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ABSTRACT. Repetitive sequences of variable length are common 
in almost all eukaryotic genomes, and most of them are presumed to 
have important biomedical functions and can cause genomic instability. 
Next-generation sequencing (NGS) technologies provide the possibility 
of identifying capturing these repetitive sequences directly from the 
NGS data. In this study, we assessed the performances in identifying 
capturing repeats of leading assemblers, such as Velvet, SOAPdenovo, 
SGA, MSR-CA, Bambus2, ALLPATHS-LG, and AByss using three 
real NGS datasets. Our results indicated that most of them performed 
poorly in capturing the repeats. Consequently, we proposed a repetitive 
sequence assembler, named NGSReper, for capturing repeats from 
NGS data. Simulated datasets were used to validate the feasibility of 
NGSReper. The results indicate that the completeness of capturing 
repeat is up to 99%. Cross validation was performed in three real NGS 
datasets, and extensive comparisons indicate that NGSReper performed 
best in terms of completeness and accuracy in capturing repeats. In 
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conclusion, NGSReper is an appropriate and suitable tool for capturing 
repeats directly from NGS data.

Key words: Next-generation sequencing; Interspersed repeats; 
Tandem repeats; Repetitive genome assembly

INTRODUCTION

The genomes of all eukaryotes contain repetitive elements of variable length that can 
occupy a significant fraction of the total DNA content (SanMiguel et al., 1999), e.g. ~20% of 
Caenorhabditis elegans and C. briggsae genomes (Stein et al., 2003) and ~50% of the human 
genome (Lander et al., 2001). Furthermore, repeats play important roles in genome evolution 
by causing mutations and rearrangements (Bowen and Jordan, 2002; Ma et al., 2004) that 
might lead to altered gene functions (Buard and Jeffreys, 1997). Moreover, molecular evidence 
suggests that some repetitive elements may lead to new genes (Morgante et al., 2005). Thus, 
the study of repetitive sequences provides a comprehensive understanding of both gene and 
genome functions in eukaryotes. In addition, the repeats challenge the genome algorithms 
(Treangen and Salzberg, 2012). Therefore, repeat identification is of considerable importance 
and a critical part of the analysis of newly sequenced species. Fortunately, next generation 
sequencing (NGS) technologies provide the possibility of capturing repetitive elements from 
sequence reads, if the corresponding reference genome is not available.

NGS technologies are characterized by shorter reads, higher throughput, parallel 
operation and lower cost (Pop, 2009). Currently, the commercially available NGS platforms 
(Metzker, 2010; Loman et al., 2012) include 454 from Roche (400 to 600 bp); GA, MiSeq, and 
HiSeq from Illumina (100 to 150 bp); SOLiD (typically 75 bp) (Miller et al., 2012) and Ion 
Torrent from Life Technologies (~200 bp); RS system from Pacific Bioscience; and Heliscope 
from Helicos Biosciences (Harris et al., 2008). To date there are more than tens of genome 
assemblers based on NGS data, being Velvet (Zerbino and Birney, 2008), ABySS (Simpson 
et al., 2009), SOAPdenovo (Li et al., 2010), SGA (Simpson and Durbin, 2012), MSR-CA 
(http://www.genome.umd.edu/masurca.html), Bambus2 (Koren et al., 2011), ALLPATHS-LG 
(Gnerre et al., 2011) and SWA (Lian et al., 2014) the leading ones. Ideally, a good genome 
assembly algorithm not only can achieve long contigs, but also can accurately capture repetitive 
elements directly from NGS reads. Their performance has been assessed comprehensively 
including contiguity, consistency, and accuracy of the assembled genomes as well as hardware 
and software requirements (Salzberg et al., 2012), except for the ability of capturing repeats.

