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ABSTRACT. With the rapid development of next-generation high-
throughput sequencing technology, RNA-seq has become a standard 
and important technique for transcriptome analysis. For multi-sample 
RNA-seq data, the existing expression estimation methods usually 
deal with each single-RNA-seq sample, and ignore that the read 
distributions are consistent across multiple samples. In the current 
study, we propose a structured sparse regression method, SSRSeq, 
to estimate isoform expression using multi-sample RNA-seq data. 
SSRSeq uses a non-parameter model to capture the general tendency of 
non-uniformity read distribution for all genes across multiple samples. 
Additionally, our method adds a structured sparse regularization, which 
not only incorporates the sparse specificity between a gene and its 
corresponding isoform expression levels, but also reduces the effects 
of noisy reads, especially for lowly expressed genes and isoforms. Four 
real datasets were used to evaluate our method on isoform expression 
estimation. Compared with other popular methods, SSRSeq reduced 
the variance between multiple samples, and produced more accurate 
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isoform expression estimations, and thus more meaningful biological 
interpretations.

Key words: RNA-seq; Multi-sample; Structured sparse regression; 
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INTRODUCTION

High-throughput sequencing of RNA, known as RNA-seq, is a revolutionary and 
powerful technology for transcriptome analysis (Marguerat et al., 2008; Marioni et al., 2008). 
Compared to microarray technology, RNA-seq does not depend on existing gene annotation 
for prior probe design, avoids the background noise from the hybridization of microarrays, 
and has a broader dynamic range of expression levels (Marguerat and Bähler, 2010; Metzker, 
2010). As such, RNA-seq has shown strong potential to replace microarray technology for 
transcriptome analysis. RNA-seq directly sequences transcripts and obtains tens of millions of 
short reads from the transcript population of interest (Mortazavi et al., 2008). After mapping 
the sequenced reads to reference sequences, the mapped reads along each transcript are 
counted, allowing for the digital measurement of transcription levels to be estimated. Changes 
in isoform expression levels of alternatively spliced genes are of functional importance in 
particular biological processes. For example, there is much evidence that the development 
of many complex diseases is highly correlated with changes in isoform expression levels 
(Humbert et al., 2007; Beyer et al., 2008). Therefore, accurately estimating isoform expression 
levels remains an important challenge for understanding complicated biological mechanisms. 
In order to infer isoform expression levels, rSeq models the distribution of read counts for 
exons as a Poisson distribution with uniform sampling across each transcript (Jiang and Wong, 
2009). A Poisson-Gamma hierarchical model has been proposed for multi-sample RNA-seq 
data to estimate isoform-specific expression. This model assumes that the reads are distributed 
uniformly across the genome, and hence reads are sampled independently and uniformly 
from every possible nucleotide in the sample (Vardhanabhuti et al., 2013). However, due to a 
number of biases, such as the 5'- and 3'-end biases, priming or GC bias, and so on, the uniform 
assumption of read distribution is untenable, and moreover, these various biases cause the non-
uniform read distribution to be illogical, which causes the non-uniformity read distribution 
(Hansen et al., 2010; Zheng et al., 2011). This leads to difficulties in estimating isoform express 
levels. Many methods are proposed that adopt different bias correction strategies to overcome 
these problems. For example, NURD adopts a global bias curve for all genes and local bias 
curves, which are estimated using non-parametric models (Wu et al., 2011). mseq predicts 
the variable rate for different positions based on local sequences (Li et al., 2010). POME 
incorporates the base-specific variation and between-base dependence that affect the read 
coverage profile throughout each transcript (Hu et al., 2012). WemIQ assigns different weights 
to reads from different gene regions when calculating the weighted log-likelihood (Zhang et 
al., 2015). All these aforementioned methods use the Poisson distribution to model the read 
counts and treat the bias values as weight factors to the Poisson rate. Another category of 
methods usually adopts generative statistic models. Cufflinks, one of the most commonly used 
tools, uses a variable length Markov model to learn sequence-specific biases on surrounding 
sequences, and calculates the positional bias according to the relative position of fragments in 
the transcript sequences (Trapnell et al., 2010). BitSeq uses the same bias correction strategy 
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as Cufflinks (Glaus et al., 2012). Both methods use the bias weight to select a fragment of a 
specific length for a given transcript. RSEM uses the empirical read start position distribution 
to represent the non-uniform read distribution, which depends on the fraction of length along 
the transcript in a given start position (Li and Dewey, 2011). Tigar2 considers the nucleotide 
character of the corresponding reference sequences (Nariai et al., 2014). These methods each 
use their own bias correction strategies, and improve the accuracy in estimating isoform 
expression levels. However, in real data, we find that the read distribution is highly correlated 
across samples (Suo et al., 2014). Figure 1 shows that the variation patterns of non-uniform 
read distributions are almost consistent across three biological samples. All of the preceding 
methods and corresponding bias correction strategies ignore the fact that the read distribution 
is highly consistent across multiple samples. In current RNA-seq experiments, multi-sample 
RNA-seq datasets are ubiquitous. It is now common for an RNA-seq experiment to sequence 
the whole transcriptomes of samples obtained from many technical and biological replicates. 
Variations in technical replicates arise from the different steps in RNA-seq experiments, such 
as library construction and amplification. Additionally, variations in biological replicates may 
be intrinsic to the biology (Ares Jr, 2014). More replicates can improve the biological or 
statistical significance. Thus, a combined treatment approach for multi-sample RNA-seq data 
may help to improve isoform expression level data more so than separate treatments, since the 
multiple samples can be correlated.

