian inference, 
the EMGOPA-201, BAMBUÍ, CNF 4999, CNF 4129 A 54, and CNFv 
8025 genotypes had specific adaptability to favorable environments, 
while the IAPAR 14 and IAC CARIOCA ETE genotypes had specific 
adaptability to unfavorable environments.
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INTRODUCTION

Brazil is the largest producer of common bean (Phaseolus vulgaris L.), with a 
production estimated at 3.0 million tons in 2014 (FAO, 2015) and average productivity of 
0.94 Mg/ha (CONAB, 2015). However, this productivity is low considering its productive 
potential, which can reach 4500 kg/ha. There are several reasons for this issue, such as the 
inappropriate use of genotypes that are not adapted to the various growing regions.

A major challenge for plant breeders is determining the appropriate common bean 
genotypes for the various regions of Brazil due to genotype x environment (GE) interactions, 
which determine the differential response of genotypes among environments. To reduce the 
effects of GE interactions, it is convenient to know their magnitude and to identify more stable 
genotypes adapted to specific environments (Cruz and Regazzi, 2007). In this context, several 
methods to study adaptability and stability have been used to measure GE interactions in 
common bean (Coimbra et al., 1999; Carbonell et al., 2004; Ribeiro et al., 2009; Pereira et al., 
2009, 2011; Torga et al., 2013), predominantly based on linear regression models (Eberhart 
and Russell, 1966) and multivariate analyses, such as additive main effects and multiplicative 
interaction analysis (AMMI) (Gauch, 2006).

Traditional methods that predict genotype performances in multiple environments 
are based on a “classic” (or frequentist) approach to statistics, which estimates one or more 
parameters from a set of observations. The variables are used to make statements about a 
statistical model, which is characterized in terms of parameters with a “true” value (Couto et 
al., 2015). An alternative to classical statistical inference is Bayesian inference, which is based 
on the principles of likelihood and the incorporation of a priori information (Silva et al., 2013).

This approach uses three basic concepts: initial information (a priori probability), 
generally assumed as a joint probability law on the parameters before obtaining the private 
information of the samples y1, ..., yn of the random variable; the probabilistic model of random 
response variable y, with which it obtains the likelihood of the sample; and Bayes’ theorem, 
which combines the a priori information and the likelihood function and generates a posterior 
distribution (Cotes et al., 2006; Silva et al., 2013). Nascimento et al. (2011) formulated a 
Bayesian approach using the Eberhart and Russell (1966) method to evaluate GE interaction, 
and concluded that the selection of genotypes in different environments was most accurate 
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when a priori information was used. It is a robust statistical procedure with many possible 
applications, but its use in plant genetic improvement is still limited (Teodoro et al., 2015).

Thus, the aim of this study was to use Bayesian inference to investigate the GE 
interaction in common bean grown in Mato Grosso do Sul State, and we also evaluated the 
efficiency of using informative and minimally informative a priori distributions.

MATERIAL AND METHODS

Six trials (environments) were conducted from 2002 to 2006. The environments were 
composed of a combination of location, growing season, and agricultural year (Table 1). 
Thirteen genotypes (Rudá, Aporé, Xamego, Pérola, Ouro Negro, Diamante Negro, IAPAR 
14, EMGOPA 201, and IAC CARIOCA ETE and the lines BAMBUÍ, CNF 4999, CNF 4129 
A 54, and CNFv. 8025) were evaluated in a randomized block design with three replications. 
Experimental units consisted of four 1.5 m long rows of plants spaced 0.50 m apart. Grain 
yield was evaluated in the central rows, being expressed in Mg ha-1, considering the area 
harvested and adjusting the data for 13% moisture.

1According to Köppen-Geiger classification.

Table 1. Environments, site, climate, latitude, longitude, altitude, harvest, and agricultural year of trials 
conducted in the State of Mato Grosso do Sul.

