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ABSTRACT. Multiple sequence alignment plays an important role 
in molecular sequence analysis. An alignment is the arrangement of 
two (pairwise alignment) or more (multiple alignment) sequences of 
‘residues’ (nucleotides or amino acids) that maximizes the similarities 
between them. Algorithmically, the problem consists of opening and 
extending gaps in the sequences to maximize an objective function 
(measurement of similarity). A simple genetic algorithm was developed 
and implemented in the software MSA-GA. Genetic algorithms, a class 
of evolutionary algorithms, are well suited for problems of this nature 
since residues and gaps are discrete units. An evolutionary algorithm 
cannot compete in terms of speed with progressive alignment meth-
ods but it has the advantage of being able to correct for initially mis-
aligned sequences; which is not possible with the progressive method. 
This was shown using the BaliBase benchmark, where Clustal-W align-
ments were used to seed the initial population in MSA-GA, improving 
outcome. Alignment scoring functions still constitute an open field of 
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INTRODUCTION

Multiple sequence alignment (MSA) is an important part of molecular sequence analy-
sis which is routinely used to identify and measure similarities between samples of DNA, 
RNA or protein. An alignment is the arrangement of two or more sequences of ‘residues’ (nu-
cleotides or amino acids) that maximizes the similarities between them. It can be pivotal in 
the reconstruction of phylogenetic trees or an important tool in the prediction of the function 
and/or structure of an unknown protein by aligning its sequence with others of known function 
and/or structure. A third use is the prediction of probes for the same family of sequences in the 
same or different organisms.

The relationships between sequences are very complex since they have been exposed 
to evolutionary pressures and mutations over millions of years. Obviously, the best way to infer 
these relationships would be from a solid knowledge of the evolutionary history and the structural 
properties of the sequences. Unfortunately, this wealth of information is very seldom available; 
instead, generic models of protein evolution based on sequence similarity are used (Henikoff and 
Henikoff, 1992) in a scoring system which penalizes substitutions and gap insertions.

The highest scoring alignment can be found through a dynamic programming (DP) al-
gorithm such as the Needleman-Wunsch (1970) or Smith-Waterman (1981). However, these al-
gorithms are computationally demanding in all but the most trivial problems. To circumvent this 
limitation, most multiple alignment methods implement approximate heuristic algorithms. Cur-
rently, the main approach to multiple sequence alignment is the progressive method (Feng and 
Doolittle, 1987) implemented in Clustal W (Thompson et al., 1994), MULTAL (Taylor, 1987) 
and T-COFFEE (Notredame et al., 2000) for instance. This method is very fast and straightfor-
ward but it can easily get caught at local minima. A second method is the exact method, such as 
MSA (Lipman et al., 1989), which tends to give better results than the progressive method but is 
computationally too intensive for larger problems; the practical limit is around 10 sequences. The 
third method is the iteration-based approach. This method uses algorithms that produce an align-
ment and tries to improve it over successive iterations. This approach includes hidden markov 
models (Eddy, 1998; Karplus and Hu, 2001), simulated annealing (Kim et al., 1994), tabu search 
(Riaz et al., 2004), genetic algorithms (Notredame and Higgins, 1996; Zhang and Wong, 1997; 
Anbarasu et al., 2000; Nguyen et al., 2002; Shyu et al., 2004) and evolutionary programming 

research, and it is important to develop methods that simplify the test-
ing of new functions. A general evolutionary framework for testing and 
implementing different scoring functions was developed. The results 
show that a simple genetic algorithm is capable of optimizing an align-
ment without the need of the excessively complex operators used in 
prior study. The clear distinction between objective function and genetic 
algorithms used in MSA-GA makes extending and/or replacing objec-
tive functions a trivial task.

Key words: Genetic algorithms, Evolutionary computation,  
Optimization, Multiple sequence alignment
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(Chellapilla and Fogel, 1999). A hybrid method using progressive alignment and iteration was 
suggested by Thomsen et al. (2002). No single approach is ideal for all scenarios as evidenced 
by McClure et al. (1994), Wallace et al. (2005) and Thompson et al. (1999a), where the latter 
evaluated the performance of several alignment programs using the alignments in the BaliBase 
(Thompson et al., 1999b; Bahr et al., 2001) benchmark as test cases.

From the above, it should be clear that the methods and tools for sequence alignment 
are numerous and there is as yet no optimal approach to the problem. Progressive alignment 
methods are fast and deterministic, in the sense that they always provide the same result. These 
are two important considerations for routine applications. Their major problem is that errors 
in the initial alignments are propagated to the other sequences and cannot be corrected. This 
is not a problem with iterative methods but they tend to be much slower, and since most are 
stochastic, results may vary between runs. Iterative methods are well suited for complex prob-
lems where no other alternative is available or where the best possible alignment is important 
irrespective of computational cost. 

Iterative methods can be implemented through evolutionary algorithms which are 
computational heuristics that use analogies of natural selection processes such as mutation, 
recombination and selection to evolve a population of candidate solutions based on an objec-
tive function. These algorithms have an important advantage over progressive methods in that 
the alignment component is independent of the scoring function. This means that different 
objective functions can be tested without modifications to the alignment routine, which makes 
them particularly well suited for testing new scoring functions. Also, by their very nature, 
evolutionary algorithms are easily parallelizable which meets the current trend of low-cost 
clusters and multi-core processors. This can shift the time-cost balance since parallelization of 
DP algorithms is not a trivial task (Ebedes and Datta, 2004). 