For processing multi-sample RNA-seq data, another limitation of current methods 
is that of dealing with each single sample separately. Due to the effects of noisy reads, the 
expression levels of the same isoform from multiple samples are usually biased, especially for 
isoforms that are lowly expressed. For example, for any given multi-sample RNA-seq dataset, 
several noisy reads may fall into a discriminative exon, which may result in an isoform that 
contains this exon to change from non-expressed to lowly expressed. However, there may 
be no reads for this exon in the rest of the samples, and the corresponding isoform is not 
expressed. It is common sense that the same isoform should have similar expression level 
across multiple samples. When combining multiple samples, we may be able to infer that this 
lowly expressed isoform is caused by noisy reads, and is not actually expressed (Roberts et al., 
2011). Therefore, a combined treatment for multi-sample RNA-seq data can help to reduce the 
effect of noisy reads, and to identify the isoforms that are indeed lowly expressed. Furthermore, 
when an alternatively spliced gene that contains multiple isoforms is expressed, often only 
partial isoforms within the gene are expressed while the rest are not. The relationship between 
the expression level of a gene and its corresponding isoforms has sparse specificity. While 
methods for detecting novel isoforms take this prior biological information into consideration 
(Behr et al., 2013; Mezlini et al., 2013), most current isoform expression estimation methods 
do not take this into account.

In the current study, we propose a structured sparse regression method (SSRSeq) to 
estimate isoform expression levels. First, we design a bias correction strategy, which creates 
a multi-sample bias curve. This curve represents the general tendency of the non-uniform 
read distribution for all genes across multiple samples. Then, we add a structured sparse 
regularization, l2,1-norm, to the SSRSeq model to combine multiple samples. The l2,1-norm 
regularization not only reduces the effect of noisy reads, especially for lowly expressed genes 
and isoforms, but also incorporates the sparse specificity between the expression level of a 
gene and its corresponding isoforms. Finally, we use four real RNA-seq datasets to evaluate 
our approach and compared it with other start-of-the-art methods.
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MATERIAL AND METHODS

Notations

Assume G is the set of genes. For gene g ∈ G, it has K isoforms and M exons with 
lengths l1, …, lm. The gene structure can be represented using a binary matrix A = (aik)M x K. 
Each isoform corresponds to a column in this matrix, where aik = 1 or aik = 0 represents that 
the i-th exon is included or excluded in the k-th isoform, respectively. If an exon is contained 
in more than one isoform with different lengths, we split the exon into non-overlapping parts 
and treat each part as a separate exon.