Herein, we first evaluated the performance of NGS technologies in capturing repeats, 
as a good genome assembler not only should assemble genomes but also capture repeats 
completely. Unfortunately, our results indicate that the performance of the currently available 
assemblers in capturing repeats is very poor. Thus, a repetitive sequence assembler form 
NGS reads, named NGSReper, was proposed. The feasibility of NGSReper was validated by 
simulated datasets, and the corresponding results indicated that the completeness and accuracy 
in capturing repeats were nearly 98 and 100% respectively. Finally, real NGS datasets were 
used for cross validation. Extensive comparisons with other seven assemblers, such as Velvet, 
SOAPdenovo, SGA, MSR-CA, Bambus2, ALLPATHS-LG and AByss were conducted in 
three Illumina-generated datasets presented in GAGE (Salzberg et al., 2012). Results indicated 
that NGSReper performed best in terms of completeness and accuracy in capturing repeats. 



3Next-generation sequencing and interspersed repeats

Genetics and Molecular Research 15 (3): gmr.15038790

The authors provide the free executable software for non-commercial use by request.

MATERIAL AND METHODS

The datasets used to evaluate the performances of NGSReper are described herein. 
Three kinds of datasets were used: simulated, reference, and real NGS datasets. Simulated and 
reference datasets are used to validate the feasibility of NGSReper, real NGS datasets are used 
to cross validation. For simulated datasets, three genomes containing different types of repeats, 
such as interspersed, tandem, and compound repeats were generated. The detailed steps were 
as follows. Firstly, three 500 kb sequences, namely sequence A, sequence B, and sequence C, 
were generated randomly from a finite alphabet {A,T,C,G} respectively. Secondly, different 
types of repeats, with a wide range of lengths and copies, were inserted into the corresponding 
sequences. Table 1 shows the detailed information of size and copies with different kinds of 
repeats. Thirdly, NGS data were randomly sampled from three sequences for different coverage 
and read length. For reference genome datasets, we downloaded the references genomes of S. 
cerevisiae and C. elegans from UCSC (http://hgdownload.soe.ucsc.edu/downloads.html) and 
E. coli k12 from GenBank (U00096.3).

For S. cerevisiae and C. elegans, the chromosomes were randomly selected, 
chromosome IV for S. cerevisiae (chrIV-S.c) and chromosome III for C. elegans (chrIII-C.e), 
respectively. The chromosome sizes of chrIV-S.c, E. coli, and chrIII-C.e were 1,531,933, 
5,132,068, and 13,783,700 bp respectively. The NGS reads were randomly sampled from these 
references. By whole genome scan using HashRepeatFinder (Lian et al., 2016), we detected 
41, 56, and 339 repeats longer than 200 bp in chrIV-S.c, E. coli, and chrIII-C.e, respectively.

Table 1. The detailed information of repeats in simulated datasets.

Sequence Repeats Length (bp) Copies 
Sequence A Interspersed repeats 500 8 

1000 10 
2000 8 
3000 6 
4000 5 
5000 3 

Sequence B Tandem repeats 1000 and 5000 5 
2000 and 4000 4 
3000 and 3000 6 

Sequence C Compound repeats 1000 5 
2000 4 
3000 3 

2000 and 3000 5 
1500 and 2500 6 
2500 and 2500 3 

 

For real datasets, we use two bacterial genomes (S. aureus and R. sphaeroides) and 
human chromosome 14, which were downloaded from http://gage.cbcb.umd.edu/data. In 
the GAGE study, all reads were error-corrected before their assembly by these assemblers. 
For an appropriate comparison, we obtained these corrected datasets for GAGE use. As the 
two bacterial genomes and human chromosome 14 had been captured using Sanger data, 
each of them could be used as a reference assembly. For these three species, their repetitive 
structures, including repeats and copies, were detected by whole genome scan. For S. aureus, 
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R. sphaeroides and human chromosome 14, 54, 21, and 2635 repeats longer than 100 bp were 
detected respectively. Their total sizes accounted for 15.8, 3.6, and 381.5 kb, respectively.

RESULTS

Overview

The principle of NGSReper is based on the combinational strategy of dynamic 
overlapping and smoothing filtering. The estimation of read counts for a single point is 
affected by the sequencing bias, whereas the estimation in a continuous interval will be more 
scientific than in a single point. Moreover, based on the overlapping interval, the filtering 
function can be used to remove the sequencing bias and increase the confidence of estimating 
reads counts. Accordingly, the strategy of dynamic overlapping can be applied to search the 
best seed for extension. The concrete steps and process are detailed as follows. NGSReper 
runs in five key steps (Figure 1): pre-processing, unique processing, repetitive seed selection, 
index construction, and repeat capture.