This paper describes a simple genetic algorithm (GA) (Goldberg, 1987; Eshelman, 
2000), a class of evolutionary algorithms, developed for the MSA of biological sequences. The 
algorithm was implemented in the software MSA-GA which is freely available from the first 
author. Two methods are available for creating initial candidate solutions: 1) from pairwise 
alignments, where sequences are aligned in pairs alone, or 2) from a combination of pairwise 
alignments and a user-defined multiple sequence alignment. A set of hand-curated alignments 
from BaliBase (Thompson et al., 1999b; Bahr et al., 2001) were used to compare the align-
ments produced by the two approaches in MSA-GA with the alignments generated by Clustal 
W. The remainder of the paper is organized as follows. Background information on sequence 
alignment and the iterative methods based on evolutionary computation are briefly reviewed. 
Following this, our genetic algorithm and its implementation in the MSA-GA software is pre-
sented. The results of MSA-GA in comparison to alignments of Clustal W are shown and dis-
cussed. Conclusions are drawn in the closing section.

Sequence alignment

A pairwise alignment is the arrangement of two sequences that maximizes the similari-
ties between them. The term similarity refers to the number of matches of residues between 
the sequences; which is distinct from homology which refers to common evolutionary roots. 
Sequences that align well are considered homologous; with the distinction between homolo-
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gous and nonhomologous not clearly distinguishable at around 30% identity - the twilight zone 
(Sander and Schneider, 1991). The residues in aligned sequences can be a match, a mismatch 
or a gap. For homologous sequences, a match suggests an evolutionarily conserved region; a 
mismatch shared between two sequences can indicate derivation from a common ancestor, and 
a gap is usually explained through insertions or deletions in the sequences. Mismatches and 
gaps are used to bring as many identical or similar residues into register following a scoring 
scheme. Alignments can be global or local; the former approach uses the entire sequences to 
maximize the number of matched residues and the latter approach maximizes the alignment of 
similar subregions. Multiple sequence alignments are simply an extension of pairwise align-
ment with three or more sequences. 

Dynamic programming

DP is widely used in optimization problems (Bellman, 2003); it is mathematically 
guaranteed to find the optimal alignment (Shyu et al., 2004) and is routinely used for pair-
wise alignments. For three or more sequences the algorithmic complexity grows significantly 
(Stoye et al., 1997), and since it is a large combinatorial problem (NP-hard) the computation-
al effort becomes prohibitive (Bonizzoni and Della Vedova, 2001; Just, 2001). In a nutshell, 
DP is a recursive procedure that splits a problem into a set of interdependent sub-problems in 
which the next intermediate solution is a function of a prior sub-problem and the next solu-
tion depends only on its immediate neighbors. For a pairwise alignment problem, DP starts 
at the end of the sequences and attempts to match all possible pairs of residues according to 
a scoring scheme for matches, mismatches and gaps generating a matrix of score values for 
all possible alignments between the two sequences. The highest score identifies an optimal 
alignment. The score matrix has dimensions n,m - where n and m are the lengths of the two 
sequences - and is constructed from top to bottom; to reach a given position (i, j) in the ma-
trix from a previous move, there are three possible paths: a diagonal move with no gap pen-
alty from position (i-1, j-1); a move from position (i-1, j) to (i, j), and a move from position 
(i, j-1) to (i, j) with a gap penalty. The matrix is built recursively according to equation 1. 
The actual alignment is obtained from a second matrix, the trace-back matrix - which stores 
information of the moves through the matrix by backtracking the moves made to obtain the 
highest score (Durbin et al., 1998).

� (Equation 1)

In equation 1 the function value F(i, j) is the highest score for position i in sequence x 
and position j in sequence y; d is the cost of the gap penalty, and s is the score for a match/mis-
match between residues xi and yj. At position F(0, 0), the value is set to zero. More than one 
path can lead to the same value and a choice has to be made as to which path to follow. Most 
programs report a single optimal alignment (Mount, 2004). The choice of scoring scheme and 
gap penalties influences the alignment produced by the DP algorithm.
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Progressive alignment

Progressive alignment (Feng and Doolittle, 1987) is the most widely used heuris-
tic for aligning multiple sequences, but it is a greedy algorithm that is not guaranteed to be 
optimal. DP is used to build the multiple alignment which is constructed by aligning pairs 
of sequences from the most closely related sequences to the furthest apart with the order of 
alignments defined by a guide tree of edit distances. To build the tree, the pairwise distances 
between all sequences are calculated and these are used in a phylogenetic method such as 
neighbor-joining (Saitou and Nei, 1987). The main drawback of progressive alignment is that 
once a sequence has been aligned it will not be modified again, even if it is suboptimal when 
other sequences are subsequently aligned. This means that information from more distantly 
related sequences cannot be used to correct initial misalignments. The approach is most ef-
ficient when aligning closely related sequences without outliers and without long insertions or 
deletions in the sequences (Notredame, 2002). 

Clustal W (Thompson et al., 1994; Chenna et al., 2003) is the most popular multiple 
sequence alignment program. It uses a global progressive alignment method. The alignment 
steps are: 1) pairwise alignment of all sequences using dynamic programming or a fast approxi-
mate k-tuple method. 2) The scores of the pairwise alignments are used to build a distance ma-
trix of genetic distances. Initially the number of matched positions divided by the total number 
of residues without gaps is obtained; these scores are divided by 100 and subtracted from 1.0 
to get the actual distances. These are used to build the guide tree using the neighbor-joining 
method (Saitou and Nei, 1987). 3) Dynamic programming is used to align the sequences from 
the most closely related to the least closely related guided by the distances from the tree. 