To facilitate fast computations, we first summarize the number of reads falling into 
each exon. We assume that the RNA-seq dataset has N samples. We let yij represent the observed 
number of reads from the j-th sample that fall in the i-th exon. According to the principles of 
RNA-seq experiments and gene structure, yij is proportional to both the exon length l1 and the 
sum of the expression levels of all isoforms containing the i-th exon, where xkj is the expected 
number of reads of the k-th isoforms in the j-th sample, and represents the expression level of 
the corresponding isoforms (Equation 1). After obtaining xkj, we can measure the expression 
level as RPKM (Reads Per Kilobase of exon model per Million mapped reads). If the j-th 
sample has a total of wj mapped reads, then the expression level (in RPKM) is 109 x xkj / wj.

Multi-sample bias curve

For RNA-seq data, the read counts of each gene are highly non-uniformly distributed, 
but the variation patterns are almost consistent across multiple samples. Figure 1 shows the 
counts of a randomly selected gene ENSG00000089220 in three biological replicates from 
Human Brain dataset. It can be seen that the read distributions are highly non-uniform and 
highly consistent across the three biological replicates.

(Equation 1)
K

ij i ik kjK = 1y  = l a x∑

Figure 1. Read counts for each exonic nucleotide position in the CisGenome Browser (Ji et al., 2008) along 
gene ENSG00000089220 in three biological replicates. The gene ENSG00000089220 has two isoforms, 
ENST00000261313 and ENST00000542939, and the gene structure is from the Ensembl database (NCBI37/hg19).
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We propose a multi-sample bias curve (MSBC) to characterize the read distribution 
along a gene across multiple samples. The MSBC represents the general tendency of the non-
uniform read distribution for the whole transcriptome, and reflects the relative read distribution 
bias from the 5'- to 3'-ends of a gene. We separately deal with each single sample at the 
beginning of the MSBC calculation procedure. For each single sample, we use those genes that 
only contain a single isoform to estimate the MSBC. Since the multiple isoforms within a gene 
can affect the read distribution due to the gene structure, which does not reflect the general 
tendency of the read distribution along the gene, we filter out all multi-isoform genes according 
to gene annotation databases, including RefGene (Pruitt et al., 2012), Ensembl (Hubbard et 
al., 2002), and UCSC annotation (Karolchik et al., 2003). Because of the high uncertainty 
associated with lowly expressed genes, we exclude genes with too few (e.g., <50) of reads. 
In order to avoid the influence of local fluctuations in the read distribution, we uniformly 
split each gene into a small number of bins (e.g., 20), and summarize the read counts of each 
bin. Then, the read counts of each bin are normalized to a mean of 1 and averaged among the 
number of selected single isoform genes (Wu et al., 2011). Finally, we combine the multiple 
samples and use the polynomial regression model to fit the read counts of each bin. This gives 
a smooth MSBC, which represents the read distribution of a gene across multiple samples 
in the dataset. The curve reflects the read variation patterns of a gene with high consistency 
across multiple samples, of which the variation may be caused by the experiment protocol. 
The procedure for calculating the MSBC is shown in Figure 2.

Figure 2. Procedure for calculating the MSBC.