Figure 1. Graphic illustration of key steps of NGSRepeatFinder. A. Pre-process. This step contains data cleaning 
and read sorting. B. Unique Processing. The five different color lines represent five unique reads in sorted reads. 
Each of them appears with different frequencies. By unique processing, the identical reads are collapsed into one 
single read with its corresponding frequency. C. Seed selection. The unique reads are ranked by frequency (from 
low to high). The reads with frequency larger than sequencing depth are selected as the seeds for repeats (the green 
dotted frame). D. Hash index. Unique reads with associated identifiers are shown on the left, the index words are 
chosen using two letters from AA to TT, and the hash index is used to transform the comparisons between strings to 
numerical mapping between identifiers. E. Repeat capturing. The repetitive seeds are extended using a greedy graph 
and dynamic overlapping strategy. Mn is the mean read counts, Sd is the sequencing depth, σ is the tuning parameter, 
0 < s < Sd. For example, if Sd = 2, s = 1, the region with Mn > 3 will be considered as a repetitive sequence.
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1) Pre-processing (Figure 1A). The real NGS reads contain large sequencing errors, 
which affect the assembled results. Consequently, the reads with low quality value or 
containing any ‘N’ are removed first, and then the cleaned reads are sorted by dictionary order. 
This sorting strategy is specially designed for computing frequency and unique processing.

2) Unique processing (Figure 1B). Identical reads are collapsed into one single read and 
its corresponding frequency is recorded. After unique processing, the reads with frequencies 
higher than the sampling depth might be potential repeats, which will be considered as the 
seed of repeats for extension in the following steps. By unique processing, the amount of data 
decreases significantly, in particular for densely sampling data.

3) Seed selection (Figure 1C). In NGSReper, each sequence requires a unique read, called 
a seed, to initiate the extension. Ideally, a good seed should be a unique read without sequencing 
error. Thus, selecting a set of good seeds is essential for capturing repeats by NGSReper. The 
current version uses read counts and base quality as the criteria to select seeds. After unique 
processing, those reads with frequencies higher than the threshold are selected as the potential 
seeds. Among these potential seeds, the one with highest quality value is used to initiate the 
extension process. This strategy tends to avoid choosing seeds with errors to maximum extent.

4) Constructing hash index (Figure 1D). In order to improve computing speed, an 
indirect hash structure was designed and adopted in this part. Firstly, the index keywords are 
directly transformed into quaternary integers instead of the string. Secondly, the identifiers 
of the unique reads are recorded in decimal list. Thirdly, constructing the mapping relations 
between unique reads and decimal list. This index structure adopts integer arithmetic instead 
of string operations, and the computational complexity is significantly reduced. Consequently, 
this structure is appropriate for DNA sequencing reads, especially for large datasets.

5) Repeat capture (Figure 1E). After seed selection, the repeat extension process is 
performed by combining the strategy of greedy overlapped graph (Dohm et al., 2007) and 
dynamic overlapping assembly (Lian et al., 2014). Based on the greedy overlapped graph, 
dynamic overlapping interval and sliding window function were applied to capture repeats. 
The mean value of read counts in dynamic interval Mn was used as the threshold to detect the 
boundary of potential repeats. If Sd is the sequencing depth, σ is the tuning parameter, 0 < s < 
Sd, the region with Mn > Sd + s will be considered as a repetitive sequence.

Metrics

To evaluate the performance in capturing repeats, widely recognized metrics were 
used. These metrics (Lian et al., 2014) include Family, accuracy of family (F-acc), accuracy of 
captured repeats (R-acc), total size of captured repeats (T-size), N50 accuracy (N50-acc), and 
Max repeats accuracy (Max-acc).