Scoring systems and objective functions

Alongside the local minimum problem due to the greedy nature of the progressive method, 
Thompson et al. (1994) highlighted the importance of the parameter choice in Clustal W. Iterative 
methods are equally affected by the choice of parameters which if inadequate will yield false global 
optima. Thus, a critical step in any MSA is the definition of a relevant scoring system. 

A scoring system includes scores for matches, mismatches, substitutions, insertions, 
and deletions. In practical terms it can be split into two components: substitution matrices 
which provide a numerical score for matches and mismatches, and gap penalties which allow 
numerical quantification of insertions and deletions.

A substitution matrix is a table of numbers of dimension 20 x 20 (see example in 
Table 1) for amino acids and 4 x 4 for nucleic acids which represents all possible transitions 
between the 20 amino acids or the 4 nucleic acids. They provide a measure of the probability 
of a substitution or conservation occurring. Since the direction of a substitution is unknown, 
the matrices are symmetric. For DNA sequences, a simple matrix commonly used assigns a 
positive value for a match and a negative value for a mismatch. For protein sequences the most 
common matrices are percent of accepted mutation (PAM; Dayhoff, 1978) and blocks of amino 
acid substitution matrices (BLOSUM; Henikoff and Henikoff, 1992). Values in the matrix are 
commonly given as the log odds score of the substitution occurring (Table 1), with substitu-
tions or conservations more frequent than randomly expected assigned positive values and 
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underrepresented substitutions/conservations assigned negative values. Both types of matrices 
are followed by a number (PAM250, BLOSUM62) which in the PAM matrices the number 
refers to the evolutionary distance - a PAM1 matrix estimates the expected substitution rate if 
1% of the amino acids changed into any other - this roughly represents a period of 50 million 
years of evolution. Thus, greater numbers indicate greater distances. In the BLOSUM matrices, 
the number refers to the minimum percent identity of the blocks used to construct the matrix 
- in a BLOSUM62 (Table 1) the sequences have a 62% identity. Thus, greater numbers indicate 
shorter evolutionary distances. BLOSUM is regarded as a preferable matrix choice since each 
matrix was constructed from actual data while the PAM matrices extrapolate from PAM1 as-
suming a fixed and independent mutation rate at all sites and over time, while in reality sites 
vary in their mutability and the rate of mutation over time is also not invariable (George et al., 
1990). A further criticism of PAM matrices is the small size of the original dataset. A new set of 
PAM matrices derived from a large dataset was presented by Jones et al. (1992). Other substitu-
tion matrices have been developed such as, for example, the matrices of Gonnet et al. (1992) 
constructed using data from the entire Swiss protein database, which are currently regarded as 
being the most accurate.

To obtain the best possible alignment, gaps are introduced in the sequence and a scheme for 
penalizing these gaps must be adopted. The most common approach is the affine gap penalty model 

Table 1. BLOSUM62 substitution scoring matrix. 

  C S T P A G N D E Q H R K M I L V F Y W
C 9 -1 -1 -3 0 -3 -3 -3 -4 -3 -3 -3 -3 -1 -1 -1 -1 -2 -2 -2
S -1 4 1 -1 1 0 1 0 0 0 -1 -1 0 -1 -2 -2 -2 -2 -2 -3
T -1 1 4 1 -1 1 0 1 0 0 0 -1 0 -1 -2 -2 -2 -2 -2 -3
P -3 -1 1 7 -1 -2 -1 -1 -1 -1 -2 -2 -1 -2 -3 -3 -2 -4 -3 -4
A 0 1 -1 -1 4 0 -1 -2 -1 -1 -2 -1 -1 -1 -1 -1 -2 -2 -2 -3
G -3 0 1 -2 0 6 -2 -1 -2 -2 -2 -2 -2 -3 -4 -4 0 -3 -3 -2
N -3 1 0 -2 -2 0 6 1 0 0 -1 0 0 -2 -3 -3 -3 -3 -2 -4
D -3 0 1 -1 -2 -1 1 6 2 0 -1 -2 -1 -3 -3 -4 -3 -3 -3 -4
E -4 0 0 -1 -1 -2 0 2 5 2 0 0 1 -2 -3 -3 -3 -3 -2 -3
Q -3 0 0 -1 -1 -2 0 0 2 5 0 1 1 0 -3 -2 -2 -3 -1 -2
H -3 -1 0 -2 -2 -2 1 1 0 0 8 0 -1 -2 -3 -3 -2 -1 2 -2
R -3 -1 -1 -2 -1 -2 0 -2 0 1 0 5 2 -1 -3 -2 -3 -3 -2 -3
K -3 0 0 -1 -1 -2 0 -1 1 1 -1 2 5 -1 -3 -2 -3 -3 -2 -3
M -1 -1 -1 -2 -1 -3 -2 -3 -2 0 -2 -1 -1 5 1 2 -2 0 -1 -1
I -1 -2 -2 -3 -1 -4 -3 -3 -3 -3 -3 -3 -3 1 4 2 1 0 -1 -3
L -1 -2 -2 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2 2 2 4 3 0 -1 -2
V -1 -2 -2 -2 0 -3 -3 -3 -2 -2 -3 -3 -2 1 3 1 4 -1 -1 -3
F -2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -3 0 0 0 -1 6 3 1
Y -2 -2 -2 -3 -2 -3 -2 -3 -2 -1 2 -2 -2 -1 -1 -1 -1 3 7 2