Environment Site Climate1 Latitude Longitude Altitude (m) Harvest Agricultural year 
1 Dourados Cwa 22°12' 54°48' 452 Rainy 2000/2001 
2 Dourados Cwa 22°12' 54°48' 452 Drought 2000/2001 
3 Aquidauana Aw 20°20' 55°48' 207 Drought 2000/2001 
4 Dourados Cwa 22°12' 54°48' 452 Rainy 2001/2002 
5 Dourados Cwa 22°12' 54°48' 452 Drought 2001/2002 
6 Aquidauana Aw 20°20' 55°48' 207 Drought 2001/2002 
7 Aquidauana Aw 22°12' 54°48' 207 Drought 2002/2003 
8 Aquidauana Aw 20°20' 55°48' 207 Drought 2003/2004 
9 Aquidauana Aw 22°12' 54°48' 207 Drought 2004/2005 
10 Dourados Cwa 22°12' 54°48' 452 Rainy 2005/2006 
11 Dourados Cwa 22°12' 54°48' 452 Drought 2005/2006 
12 Aquidauana Aw 22°12' 54°48' 207 Drought 2005/2006 

 

Data were subjected to individual ANOVA, and fixed and other treatment effects were 
considered to be random. The results indicated that the relationship between the highest and 
lowest mean square of the individual ANOVA of the residues did not exceed a 7:1 ratio, which 
allowed the implementation of the joint analysis of trials (Banzatto and Kronka, 2006). The 
data were subsequently subjected to adaptability and stability analyses using the Eberhart and 
Russell (1966) method.

The adopted linear regression model of Eberhart and Russell (1966) was:

where Yij is the observed mean of genotype i in environment j; β0i is the linear coefficient related 
to i-th genotype; βli is the regression coefficient of genotype i; Ij is the environmental index 
j; and Ψij represents the random errors that are compounded by the regression deviation of 

(Equation 1)
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genotype i in environment j and by the mean error associated with the mean. The environmental 
index was estimated using the following equation:

where mY  is the overall mean; jY  is the mean of environment j; and n is the number of 
environments.

According to the Eberhart and Russell (1966) method, genotype adaptability was 
measured using the parameter β1i, while the stability of behavior was evaluated using the 
variance of the regression deviations (σ2

di) and the coefficient of determination (R2), which 
is an auxiliary measure for stability assessment (Cruz and Regazzi, 2007). The R2 value 
indicates acceptable predictability when σ2

di is significant and R2 is higher than 80%. Using 
this frequentist approach, the hypotheses of interest are: H0:βli = 1 versus H1:βli ≠ 1 and H0: σ

2
di 

= 0 versus H1: σ
2

di > 0, which are assessed using t and F statistics, respectively.
For the Bayesian analysis, we considered all genotypes that were evaluated in 

Corrêa et al. (2009), which were used as references for the specification of a priori 
distributions (Table 2).

(Equation 2)

Table 2. Estimates and means (β0i) associated with adaptability (β1i), stability (σ2
di), and the coefficient of 

determination (R2), which were obtained using the Eberhart and Russell method (1966), as described in Corrêa 
et al. (2009).

Genotype 0i (Mg/ha) 1i 2di R2 
RUDÁ 2.18 0.97 128,693 67.33 
APORÉ 2.31 0.75 110,006 58.78 
XAMEGO 2.04 0.93 95,113 71.24 
PÉROLA 1.71 0.82 87,035 67.51 
OURO NEGRO 1.96 1.32 212,871 70.59 
DIAMANTE NEGRO 1.75 0.99 36,570 85.75 
IAPAR 14 1.87 0.69 151,370 47.49 
EMGOPA-201 2.31 1.13 270,922 58.40 
IAC CARIOCA ETE 1.73 0.61 121,449 45.89 
BAMBUÍ 1.63 1.31 393,732 57.04 
RIO TIBAGI 1.76 1.17 96,833 79.43 
CNF 4129 A 54 1.36 1.06 199,921 62.04 
CNFv 8025 1.97 1.24 245,919 65.17 

 

With the Bayesian approach, we considered the following statistical model, developed by 
Nascimento et al. (2011):

where each Yij observation was assumed to have the following distribution:

where the likelihood function for each genotype i is given by:

(Equation 3)

(Equation 4)
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To estimate the adaptability and stability parameters, a priori distributions were 
assigned for the parameters. The following distributions were considered for β0i, βli, and σ2

di:

The equal mean and variance for the reverse gamma values were calculated as follows, 
respectively:

When we assumed independence between the parameters of these distributions, the 
joint a priori distributions for each genotype were given by:

To make inferences about the parameter of interest, the marginal a posteriori 
distributions must be obtained. When we denoted the parameter vectors for each genotype i 
using the following equation:

(where P = 1, 2, 3), the marginal a posteriori distribution for the parameter θpi was obtained 
using the following integral:

(Equation 5)

(Equation 6)

(Equation 7)

(Equation 8)

(Equation 9)

(Equation 10)

(Equation 11)

(Equation 12)
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(i.e., the integral in relation to all vector parameters with the exception of the p-th component).
In most cases, these integrals were complex and did not have exact solutions. To work 

around this problem, we used other methodologies. For example, we obtained a sample of 
the joint a posteriori distribution using the Markov chain and Monte Carlo (MCMC) method, 
which was used to determine the moments associated with the marginal distributions of interest 
(Cassela and George, 1992). In this study, the analyses were performed using R software (R 
Development Core Team, 2015) with codes developed by Nascimento et al. (2011), and the joint 
distribution sample was obtained using the MCMC regression function of the MCMC package.