Family: a group of repetitive sequences inferred as having a common ancestor based 
on sequence similarity. Note that in the context of this study, the similarity was set to 95%. 
This metric is used to evaluate the completeness of types of detected repeats. Generally, larger 
family indicated that more types of repeats were detected. Therefore, the method has more 
completeness.

Accuracy of family (F-acc) is used to evaluate the completeness of the families of 
captured repeats and defined as:

F-acc d

r

F
F

=
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where Fd represents the detected families of repeats in NGS data, while the Fr represents 
the real families in reference genomes. For example, if the reference genome contains four 
repeats: repeat A, B, C, and D, but the NGSReper capture only repeat A, B, and C from NGS 
data, thus, Fd = 3, Fr = 4, the corresponding family accuracy will be F-acc = 75%. Notably, the 
similarity was set to 95%.

Accuracy of captured repeats (R-acc) is used to evaluate the correctness of all types of 
captured repeats and is defined as:

R-acc 1 c r

r

R R
R
−

= −∑
∑

where Rr represents the length of the real repeat and Rc the length of captured repeat. The 
higher the R-acc indicated the better performance of capturing repeats.

Total size (T-size), or the total size of detected repeats, is used to evaluate the 
completeness of whole size of the detected repeats, and which is defined as:

T-size 
1

N

i i
i

l c
=

= ×∑

where li represents the ith family of repeat, Ci the corresponding copies and N the number of 
family. For example, if a reference genome contains four families of repeats: repeat A with 50 
copies and 500 bp, repeats B with 100 copies and 1000 bp, repeats C with 30 copies and 1200 
bp, repeats D with 40 copies and 1500 bp, therefore, family = 4, T-size = 50 x 500 + 100 x 
1000 + 30 x 1200 + 40 x 1500 = 221 kb.

N50 accuracy (N50-acc) is the accuracy of N50 between captured and real repeats, 
which is used to evaluate the total similarity between captured and real repeats and is defined as:

N50-acc 50 50

50

1 n n

n

R C
R
−

= −

where Rn50 represents the N50 of real repeats and Cn50 the N50 of captured repeats.
Max accuracy (Max-acc) is the accuracy of maximum captured repetitive contig with 

maximum real repeats and is defined as:

Max-acc max max

max

1
R C

R
−

= −

where Rmax represents the maximum size of real repeats and Cmax the maximum size of captured 
repeats.

To evaluate the accuracy, the metric F-acc and R-acc were computed by aligning back 
to the reference genome using MATLAB platform, and the default similarity was set to 90%. 
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In the process of evaluating the captured repeats, we first analyzed the completeness and then 
the accuracy of the assembled repeats. Among these metrics, Family, T-size, N50-acc, and 
Max-acc were specially designed to evaluate the completeness in capturing repeats, while 
R-acc and F-acc were designed to evaluate the accuracy of the captured repeats.

Simulation studies

In this part, we validated the feasibility of NGSReper with two kinds of datasets, 
simulated and reference data, respectively. Table 2 presented the detailed results.

Parameters: Sd = 2, Lr = 50, Lw = 3, and kmer = 9. Contigs smaller than 200 were removed.

Table 2. Statistics of captured repeats in a simulated study.

Data sets  Family F-acc (%) R-acc (%) T-size (.kb) N50-acc (%) Max-acc (%) 
Simulated data Sequence A 6 100 96 15,562 100 100 

Sequence B 5 100 98.7 10,641 100 100 
Sequence C 11 100 98.7 26,352 100 100 

Reference 
genome 

chrIV-S.c 32 82.9 89.4 15,764 95 100 
E.coli 50 98.2 99 39,263 100 100 
chrIII-C.e 476 82 84.3 150,525 92 100 

 