W -2 -3 -3 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2 -3 1 2 11
The BLOSUM 62 is a 20 x 20 matrix in which every possible conservation and substitution is assigned a score based on the actual ob-
served frequencies in alignments of proteins with 62% similarity. Identities are assigned the most positive scores. Frequently observed 
substitutions are assigned positive scores and infrequent substitutions are assigned negative scores (Henikoff and Henikoff, 1992).
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where an initial penalty is used to start a gap and a smaller linear penalty is used for extending the 
gap an extra position (Equation 2). The assumption of the model is that a single mutation event of x 
residues is more likely than x adjacent mutations of a single gap; thus, in the alignment there are pref-
erably few longer gaps than a large quantity of short gaps. In equation 2, the total gap penalty (d) is 
the penalty of opening a gap (g) plus the cost of extending the gap (r) times the size of the gap (x). 

� (Equation 2)

The values of gap penalties depend on the choice of matrix and must balance their 
values (Altschul, 1989). A high gap penalty in relation to the values in the matrix will impede 
the appearance of gaps. On the other extreme, a too low gap penalty will cause gaps to appear 
everywhere in the alignment.

Several scoring schemes have been developed. A frequently used scoring scheme is the 
sum of the score of all pairwise alignments - sum-of-pairs. This approach assumes that the se-
quences are independent from each other, and there is an overestimation of the number of sub-
stitutions. To account for this effect, the sun-of-pair scores, s, over k sequences can be weighted 
by a factor, w, that accounts for this effect by reducing the influence of the most closely related 
sequences (equation 3). Weighted sun-of-pair is used in Clustal W - the W stands for weighted 
- and are usually obtained from the distances in the guide tree (Thompson et al., 1994).

 

� (Equation 3)
 
Other scoring schemes use consistency scores which are a measure of consistency 

of the MSA with a library of pairwise alignments. This scheme is used in the tree-based 
consistency based objective function for alignment evaluation - T-COFFEE (Notredame et 
al., 1998, 2000). 

In summary, the final MSA is a function of the substitution matrix, gap penalty func-
tion, scoring scheme, and optimization algorithm. The first three form the objective function 
which is condensed into a single numerical value with the scoring scheme. The objective func-
tion is the criterion from which the optimization algorithm must try to find the global maxi-
mum. Even if the global maximum is found, the alignment is only optimal in the mathematical 
sense. The true optimal alignment should reflect the actual identity by descent of the compo-
nents under test which can differ from the mathematical optimum.

Multiple sequence alignment with evolutionary computation

Progressive methods have the problem of propagating initial misalignments into the 
entire MSA, which becomes particularly evident in more distantly related sequences (Thomp-
son et al., 1994). Iterative methods try to correct for this problem by iteratively realigning 
subgroups of the alignments and then aligning them into the entire MSA. With the use of an ob-
jective function such as the sum-of-pairs, the aim is to improve the MSA alignment score. Iter-
ative methods can be deterministic or stochastic; here, the discussion is limited to evolutionary 
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computation approaches to MSA, which are stochastic methods. Comprehensive evaluations 
of iterative algorithms were presented by Hirosawa et al. (1995) and Wallace et al. (2005).

Evolutionary computation is the general umbrella for a group of stochastic problem-
solving methods loosely inspired by evolutionary processes such as selection, mutation and 
recombination. These methods are commonly referred to as evolutionary algorithms which 
have in common the use of populations of candidate solutions which reproduce, compete, and 
are subjected to selective pressures and random variation - the four basic elements of evolution 
(Atmar, 1994).

The seminal work in the field, SAGA (Notredame and Higgins, 1996), is the best 
known MSA algorithm using evolutionary computation. SAGA uses a GA with 22 different 
types of complex search operators that are themselves optimized during runtime using dynamic 
scheduling. The objective function is the weighted sum-of-pairs.

Such complexity may be unnecessary. Thomsen and Boomsma (2004) showed that op-
erator scheduling did not improve the quality of alignments in comparison to a uniform selection 
of operators, they also showed evidence that crossover operators contributed little to improve 
alignments, with mutation operators being the main determinant in successful alignments. Zhang 
and Wong (1997) used a simpler GA but the scoring scheme was based on the number of fully 
matched columns which limited the algorithm to sequences of high similarity.

Evolutionary computation approaches are computationally intensive; to account for 
this time demand, Anbarasu et al. (2000) developed a parallelized GA based on the island mod-
el. A second parallel GA, limited to multi-processor single machines, was presented by Nguyen 
et al. (2002). Their approach uses a parallelized hybrid GA based on the coarse-grained paral-
lel model. Shyu et al. (2004) used GAs to optimize the guide tree used for progressive align-
ment methods and also presented a method using a “vertically scalable encoding scheme” for 
evolving the MSA, which demands approximately the same number of iterations to converge, 
irrespective of the number of sequences to be aligned. Both methods were only used and evalu-
ated on simulated DNA sequences limiting their practical application. Chellapilla and Fogel 
(1999) used an evolutionary programming approach with five different variation operators. 
Their results indicate that their evolutionary programming is more efficient than Clustal W for 
DNA sequences of low similarity.