An example of the MSBC curve obtained after using the polynomial regression model 
to fit the read counts of each bin across multiple samples is presented in Figure 3. From this 
bias curve, we can see that the 5'- and 3'-ends of genes have obvious position-specific biases. 
Hence, we use the MSBC to compensate for the read count variations in estimating isoform 
expression levels. For this purpose, we divide the curve into several segments corresponding 
to the length ratios of the exons along the gene. In Figure 3, the i-th segment corresponds to the 
i-th exon in the gene. We calculate the bias weights of the start and the end of the i-th segment, 
wi and wi+1, respectively. Then, the mean value of the i-th segment, (wi + wi+1) / 2, is calculated 
as the weighted factor for the i-th exon. In the following section, we will incorporate the bias 
weight into our model to estimate isoform expression.
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Figure 3. Illustration of the usage of MSBC. The solid line (red) is the MSBC obtained from the adult condition of 
the HB dataset. Each node represents the bias weight of the start or the end of a segment. For example, wi and wi+1 
represent the bias weight of the start and the end of the i-th segment, respectively.

SSRSeq model

Based on Equation 1, the expression calculation formula assumes uniform distribution 
of read counts along the reference sequence. However, the read counts of each gene are highly 
non-uniformly distributed. We propose the SSRSeq model by incorporating the bias weight, 
and thus rewrite Equation 1 as Equation 2.

where bi is the bias weight of the i-th exon shared across multiple samples. The weight values 
are non-negative real numbers estimated from MSBC. Given all mapped reads and gene 
structure information of a gene, the expression levels X = {x1, …, xK} of the isoforms can be 
estimated by minimizing the objective function shown in Equation 3, with the restrictions that 
xkj ≥ 0 for all 1 ≥ k ≥ K and 1 ≤ j ≤ N. bij is an element of the bias weight matrix B and bij = 
biaij. Rather than the 0-1 indicator matrix A, the bias weight matrix B not only represents the 
structure information between a gene and its isoforms, but also contains the bias weight for the 
corresponding exons with non-zero elements aij.

Due to the effect of noisy reads in multi-sample RNA-seq data, the expression levels 
of the same isoform across multiple samples are usually biased, especially for lowly expressed 
isoforms. As mentioned above, the same isoform should have similar expression levels across 
multiple samples. Hence, a combined treatment for multi-sample RNA-seq data may help to 
reduce the effect of noisy reads, and accurately identify the true lowly expressed isoforms. 

(Equation 2)

(Equation 3)
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Furthermore, only certain isoforms within an alternatively spliced gene are expressed, whereas 
the rest are non-expressed isoforms. Therefore, the relationship between the expression level 
of a gene and its corresponding isoforms has sparse specificity. Considering this information, 
we add a structured sparse regularization, l2,1-norm, to the SSRSeq model to combine multiple 
samples (Meier et al., 2008), and rewrite the objective function as seen in Equation 4.

For convenient optimization, the objective function is equivalent to the matrix form 
seen in Equation 5.

The l2,1-norm can make all variables of a row in matrix X be zero. This would 
mean that the corresponding isoform is non-expressed across multiple samples. The rest of 
the non-zero rows corresponds to expressed isoforms of the gene. Therefore, the l2,1-norm 
regularization not only reflects the sparse specificity between a gene and its corresponding 
isoforms, but also reduces the effect of noisy data for actual lowly expressed isoforms.

Due to l2,1-norm regularization, the objective function in Equation 5 is a non-smooth 
convex optimization problem. We adopt a popular optimization toolbox, SPAMS, for solving 
this intractable optimization problem (Mairal et al., 2010), and the solution X̂ is guaranteed to 
be a global optimal point.

The parameter λ controls the number of isoforms with non-zero expression levels 
in the solution. In the l2,1-norm constraint, a smaller value of λ will exert less restriction on 
the values of X, which results in more non-zero isoform expression levels. On the contrary, 
a larger value of λ prefers more zero rows, which represent corresponding non-expressed 
isoforms. In practice, a proper and fixed value of λ should be selected based on empirical data. 
In the current study, we set λ = 1 for all RNA-seq datasets.