To evaluate the influence of a priori information when estimating the adaptability 
and stability parameters, we utilized two different models: informative a priori distributions 
and minimally informative a priori distributions (Nascimento et al., 2011). In Model 1, the 
informative a priori information was derived from the application of meta-analysis techniques, 
which were characterized using information from the study by Corrêa et al. (2009).

The 13 genotypes evaluated in the trials were used as references for a priori 
specification. Therefore, all of the genotypes presented in Table 2 were considered for 
Bayesian analysis. Information was inserted into the analysis using the assumed values for a 
priori distribution parameters (i.e., hyperparameters). These values were based on the mean 
and variance values of the samples that were composed using the parameter estimates obtained 
from the cited references (Table 2), which resulted in the following distributions:

where  represents the means of the β0i estimates;  represents the means of the βli estimates; 
Var( ) is the variance of the mean  values; Var( ) is the variance of the mean  values; 
and αi and bi represent values obtained using the following system resolution equations:

(Equation 13)

(Equation 14)

(Equation 15)

(Equation 16)

(Equation 17)

(Equation 18)
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In Model 2, minimally informative a priori distributions were used, and these 
distributions represented probability distributions with large variance. The following 
distributions were adopted:

The comparisons between Models 1 and 2 (i.e., between informative and minimally 
informative a priori distributions) were performed using the Bayes factor calculation (Kass 
and Raftery, 1995), which was conducted using the Bayes Factor function of the MCMC 
package. According to Jeffreys (1961), Bayes factors can be interpreted as follows: FBij < 
1 provides evidence in favor of model j; 1 ≤ FBij < 3 provides moderate evidence in favor 
of model i; 3 ≤ FBij < 10 indicates substantial evidence in favor of model i; 10 ≤ FBij < 
30 demonstrates strong evidence in favor of model i; 30 ≤ FBij < 100 provides very strong 
evidence in favor of model 1; and FBij ³100 indicates decisive evidence in favor of model i.

Regarding the stability parameter (σ2
di), samples of its marginal distributions were 

obtained indirectly, because this parameter represents a function. When values for σ2
i were 

obtained indirectly in each iteration, we acquired values for σ2
di using the following expression:

where MSR is the mean square of the residue provided by ANOVA, and r is the number of 
repetitions in the trial.

The hypotheses of interest were tested by constructing credibility ranges for the 
parameters, and the intervals were obtained directly from the marginal a posteriori distribution 
of the parameters. Thus, the credibility interval (CI) for θi, with a probability of covering δ, is 
given by:

(Equation 19)

(Equation 20)

(Equation 21)

(Equation 22)

(Equation 23)

(Equation 24)
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where θ* and θ* represent the lower and upper limits of the CI, respectively. Since the Gibbs 
sampler is an iterative algorithm, it is necessary to check its convergence. In this study, the 
convergence was assessed by applying the Heidelberger and Welch (1983), Raftery and Lewis 
(1992), and Geweke (1992) criteria, which were implemented in the Bayesian Output Analysis 
package (BOA) of the R program (R Development Core Team, 2015).

Regarding Bayesian analyses of adaptability and stability for each parameter of the 
adopted regression model, 110,000 iterations in the Gibbs sampler algorithm with a warm 
period (“burn-in”) of 10,000 iterations were considered. To obtain a non-correlated sample, 
we considered the spacing between the sampling points of two iterations (“thinning”), which 
resulted in a final sample size of 50,000. The samples represented samples of marginal a 
posteriori distributions for each parameter under which the inference was conducted 
(Nascimento et al., 2011).