It should be emphasized that these approaches are slow compared to progressive meth-
ods. Speed can be improved by parallelization; another approach that not only improves the speed 
but also the quality of the alignments is to seed the initial population with pre-alignments, as for 
example, use the results of Clustal W to form the initial population (Thomsen and Boomsma, 
2004) or a hybrid method using progressive alignment and iteration (Thomsen et al., 2002).

METHODS

A simple genetic algorithm for multiple sequence alignment

For simplicity the algorithm is illustrated using DNA sequences, but it can easily be 
extended to RNA and protein sequences. The software MSA-GA allows alignment of any type 
of sequence; comparisons with Clustal W were performed using protein sequences which are 
more challenging due to their structural properties. 
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Matrix representation

A group of sequences to be aligned consist of n sequences of DNA of different lengths. 
An alignment is represented as a matrix with n rows in which each row represents a sequence. 
Each position in the array is occupied by a symbol from the alphabet {A,T,C,G,-}, with the 
character symbols corresponding to the nucleotides adenine, thymine, cytosine, and guanine, 
respectively. Gaps are represented by the symbol ‘-’. Evidently, the order of the nucleotides in 
the sequences has to be preserved and is only interspaced with gaps. The number of columns 
in the matrix was defined as

� (Equation 4)
 

where the number of columns (L) is the size of the longest sequence multiplied by a scaling 
factor of k plus an initial offset x. An alignment, after gaps have been inserted, is infrequently 
more than 20% longer than the longest sequence. An adequate scaling factor is in the range 
{1.2,1.5}. The offset is the maximum number of gaps inserted at the beginning of a sequence.  
k = 0.2*lmax is an adequate offset, but this can be increased if the solution uses most or all of this 
leading space. The final alignment is obtained from the matrix by pruning all columns consisting 
only of the gap alphabet symbol (-) and aligning all li symbols across the n sequences.

 Population initialization 

Each organism in the GA consists of a candidate alignment. The organisms of the ini-
tial population are generated from pairwise alignments of all the sequences. Initially, all global 
pairwise alignments between the sequences are computed with dynamic programming using 
the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970). For each sequence one of 
the pairwise alignments corresponding to that sequence is randomly selected to form the organ-
ism. At the beginning of the sequence, a randomly defined number of gaps is placed (offset). 
The number of gaps is an integer that varies between zero and the size of the offset. Figure 1 
summarizes the pseudo-code algorithm for population initialization. 

Once an organism is constructed, the objective function is called and an initial fitness 
value is assigned to the organism. Even accounting for the overhead to calculate the pairwise 
alignments, an initial population seeded from pairwise alignments is overall faster and greatly 
improves the scores with reduced convergence times when compared to randomly generated 
alignments (data not shown). With this approach, the initial population starts with a high mean 
fitness. A second method available in MSA-GA is to include a pre-alignment which is inserted 
into the initial population. 

Variation operators

An MSA is defined by the position and size of the gaps in the sequences. From an Evo-
lutionary computation perspective it can be viewed as a “gap-shuffling” operation. Two types 
of search operators were included in the algorithm: recombination between parents to produce 
offspring alignments and gap mutations.
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Two types of recombination were adopted with independent probabilities of occur-
ring. Offspring are created by one of the recombination types: 1) horizontal recombination 
which builds an offspring by randomly selecting each sequence from one of the parents and  
2) vertical recombination which randomly defines a cut point in the sequence and the off-
spring is built by copying the sequence from position 1 up to the cut point from one parent 
and from the cut point to the end of the sequence from the other parent. The same cut point 
is used throughout all sequences; initially for each sequence, a new cut point was randomly 
selected, but this approach proved to be excessively disruptive to the alignments. With verti-
cal recombination, the positions of gaps are accounted for to ensure integrity of the structure 
of the sequences. Figure 2 exemplifies the two types of recombination. There are no opti-
mal probability settings for the recombinations; empirical observations suggest that an equal 
chance of either method being selected with a 30% probability for horizontal recombination 
and 50% for vertical recombination is generally appropriate. If no recombination occurs, the 
offspring is copied from one of the randomly selected parents. 

Figure 1. Pseudo-code for the population initialization algorithm.

Figure 2. Horizontal (A) and vertical (B) recombination in the MSA genetic algorithm. A. Offspring are generated by 
randomly selecting entire sequences from either of the parents. B. A randomly defined cut point splits the sequences 
of the parents in two; offspring are generated by selecting one substring from each parent. 
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Mutation operators can only act on gaps and there are four possible operations: open a 
new gap, close an existing gap, extend gap size, or reduce gap size. Three mutation operators 
were used to manipulate gaps. To open a new gap a block mutation operator is used; a posi-
tion in a sequence is randomly selected, and a block of gaps of variable size is inserted into the 
sequence. For gap extension, a block of gaps is randomly selected and an extra gap position is 
added. The third mutation operator is a gap reduction, a block of gaps is randomly selected and 
a gap position is removed; the probability of a gap position being removed is an inverse func-
tion of the size of the gap, meaning that the smaller the number of gap positions the higher the 
probability that a gap position will be removed. If the selected gap block consists of a single 
position, it will always be removed, and the gap will be closed.

Hill climbing

In MSA-GA, if the best fitness in the population does not improve over 1000 objec-
tive function evaluations, an optional greedy hill climbing algorithm (Michalewicz and Fogel, 
2000) can be run to try to further improve the alignments. For the best candidate alignment 
the hill climbing algorithm goes through each block of gaps in each sequence, adds an extra 
gap position and evaluates the objective function. If the fitness value improves, another gap 
is added to the block and the fitness is re-evaluated. The process is repeated while the fitness 
improves. When the new gap results in a worse fitness, the gap is removed and the algorithm 
moves on to the next block. If the best fitness improves, the GA resumes the run; if not the same 
process is repeated but deleting a gap position instead of adding one. At the end of the process 
the GA resumes the run. 