Implementation

For RNA-seq data analysis, when reads are aligned to the reference transcriptome 
sequence, the process of expression estimation in SSRSeq can be divided into two stages, read 
alignment and expression estimation. The detailed workflow of SSRSeq is listed in Algorithm 
1. SSRSeq has been implemented in Python and MATLAB. The alignment stage uses Python 
programming language, and the expression estimation stage is coded in MATLAB. SSRSeq 
makes use of parallel computing to improve the computation efficiency. The software and 
documentation are freely available at the website http://parnec.nuaa.edu.cn/liux/ssreq.html.

Algorithm 1
Algorithm 1: SSRSeg
Input: N alignment samples, Gene annotation
Read alignment:

(Equation 4)

(Equation 5)
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Calculating MSBC using N alignment samples.
Counting D for each gene in N alignment samples.
Estimating bi for each exon in each gene
Expression estimation:
repeat X̂ = argminx || D – BX ||2F + λ || X ||2,1
until all genes are completed
Output: The expression level of all isoforms in multiple samples.

RESULTS

Datasets

In the present study, four different RNA-Seq datasets were used to compare the 
performance of SSRSeq with three popular alternative methods, NURD (v.1.1.1), Cufflinks 
(v.2.2.1), RSEM (v.1.2.19), and one newly proposed method, Tigar2 (v.2.1). The four RNA-
seq datasets can be freely downloaded from http://sra.dnanexus.com/ with the accession 
numbers indicated below.

We use the well-studied Micro Array Quality Control (MAQC) project to validate 
the gene expression estimation from SSRSeq. MAQC project compares the multiple whole-
genome gene expression across various commercial platforms (Shi et al., 2006), and is widely 
used to evaluate platform performance and to test various data processing methods (Canales 
et al., 2006; Li and Dewey, 2011). In the current study, we selected two RNA samples, the 
universal human reference (UHR) and the human brain reference (HBR). The Short Read 
Archie accession number was SRA010153 for the single-end (SE) dataset and SRA012427 
for the paired-end (PE) dataset. MAQC project provided around 1000 genes validated by 
quantitative real-time polymerase chain reaction (qRT-PCR) experiments, which were regarded 
as the benchmark gene expression estimations that were obtained from diverse platforms and 
approaches. We also used the Ensembl annotation (NCBI37/hg19), and obtained 833 matching 
qRT-PCR validated genes.

A publicly available human breast cancer (HBC) dataset was used to validate the 
isoform expression estimation from SSRSeq and had the accession number SRA008403. This 
dataset contained two conditions, a human breast cancer cell line (MCF-7) and a norm cell 
line (HMR). Eight isoforms in five genes had been validated by qRT-PCR experiments for 
this dataset. We used the UCSC known Gene annotation (NCBI36/hg18) in order to obtain all 
annotation information for the eight qRT-PCR validated isoforms (Wang et al., 2008).

A mouse dataset was obtained from a study by Marioni et al. (2008) (SRA001030). 
The dataset contained data from three mouse tissues, including liver, skeletal muscle, and 
brain. Two technical replicates of the sample were sequenced on the Illumina/Solexa platform. 
We used the UCSC RefGene annotation (NCBI37/mm9), which contained 33608 isoforms for 
this dataset. Among the isoforms, 21.1% were from multi-isoform genes, and each gene had 
1.39 isoforms on average.

Finally, the human brain (HB) dataset, downloaded from DDBJ (Kaminuma et 
al., 2011) with accession number SRA009447 was also used. This dataset contained two 
conditions, adult and fetal human brains, each of which had three biological replicates. Among 
the 163455 isoforms defined in the Ensembl annotation (NCBI37/hg19), 53.2% were from 
multi-isoform genes, and each gene had 4.69 isoforms on average.
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Multi-sample bias curves describe SSRSeq

The MSBCs for each condition of the HB dataset are shown in Figure 4. The two 
MSBCs show strong distribution bias from the 5'- to 3'-ends of genes. We also observed that the 
two MSBCs had similar distribution patterns under the two conditions in the same experiment. 
Compared with the bias curve obtained from each single sample, the MSBC captured the 
common features from the multiple samples, especially at the 5'- and 3'-ends of genes.