Table 2 shows the detailed feasibility of NGSReper in simulated and reference genome 
data. For simulated data, three sequences containing tandem, interspersed, and compound 
repeats with different lengths and copy numbers (see Material and Methods) were used to 
generate the NGS reads. For reference genome data, the real reference genomes of three 
species were used to generate the NGS reads, and the corresponding repeats were detected 
with HashRepeatFinder (Lian et al., 2016). The results presented in Table 2 indicate that 
NGSReper performed well in capturing all kinds of repeats from NGS reads. Specifically, (1) 
from simulated data, there were 6, 5, and 11 families of repeats, which were set in sequences 
A, B, and C respectively, in advance. Therefore, all F-acc were up to 100%, which shows that 
the completeness of NGSReper correlates perfectly. For the R-acc metric, the corresponding 
sequences were up to 96, 98.7, and 98.7% respectively, and the maximum error rate of 
R-acc was less than 3%, which indicates that the accuracy of captured repeats is very high. 
Furthermore, all N50-acc and Max-acc were up to 100%. (2) From reference genome data, 
the real families of repeats were 34, 55, and 275, and the detection items of NGSReper were 
32, 50, and 476 respectively. Therefore, the corresponding F-acc were 82.9, 98.2, and 82% 
respectively. By analyzing the similarity, R-acc were 89.4, 99, and 84.3% respectively. Thus, 
the completeness in type and size of the captured repeats are still good. Meanwhile, the N50-
acc was 95, 100, 92% respectively, which indicates that there is a small difference between 
the mean size of captured repeats and real repeats. However, the Max-acc for families was 
100%, which indicates that NGSReper performed well in terms of capturing large repeats. In 
conclusion, NGSReper is suitable for capturing repeats from NGS data with both completeness 
and accuracy.

Comparisons in real NGS datasets

In order to cross validate the performances in capturing repeats, an extensive 
comparison with other leading assemblers using real NGS reads was performed. The real 
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NGS data and leading assemblers are descripted in GAGE (Salzberg et al., 2012). The detailed 
results are presented in Table 3. Moreover, in order to display the comparisons more clearly, 
metrics Family, F-acc, and Max-acc were plotted, which provides additional information 
about their performances.

Table 3. Assemblies of repeats in three species.

Species Assemblers Family F-acc (%) R-acc (%) T-size (.kb) N50-acc (%) Max-acc (%) 
S. aureus NGSReper 30 79.6 82 20.7 95.2 100 

ABySS 7 31 30 6.8 27.7 53.3 
Allpaths-LG 3 11 4.3 2.7 10 4.9 
Bambus2 6 27.8 35 7.5 65 53.3 
MSR-CA 7 27.8 15 4.4 10 11.6 
SGA 18 66.7 81.8 20 94.2 100 
SOAPdenovo 9 33.3 38.6 7.5 65 53.3 
Velvet 15 50 39.3 13.8 23.5 53.3 

Rhodobacter sphaeroides NGSReper 13 67 74.5 7.8 97.2 89.3 
ABySS 13 67 44.5 8.3 75.2 19.3 
Allpaths-LG 2 9.5 6.7 1.4 96.9 19.3 
Bambus2 2 14.3 9.2 1.3 74.5 16.6 
MSR-CA 7 38 25.4 4.1 77.2 19.3 
SGA 9 67 64.3 3.9 81.9 80 
SOAPdenovo 9 76 84.5 3.7 30 86 
Velvet 5 38 24.5 2.2 74.5 19.3 

Human Chr 14 NGSReper 2477 94 88.3 336.7 96 95.8 
ABySS 1246 47.3 45.4 173.5 95.6 77.1 
Allpaths-LG 2060 78.2 71.4 272.6 93 84 
Bambus2 2170 82.3 74.2 283.3 93 84.4 
MSR-CA 2339 88.8 80 308.8 94 33 
SGA 2271 86.2 77.6 296 93.5 63.8 
SOAPdenovo 2309 87.6 82.4 314.9 95.5 77 
Velvet 2089 79.3 72 275 94.3 77.2 

 All contigs were corrected and those smaller than 200 were removed.

Column 3 and 4 display the number and accuracy of families of captured repeats 
by different tools in three species. The metric family is aimed to judge the completeness in 
capturing repeats; the larger family indicates better completeness. For a better comparison 
between different tools, the circular area is plotted in Figure 2. From column 3 and Figure 
2, we can observe that for any species, NGSReper can capture the most families of repeats. 
Furthermore, the percentage of families captured by NGSReper in three species are 32, 22, and 
15% respectively, and is the highest in all corresponding species. Consequently, in terms of the 
completeness of captured repeats, NGSReper performed better than other tools.