Objective function 

The objective function is not an integral part of the GA which makes it particularly 
well suited for testing different scoring schemes. In our GA, the fitness value is a direct 1:1 
mapping of the objective function, meaning that the scores from the objective function are 
directly assigned as the fitness of the candidate alignment. The objective function used is the 
weighted sum-of-pairs (equation 3). In MSA-GA the weights are user-defined and can be de-
rived from the scores of the pairwise alignments used to seed the initial population with the 
neighbor-joining method (Saitou and Nei, 1987) or some other weighting scheme. Weights are 
normalized following the method of Thompson et al. (1994). Initial gap opening and gap exten-
sion penalties are modified following Thompson et al. (1994). 

The GA uses steady-state generations and selection is elitist with tournament selection 
(Bäck et al., 2000). The winner of the tournament remains in the population and the loser(s) are 
replaced by its (their) offspring. Recombination uses the tournament winner and each of the 
losers to generate an offspring which will replace the respective loser in the population. If there 
is no recombination, the winner is used as a template for the mutation operators. 

Multiple sequence alignment-genetic algorithm software

MSA-GA implements the simple GA described. The main drive in the software design 
was to ensure a clear separation between the GA and the objective function using an object-oriented 
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approach. The GA communicates with the objective function by sending out a candidate alignment 
as a character matrix of dimension (n, j), where n is the number of sequences in the alignment and j 
is the maximum number of columns as per equation 4. The objective function returns a numerical 
score which is the fitness of the candidate alignment. This clear distinction between GA and objec-
tive function makes it very simple to implement different objective functions. 

FASTA format sequences can be pasted directly into the input pane (Figure 3) or read 
from a file. The GA run parameters can be set in the MSA-GA Settings window (Figure 3). This 
window also includes settings for the alignment: type of alignment (DNA or protein), where 
RNA is not included since RNA sequences are usually converted into amino acid sequences 
for alignments; scoring matrix and initial penalty values for opening and extending gaps. Hill 
Climbing settings can also be changed (OFF by default). The current version includes the most 
commonly used scoring matrices; for DNA the identity and Blast matrices and for proteins the 
main PAM, BLOSUM and GONNET matrices. 

At the beginning of a run, MSA-GA will automatically search for weights and prea-
lignment files with the same name as the current file. If a weight file is not available, the 
program will use a default weight of 1.0 for all sequences - unweighted sum-of-pairs. If an 
alignment file is available, MSA-GA will check its integrity and assign the alignment as the 
first candidate alignment in the population. 

On initialization, the lower pane displays the pairwise alignments for all sequences (Fig-
ure 3) with the alignment scores and the size of each alignment. At the end of the run, the best 
alignment is displayed in the same pane. Run results can be saved as text files in FASTA format. 

Figure 3. Screenshot of multiple sequence alignment-genetic algorithm (MSA-GA). The upper pane shows FASTA 
format sequences to be aligned. The lower pane displays the pairwise alignments of all sequences. The MSA-GA 
Settings window allows selecting the run parameters of the GA and the alignment settings.
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RESULTS

Evaluation of MSA-GA for multiple sequence alignment of proteins 

To evaluate the performance of MSA-GA, a set of test cases from the hand-curated 
Benchmark Alignment Database - BaliBase (Thompson et al., 1999b; Bahr et al., 2001) was 
chosen. The original BaliBase (Thompson et al., 1999b) consists of a set of 142 reference 
alignments with over 1000 sequences. Version 2 of BaliBase (Bahr et al., 2001) improved 
some alignments from the original database and extended it to 167 reference alignments and 
over 2100 sequences including sequences with repeated regions, transmembrane sequences 
and circular permutations. BaliBase 2 is divided into eight classes of reference sets: 1) equi-
distant sequences with different levels of conservation, 2) sequences with a highly divergent 
sequence, 3) groups with less than 25% identity, 4) sequences with N/C-terminal extensions, 5) 
internal insertions, 6) repeats, 7) circular permutations, and 8) transmembrane proteins (Bahr et 
al., 2001). Group 1 is subdivided by sequence sizes. From each group (and subgroups in group 
1), sequences were randomly selected for the test cases, giving a total of 32 as a representative 
sample of the entire database. 

This provides a basis for evaluation in which a target result is available for each set of 
sequences. This result is the outcome of hand-curation, and does not represent the optimal result 
based on the scoring systems used here. This means that a true global optimization in the tests 
carried out generally need not to be reflected by complete alignment of the BaliBase solution.

Two sets of five runs for each test case were performed using MSA-GA. The parameter 
settings of the runs are summarized in Table 2, hill climbing was not used since it is very time 
demanding, and initial tests indicated that hill climbing would improve the GA-evolved align-
ment less than 1% of the times. For the first set, initial populations were generated using only 
pairwise alignments. For the second set, pairwise alignments and the alignments from Clustal 
W were used to seed the initial population. The weights were obtained from the guide trees 
used in Clustal W.

MSA-GA alignments were compared to alignments produced by Clustal W, which 
is the standard reference alignment program (Chenna et al., 2003). To compare the results 

Table 2. Genetic algorithm parameter settings used in multiple sequence alignment-genetic algorithm.