Figure 4. MSBCs obtained from the HB dataset for the (A) adult and (B) fetal conditions. The solid line (red) 
represents the MSBCs obtained from three samples under each condition. The dashed line represents the bias curve 
obtained from each single sample.

Robustness for noisy reads

Noisy reads may be caused by multiple factors including sequencing errors, mapping 
errors, and contamination by genomic DNA. SSRSeq adopts a structured sparse regularization 
to reduce the influence of noisy reads. Table 1 shows the isoform expression of gene 
ENSG00000166073, obtained from Tigar2 and SSRSeq. The expression of the first two isoforms 
from Tigar2, ENST00000485414 and ENST00000487571, are lowly expressed in samples 1 and 
2, but are not expressed in the rest of samples. According to the biased expression across multiple 
samples, we think that the two isoforms are influenced by noisy reads, and are not actual lowly 
expressed isoforms. Cufflinks and RSEM resulted in similar expression profiles for the two 
isoforms. However, SSRSeq revealed that both isoforms are not expressed, and thus reduced the 
influence of noisy reads. Furthermore, SSRSeq also agrees with common sense that only partial 
isoforms within an alternatively spliced gene are expressed.

We further validated the ability of SSRSeq to reduce the influence of noisy reads at the 
gene expression level. We select gene ENSG00000037965, and estimated the gene expression 
using various methods. The results are shown in Table 2. From Table 2, we can see that 
except for SSRSeq, the other four methods resulted in low gene expression in some individual 
samples. We found that none or few reads were actually mapped to this gene. The mapped 
reads were most likely caused by noise, which resulted in biased gene expression. However, 
SSRSeq reduced this effect of noisy reads, and revealed that the gene was not expressed.
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Table 1. Expression levels of the five isoforms within gene ENSG00000113811 estimated by Tigar2 and 
SSRSeq.

 Tigar2 SSRSeq 
 Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3 
ENST00000485414 0 1.1656 0 0 0 0 
ENST00000487571 0 0.2028 0.1438 0 0 0 
ENST00000488746 20.0068 25.3979 26.1782 18.4631 25.1888 22.9183 
ENST00000495461 3.1957 7.9404 6.8529 2.0734 5.0126 5.3042 
ENST00000541726 0 2.6709 6.6144 4.3785 12.6145 13.8881 
 The data are from the adult condition in the HB dataset.

The data are from the adult condition in the HB dataset.

Table 2. Gene expression levels of ENSG00000037965 estimated by various methods.

Method Sample 1 Sample 2 Sample 3 
NURD 0.0111 0.0023 0.0212 
Cufflinks 0 0.0666 0 
RSEM 0.0312 0.0720 0.0201 
Tigar2 0 0.0772 0.0107 
SSRSeq 0 0 0 

 

NURD, Cufflinks, RSEM, and Tigar2 estimated the expression for each individual 
RNA-seq sample and were easily influenced by noisy reads, while the method presented 
herein used a structured sparse regularization to combine multiple samples, which avoided 
this effect. These results demonstrate that SSRSeq is able to identify the true non-expressed or 
lowly expressed genes and isoforms.

Application on real RNA-seq data

In order to further evaluate the performance of SSRSeq in whole-genome expression 
profiles, we used four real datasets from different species and sequencing platforms. First, 
we used the mouse and HB datasets to show the consistency of isoform expression between 
multiple samples from various methods. All methods, except for SSRSeq, separately 
estimated isoform expression. We calculate R2 correlation coefficients of the obtained isoform 
expressions between multiple samples as shown in Table 3. We observed that SSRSeq more 
consistently predicted isoform expression across multiple samples than the other alternative 
methods. We also noticed that the R2 correlation coefficients from the mouse dataset were 
higher than those from the HB dataset. The reason for this may be that the multiple samples 
of the mouse dataset are technical replicates, while those of the HB dataset are biological 
replicates. As is well known, the variability in biological replicates is higher than that in 
technical replicates. Another reason may be that the number of isoforms in the HB dataset 
using Ensembl annotation is five times greater than that in the mouse dataset as more isoforms 
make it harder to accurately predict isoform expression.