RESULTS AND DISCUSSION

In joint analyses, all of the effects were significant (P ≤ 0.01) (Table 3), which 
indicated contrasts between the environments and the occurrence of genotypic differential 
responses to environmental effects. This could be confirmed by examining differences in the 
soil and climatic features of each environment, including altitude, latitude, longitude, climate 
type, soil type, rainfall, and temperature (Table 1). Similar results were obtained by Coimbra 
et al. (1999), Carbonell et al. (2004), Ribeiro et al. (2009), Pereira et al. (2009, 2011), and 
Torga et al. (2013) in previous studies, which found significant differences associated with the 
effects of genotypes, environments, and GE interactions when evaluating common genotypes 
in multi-environment trials in Brazil. The existence of significant GE interactions for grain 
yield indicated that the stability and adaptability analyses were suitable, and this result was 
further supported by the fact that edaphoclimatic factors had the greatest influence on the 
adaptability and stability of common bean genotypes.

(Equation 25)

*Significant at a 0.01 probability level using the F test.

Table 3. Summary of joint ANOVA for grain yield (Mg/ha) of 13 common bean genotypes that were evaluated 
in six environments in the State of Mato Grosso do Sul.

Sources of variation d.f. Mean square 
Blocks/Environment 10 28,717.86 
Genotypes 12 1,362,132.53* 
Environment 5 3,182,552.19* 
Genotypes × Environment 60 303,445.22* 
Error 146 22,387.42 
Mean (Mg/ha) - 1.89 
Coefficient of variation (%) - 10.96 

 

Regarding the convergence for all simulated chains, the dependency factor of 
Raftery and Lewis (1992) gave values lower than five, and p-values based on the criteria of 
Geweke (1992) were higher than the prefixed significance level (P ≤ 0.05) (i.e., both criteria 
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indicated convergence of the chains generated by the Gibbs sampler). In order to confirm this 
convergence, we also used the criteria of Heidelberger and Welch (1983), which determined 
whether the chain values were derived from a stationary distribution.

The adaptability and stability parameter estimated values were obtained by calculating 
the a posteriori means, which are presented together with their respective CIs in Table 4. 
In Model 1 (informative a priori), of the 13 genotypes of common bean evaluated by the 
Bayesian approach, the EMGOPA-201, BAMBUÍ, CNF 4999, CNF 4129 A 54, and CNFv 
8025 genotypes were classified as having specific adaptability to favorable environments (LI 
β1i > 1). The IAPAR 14 and IAC CARIOCA ETE genotypes presented specific adaptability 
to unfavorable environments (LS β1i < 1). The other genotypes were classified as having 
general adaptability and stability, since the value of 1 fell within a CI of 95%. However, 
when considering the analysis of genotypes under Model 2 conditions (minimally informative 
a priori), all genotypes of common bean showed specific adaptability to unfavorable 
environments (LI β1i < 1). Therefore, it is possible to infer that the use of the frequentist model, 
in which a priori information is not taken into account, tends to conclude that the genotypes 
of common bean exhibit stability and adaptability to different environments, but this does not 
favor reliable genotype recommendations. Nascimento et al. (2011), Couto et al. (2015), and 
Teodoro et al. (2015) obtained similar results after evaluating the adaptability and phenotypic 
stability of alfalfa, popcorn, and cowpea genotypes, respectively.

Table 4. Estimates of a posteriori mean ( i0β , in Mg/ha) and credibility intervals (95%) of the adaptability 
( i1β ) and stability ( 2

iσ ) parameters for common bean genotypes when considering informative and minimally 
informative a priori distributions.