Parameter Value

Population size 1000
Number of generations 20.000
Block mutation 0.1
Gap extension mutation 0.05
Gap reduction mutation 0.05
Horizontal recombination 0.3
Vertical recombination 0.5
Horizontal/vertical ratio 0.5
Tournament size 10
Offset 0
Maximum sequence size 1.2
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with Clustal W, the sum-of-pairs score from BaliScore (Thompson et al., 1999a) was used. 
BaliScore compares the aligned sequences from BaliBase with an alignment produced by an 
MSA program and returns an alignment score between zero (bad alignment) and one (good 
alignment) which can be used to estimate the quality of an alignment in relation to a BaliBase 
reference, as well as being directly comparable across the different alignment algorithms. Since 
MSA-GA outputs result in FASTA format, and BaliScore takes MSF formats as inputs, a small 
graphical wrapper was written to convert from FASTA to MSF using ReadSeq, a common con-
verter of sequence formats, and then a modified version of BaliScore (Thompson J, personal 
communication) was run with the scores saved as text files. Table 3 shows the score of the best 
run of MSA-GA for the test cases in comparison to the scores from Clustal W. The default pa-
rameters of Clustal W were used to generate the alignments, and the same settings were used 
in MSA-GA: initial gap opening penalty of 10.0, gap extension penalty of 0.2 and a positive 
matrix. Instead of the Gonnet series matrix, only the Gonnet 250 matrix was used. BaliScore 
returned an error when trying to score the Clustal alignments for reference groups 6 and 7. For 
this reason, the results for these groups were omitted from Table 3. 

The average scores for the 28 alignments were 59.04% for MSA-GA, 65.29% for 
MSA-GA seeded with prealignments and 63.97% for Clustal W. MSA-GA with no prealign-
ments performed better than Clustal W on 12 test cases and worse on 16. The number of test 
cases for each reference set is insufficient to draw conclusions as to the suitability of MSA-GA 
for any particular class of problems; nevertheless, MSA-GA seems to perform better with short 
or medium length sequences and with sequences of low identity, which is in close agreement 
to the results for the iterative method using genetic algorithms implemented in SAGA (Notre-
dame and Higgins, 1996; Thompson et al.,1999a). The orphan sequences in reference 2 seem 
to bias the alignment, entrapping the GA at a local optimum, which also follow the results from 
SAGA (Thompson et al., 1999a). MSA-GA scored higher for the tested references in groups 4 
and 8, but only in reference 4 did the alignments improve by more than 2%.

MSA-GA with seeded prealignments improved on the original Clustal alignments in 
17 test cases. Of these, six improved the alignment by more than 2%. The average improve-
ment was 1.32%, which closely agrees with the average 1.6% improvement obtained with 
iterative approaches applied to Clustal W alignments (Wallace et al., 2005). Even though No-
tredame and Higgins (1996) observed that seeding could entrap the GA at a local optimum, 
our results suggest that better solutions can be found if a run is seeded with prealignments. Of 
the 28 test cases, in only three the GA did not change the original alignment score. In seven 
cases, the BaliScore value did not change, but in four of these the fitness value in MSA-GA 
increased. Similar results were obtained by Thomsen and Boomsma (2004) seeding Clustal W 
alignments into SAGA, with these outperforming randomly initiated alignments. The remain-
ing four alignments yielded worse results than Clustal W even though the fitness values in-
creased, which indicates that the objective function does not adequately map to the ‘biological’ 
alignment. An example of this effect was found in 1idy in reference 1. In an MSA-GA run, the 
sum-of-pairs score of the Clustal prealignment was 641 and 655 at the end of the run, which 
yielded a worse BaliScore value (0.521-0.438). More interestingly, the score for the BaliBase 
alignment itself is 659, clearly demonstrating the non-linear relation between the fitness score 
and the ‘biological’ alignment. Further, the MSA-GA score without a prealignment evolved to 
a final value of 663 (BaliScore 0.427), beyond the theoretical ‘global optimal’ value. 
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Table 3. BaliScore score results of multiple sequence alignment-genetic algorithm (MSA-GA), MSA-GA with 
prealigned sequences and Clustal W for 28 test cases selected from BaliBase 2. 

Ref. 1 MSA-GA MSA-GA w/prealign Clustal W

Ref. 1 - S, <25% identity
1idy 0.427 0.438 0.521
1tvxA 0.294 0.209 0.06
Ref. 1 - M, <25% identity 
1uky 0.443 0.405 0.392
Kinase 0.295 0.488 0.479
Ref. 1 - L, <25% identity 
1ped 0.501 0.687 0.592
2myr 0.212 0.302 0.296
Ref. 1 - S, 20-40% identity
1ycc 0.65 0.653 0.643
3cyr 0.772 0.789 0.767
Ref. 1 - M, 20-40% identity 
1ad2 0.821 0.845 0.773
1ldg 0.895 0.922 0.88
Ref. 1 - L, 20-40% identity 
1fieA 0.843 0.942 0.932
1sesA 0.62 0.913 0.913
Ref. 1 - S, >35% identity 
1krn 0.908 0.895 0.895
2fxb 0.941 0.985 0.993
Ref. 1 - M, >35% identity 
1amk 0.965 0.959 0.945
1ar5A 0.812 0.946 0.946
Ref. 1 - L, >35% identity 
1gpb 0.868 0.948 0.947
1taq 0.525 0.826 0.826
Ref. 2 - 1 orphan sequence MSA-GA MSA-GA w/prealign Clustal W
2pia 0.761 0.768 0.766
1pamA 0.755 0.758 0.757
Ref. 3 - Sub-groups of sequences MSA-GA MSA-GA w/prealign Clustal W
Kinase 0.58 0.619 0.619
1pamA 0.703 0.744 0.743
Ref. 4 - N/C terminal extensions MSA-GA MSA-GA w/prealign Clustal W
1dynA 0.038 0.034 0
kinase2 0.71 0.635 0.63
Ref. 5 - Internal insertions MSA-GA MSA-GA w/prealign Clustal W
2cba 0.422 0.621 0.628
S51 0.528 0.73 0.75
Ref. 8 - Transmembrane proteins MSA-GA MSA-GA w/prealign Clustal W
Gsh 0.085 0.075 0.075
lectin2 0.158 0.146 0.146
In reference 1 the abbreviations are short (S), medium (M) and long (L). References from groups 6 and 7 were not included 
since BaliScore returned an error when trying to score the Clustal W alignments. The numbers in bold show a higher score 
compared to Clustal W. 
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DISCUSSION AND FUTURE PERSPECTIVES