Second, we used two datasets from the MAQC project to evaluate the gene expression 
calculations from various methods. The SRA010153 dataset contained two RNA samples, 
HBR and UHR. Each sample included seven technical replicates. The SRA012427 dataset 
contained three technical replicates from the UHR sample. Except for SSRSeq, the other 
methods separately estimated gene expression and averaged the results. Next, we calculated 
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the R2 correlation coefficients between the average logarithm of the expression level of the 833 
qRT-PCR validated genes and the qRT-PCR measurements. The results of the two datasets are 
presented in Table 4. We observed that SSRSeq outperformed the other four alternatives in the 
four different comparisons.

The highest R2 correlation coefficient for each comparison is in bold.

Table 3. R2 correlation coefficients of estimated isoform expression levels by various methods between 
multiple samples in the mouse and HB datasets.

 NURD Cufflinks RSEM Tigar2 SSRSeq 
Mouse.Brain 0.942 0.943 0.953 0.949 0.974 
Mouse.Liver 0.949 0.944 0.950 0.944 0.976 
Mouse.Muscle 0.939 0.938 0.942 0.939 0.967 
HB.Adult 0.749 0.753 0.751 0.737 0.784 
HB.Fetal 0.747 0.751 0.756 0.742 0.772 

 

For each datasets, the abbreviations are as follows, SE: single-end and PE: paired-end. The highest R2 correlation 
coefficient for each comparison is in bold.

Table 4. R2 correlation coefficients between the estimated gene expression levels by various methods and qRT-
PCR measurements in the MAQC dataset.

 NURD Cufflinks RSEM Tigar2 SSRSeq 
SE.HBR 0.804 0.865 0.850 0.841 0.869 
SE.UHR 0.815 0.872 0.871 0.864 0.878 
PE.UHR 0.777 0.817 0.850 0.798 0.867 

 

Finally, we used the HBC dataset to evaluate the accuracy of the isoform 
expression estimation of our approach. Eight qRT-PCR validated isoforms related to 
five genes were deemed as benchmarks to compare the accuracy of various methods. 
The MCF-7 and HME cell lines contained seven and four technical replicates, 
respectively. We calculated R2 correlation coefficients for each cell line and the 
results of all methods are shown in Table 5. Even though all methods resulted in 
relatively low correlation coefficients, SSRSeq presented the highest performance.

The highest R2 correlation coefficient for each comparison is in bold.

Table 5. R2 correlation coefficients between the estimated isoform expression levels by various methods and 
the qRT-PCR measurements in the HBC dataset.

 NURD Cufflinks RSEM Tigar2 SSRSeq 
HME 0.119 0.529 0.493 0.507 0.616 
MCF-7 0.193 0.249 0.211 0.210 0.411 

 

An example of the read distribution along the gene HIST1H2BD is shown in Figure 
5. The read counts of each exon shown in Figure 5A and B are from two of the four samples 
in the MCF-7 condition of the HBC dataset. The proportions of the corresponding isoform 
expression levels estimated by various methods are listed in Table 6. Notably, SSRSeq 
produced the most consistent results with those of qRT-PCR experiments among the compared 
methods. The differences between SSRSeq and the other methods is clearly seen in Figure 
5. Gene HIST1H2BD contained two isoforms, uc003ngr.1 and uc003ngs.1. The uc003ngr.1 
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isoform has a non-overlapping region in the 3'-end and the second exon of uc003ngs.1 is a 
discriminative exon, which are both useful to estimate isoform expression levels. Thus, the 
few reads mapped to the non-overlapping region of uc003ngr.1 are likely noisy reads, and 
resulted in the high proportion of isoform expression in the compared methods. However, 
SSRSeq reduced this effect, and accurately inferred the isoform expression level.