Genotype LI i0  i0  LS i0  LI i1  i1  LS i1  2
i x1000 LI 2

di x1000 2
di x1000 LS 2

di x1000 
Informative a priori 
RUDÁ 2.03 2.18 2.33 0.68 0.94 1.20 35.94 12.05 29.01 60.09 
APORÉ 2.08 2.21 2.34 0.34 0.57 0.82 27.12 7.31 20.21 44.04 
XAMEGO 1.74 1.86 1.99 0.65 0.88 1.11 23.97 5.69 17.06 37.92 
PÉROLA 1.56 1.69 1.82 0.58 0.82 1.06 28.02 7.84 21.11 45.38 
OURO NEGRO 1.62 1.75 1.88 0.89 1.13 1.38 27.69 7.59 20.78 45.23 
DIAMANTE NEGRO 1.60 1.68 1.77 0.83 0.99 1.16 10.81 -1.24 3.90 13.36 
IAPAR 14 1.81 2.03 2.24 0.20 0.53 0.87 80.97 35.69 74.06 144.29 
EMGOPA -201 1.85 1.97 2.10 1.05 1.29 1.51 23.96 5.63 17.05 37.93 
IAC CARIOCA ETE 1.64 1.70 1.76 0.22 0.34 0.47 5.29 -4.15 -1.62 3.04 
BAMBUÍ 1.91 2.07 2.22 1.19 1.47 1.73 39.55 13.74 32.64 67.34 
CNF 4999 1.64 1.75 1.87 1.21 1.44 1.65 20.59 3.81 13.68 31.81 
CNF 4129 A 54 1.29 1.47 1.64 1.04 1.35 1.64 51.11 19.54 44.19 89.61 
CNFv 8025 2.03 2.14 2.25 1.01 1.22 1.43 19.60 3.39 12.69 29.75 
Minimally informative a priori 
RUDÁ 1.70 2.17 2.62 -0.05 0.93 1.91 32.84 52.32 32.15 134.41 
APORÉ 1.79 2.19 2.58 -0.34 0.51 1.35 24.47 37.17 23.78 99.81 
XAMEGO 1.47 1.85 2.22 0.06 0.86 165 21.85 32.46 21.16 88.94 
PÉROLA 1.27 1.68 2.08 -0.04 0.82 1.68 25.59 39.25 24.89 104.21 
OURO NEGRO 1.32 1.73 2.12 0.21 1.06 1.91 24.89 37.99 24.19 101.41 
DIAMANTE NEGRO 1.42 1.68 1.93 0.46 0.99 1.53 9.97 10.99 9.28 40.08 
IAPAR 14 1.34 2.03 2.69 -1.10 0.35 1.79 71.93 12.39 71.24 296.01 
EMGOPA -201 1.57 1.95 2.31 0.55 1.34 2.13 21.61 32.03 20.92 87.97 
IAC CARIOCA ETE 1.52 1.69 1.87 -0.05 0.32 0.70 49.73 20.00 42.81 195.89 
BAMBUÍ 1.62 2.10 2.56 0.54 1.55 2.56 35.20 56.62 34.51 144.21 
CNF 4999 1.40 1.75 2.09 0.78 1.51 2.24 18.44 26.31 17.75 74.85 
CNF 4129 A 54 9.30 1.47 1.99 0.42 1.55 2.67 43.94 72.75 43.24 179.61 
CNFv 8025 1.80 2.15 2.48 0.50 1.22 1.94 17.92 25.33 17.23 72.78 
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By comparing the estimates of the parameters obtained using the two models, similar 
differences in magnitude between the parameters were observed. Thus, it is necessary to 
determine which of the two models exhibited a higher quality setting, and this answer was 
provided using Bayes factor calculations (Nascimento et al., 2011). All of the genotypes 
evaluated exhibited Bayes factors that were greater than 41 (Table 5), resembling the results 
obtained by Nascimento et al. (2011), Couto et al. (2015), and Teodoro et al. (2015).

Table 5. Values obtained for Bayes factors (BF) of models compared using informative a priori (i) and 
minimally informative a priori (j) distributions for the common bean genotypes evaluated.

Genotype 
ijBF  

RUDÁ 55.80 
APORÉ 53.90 
XAMEGO 52.80 
PÉROLA 53.90 
OURO NEGRO 54.40 
DIAMANTE NEGRO 46.20 
IAPAR 14 63.10 
EMGOPA -201 53.60 
IAC CARIOCA ETE 41.10 
BAMBUÍ 58.30 
CNF 4999 52.00 
CNF 4129 A 54 59.80 
CNFv 8025 51.10 
RUDÁ 55.80 
APORÉ 53.90 
XAMEGO 52.80 

 
These results indicated that the use of informative a priori distributions provided more 

accurate results. Even though the a priori information for each genotype was based on a single 
study, similar results were found in studies that evaluated the adaptability and phenotypic 
stability of the dry matter yield of alfalfa genotypes (Nascimento et al., 2011), popcorn grain 
yield (Couto et al., 2015), and cowpea grain yield (Teodoro et al., 2015; Barroso et al., 2016). 
Therefore, it is expected that the results will be more precise in studies examining the stability 
and adaptability of other crops with more available information for meta-analysis.

The Bayesian inference, in conjunction with the Eberhart and Russell method (1966), 
was an effective method for the selection of common bean genotypes with high adaptability 
and phenotypic stability. Moreover, Bayes factors indicated that the use of informative a priori 
distributions provided more accurate results than the use of minimally a priori distributions. 
According to Bayesian inference, the EMGOPA-201, BAMBUÍ, CNF 4999, CNF 4129 A 54, and 
CNFv 8025 genotypes had specific adaptability to favorable environments, while the IAPAR 14 
and IAC CARIOCA ETE genotypes presented specific adaptability to unfavorable environments.
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