Genetic algorithms are computationally expensive, which hinders their mainstream 
adoption as a tool for multiple sequence alignments. On the other hand, the clear distinction 
between the scoring scheme and the GA itself makes them particularly well suited for testing or 
implementing different objective functions. The inadequacy of the scoring methods for certain 
types of alignments is a well-known problem and is an active field of research in MSA. 

MSA-GA without prealignments yielded better results than Clustal in 43% of the test cases 
and worse in the remaining, with the alignments on average 4% inferior. These results do not sug-
gest that MSA-GA, even ignoring the time demand, is a superior alternative to Clustal W. Never-
theless, MSA-GA can be used as an additional tool to generate a second alignment from which the 
researcher can select the best alignment. Alternatively, the alignments produced by Clustal can be 
used to seed the MSA-GA alignments. For this scenario, the results from the test cases improved 
the original Clustal alignments in 61% of the cases and were worse in only 14% (in 3 alignments 
2% or less worse and 8.3% in one alignment - the 1idy reference, mentioned above, for which the 
objective function and the ‘biological alignment’ do not seem to relate well); for the remaining 25%, 
the alignment did not change. The average improvement was 1.32% and the best almost 15% bet-
ter. Depending on the application of the alignment, even small gains can justify the time expense. A 
further aspect of MSA-GA is that it allows any type of prealignment and weights to be used. This 
means that the initial population can be seeded with a prealignment not only from Clustal but also 
from other MSA programs or, more interestingly, from structural databases. 

MSA-GA with prealignments was superior to MSA-GA without prealignments in 71% 
of the cases. In the eight cases where the latter performed better, MSA-GA with prealignments 
also improved the original alignment, but to a lesser degree. This is possibly due to entrapment 
at a local optimum as a result of the seeding. 

A last consideration is the importance of GA parameter settings. MSA-GA seems to be 
sensitive to changes in these settings. Changes in population size, mutation and recombination 
rates and tournament size affect the final alignment and converge times. We performed a series 
of long runs with kinase in reference 1 changing the GA parameters (data not shown). BaliScore 
results were in the range 0.201-0.492. This provides evidence of the stochastic nature of the 
GA, which can be a matter of concern for the user. These settings are still empirically defined, 
with no theoretical framework for defining the best settings. SAGA uses a complex operator 
scheduling to try to optimize the parameters during run time, but unfortunately, the results of 
Thomsen and Boomsma (2004) demonstrated that there was no significant difference with or 
without operator scheduling. 

In summary, our results indicate that the GA seeded with prealigned sequences can 
improve the alignments derived from Clustal W. MSA-GA without prealignments is less guar-
anteed to find the best alignment, and the stochastic nature of results can render the approach 
impractical for daily usage. MSA-GA is computationally expensive, as evidently, an iterative 
approach cannot compete in terms of speed with a progressive method. However, more impor-
tantly, the main motivation behind this study was to develop a general framework for testing 
and implementing different scoring functions. We have shown that a simple GA is capable of 
optimizing an alignment without the need of excessively complex operators and the approach 
used in MSA-GA makes extending and/or replacing objective functions a trivial task.
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As noted before, an advantage of an evolutionary algorithm approach in which the 
objective function is disjointed from the optimization method is that extra components can be 
easily added to the objective function. Consider for example, if relatively large regions (e.g., 
>100 bp) have been duplicated, probably as a single event, this should not have a dramatic ef-
fect on scores, at least for some applications such as phylogeny. Including this and other such 
events (e.g., inversion) in a strong-arm optimization method would be highly complex, but 
with an evolutionary algorithm any type of feature or constraint on solutions can be targeted 
- features that we may not anticipate until appropriate problems prevail. Prior adoption of an 
evolutionary algorithm will make such hurdles much easier to overcome.

Future study includes extending the available set of scoring matrices and implementing a 
function for user-defined matrices. We also want to include different scoring schemes in MSA-GA 
as the consistency-based objective functions COFFEE (Notredame et al., 1998) and T-COFFEE 
(Notredame et al., 2000) and the recent Log Expectation scoring function (Edgar, 2004). Further 
studies are needed to test the best scope of application for the GA and to evaluate if it is getting en-
trapped at local optima with longer sequences or alignments with many sequences, as these initial 
results seem to indicate. This may require the development of specific operators in the GA. 
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