Figure 5. Read counts for each exonic nucleotide position in the CisGenome Browser along gene HIST1H2BD 
from the two samples in condition MCF-7 of the HBC dataset. The gene structure is from UCSC known Gene 
(NCBI36/hg18).

Table 6. Proportions of isoform expression levels of gene HIST1H2BD estimated by various methods in 
condition MCF-7 of the HBC dataset.

 qRT-PCR NURD Cufflinks RSEM Tigar2 SSRSeq 
uc003ngr.1 1.6% 73.5% 66.8% 64.5% 63.3% 0% 
uc003ngs.1 98.4% 26.5% 33.2% 35.5% 36.7% 100% 

 

Model selection

SSRSeq uses the parameter λ to control the number of isoforms with non-zero 
expression levels in the solution. For the structured sparse regularization, l2,1-norm, a smaller 
value of λ can produce more non-zero isoform expression levels. On the contrary, a larger 
value of λ produces more non-expressed isoforms. As shown in Figure 6, as λ increases, 
the R2 correlation coefficient between the estimated gene expression and the qRT-PCR 
experiment measurements decreases. However, the R2 correlation coefficients of the gene/
isoform expression between multiple samples increase, since most isoforms are forced to be 
non-expressed. Therefore, we need to balance these measurements. Therefore, according to 
Figure 6, λ = 1 is a proper and empirical choice.



13Estimating expression level from multi-sample RNA-seq data

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 15 (2): gmr.15027670

Figure 6. Results of expression estimations with the different λ selections in the HBR condition of the MAQC 
dataset. The red line represents the R2 correlation coefficients between the estimated gene expression and the qRT-
PCR measurements. The blue and green lines represent the R2 correlation coefficients of the gene and isoform 
expression between multiple samples, respectively.

DISCUSSION

In the current study, we proposed the structured sparse regression method, SSRSeq, 
to estimate isoform expression levels using multi-sample RNA-seq data. We introduced 
bias curves across multiple samples, such as those of technical/biological replicates, 
and considered them as bias weights in SSRSeq. We used four real datasets to evaluate 
the performance of our method, and compared it with four other popular alternatives, 
NURD, Cufflinks, RSEM, and Tigar2. For real datasets, the proposed multi-sample bias 
curve represented the general tendency of non-uniform read distribution for all genes 
across multiple samples and presented a strong distribution bias form the 5'- to 3'-ends of 
genes. Moreover, SSRSeq used the structured sparse regularization, l2,1-norm, to reduce 
the effects of noisy reads and variance between multiple samples, especially for lowly 
expressed isoforms and genes. Concordance with qRT-PCR experiment measurements was 
also compared among the different methods, and revealed that our method produced more 
accurate isoform expression estimations.

In RNA-seq data analysis, detecting novel isoforms is an important and challenging 
task. Some approaches have been proposed to deal with this task for a given sample (Li 
et al., 2011a,b). However, this problem is often ill-posed since different combinations of 
isoforms may correctly explain the observed read counts, particularly at low coverage. If 
some isoforms are expressed in multiple samples potentially with different abundance, 
detecting novel isoform expression levels from multiple samples may result in better 
estimations. SSRSeq uses the structured sparse regularization, l2,1-norm, to obtain sparse 
specificity between the expression of a gene and its corresponding isoforms from multiple 
samples. Our model may easily be generalized to detect novel isoforms. Using splice 
junctions or genome annotations, we can enumerate all candidate isoforms, and then adopt 
the generalized SSRSeq model to detect the most possible isoforms. We will seek to verify 
this possibility in future research.
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