Figure 2. Circular area figure of family by different tools in three species. The percentage of different tools are 
noted with different colors in concentric circles, and the representation species in three concentric circles arranged 
from inside to outside are S.a, R.c, and H.14, respectively.
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Column 5 displays the accuracy of captured repeats by different tools in three species. 
This metric was used to compare the accuracy of captured repeats with real repeats. Larger 
R-acc indicate higher accuracy. In order to graphically display the differences, a point plot of 
R-acc is presented in Figure 3. As shown, the performances of assemblers differ greatly in 
different species except for NGSReper and ABySS, whereas the performance of NGSReper 
is superior to that of ABySS. Additionally, unlike other tools, NGSReper was more robust to 
different species than other tested tools.

Figure 3. The point plot of R-acc by eight tools in three species. Red represents R.s, blue represents S.a, and green 
represents H.14. The corresponding tools are represented at the bottom of the figure.

The three metrics represented in columns 6 to 8 were used to evaluate the continuity 
of captured repeats, especially for N50-acc and Max-acc. For the total size of captured repeats, 
NGSReper capture 20.7, 7.8, and 336.7 kb in S.a, R.s, and H.14 respectively, and was nearly 
superior to the other assemblers. To compare the performance of assembly tools in capturing 
large repeats, a histogram of Max-acc has been plotted in Figure 4, which clearly indicates that 
NGSReper is more robust to species when compared to the other seven tools. Moreover, compared 
to other tools, the overall performances of NGSReper in capturing large repeats is also better.

Figure 4. The histogram of Max-acc by eight different tools in three species. Red represents R.s, blue represents 
S.a, and green represents H.14. Different columns present the results of the different tools in three species.
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The three real NGS datasets studied represent a wide range of genome sizes. From the 
comparison, we can conclude that (1) in terms of the completeness and accuracy in capturing 
repeats, NGSReper performed best among the eight assemblers, and that (2) NGSReper is 
more robust to species than others in terms of detecting large repeats. However, there is still 
some variations of the results between different species using the same method, implying that 
different assemblers have different emphasizes in the process of genome assembly. Moreover, 
the differences in the intrinsic repeat structure among different species also influences the 
performance and, consequently, the results.

DISCUSSION

The identification of de novo repeats from NGS data is a difficult task for genome 
analysis, and is still challenging to many genome assembly algorithms. Theoretically, a good 
genome assembly algorithm not only can assemble genome accurately, but also can capture 
a repeat completely. Although, a large number of tools have been proposed to address this 
problem, they still need to be improved. Various challenges and further improvements are 
discussed as follows.

1) Short reads: the importance of NGS technologies is their high throughput and short 
reads. Shorter reads provide less information for repeats capturing in the assembly process. 
Furthermore, the size of the repeat is always larger than the read, therefore, one read cannot stride 
across the whole repeat, which leads to a repeat being sub-sampled by tens or hundreds of reads.

2) Similarity: repeats can be classified into identical and similar repeats. Researchers 
define similarity differently according to their research task. Consequently, the similarity is 
another challenge for capturing repeats from NGS data. In general, the range of similarity is 
between 80-98%. Non-uniformed similarity leads to a difficulty in detecting highly similar 
repeats. Herein, we define similarity as 95%. Moreover, the sequencing errors hamper repeat 
similarity. As a result of the intrinsic error of the technique, the assemblers cannot distinguish 
whether the difference is caused by similarity or sequencing error.

3) Families: although repeats are very common in eukaryote genomes, the determination 
of families lack an uniform standard and is closely related to similarity, length, copy number, 
and biological significance. For example, in Figure 5, only considering length it is difficult 
to distinguish whether there are two repeat families (A and B) or only one repeat family C, 
when the last sequence A is abandoned. Therefore, larger families may be not beneficial for 
the practical biological research.

Figure 5. Graphic illustration of repeat length and copies. Green represents the reference genome, red and yellow 
represent different types of repeats with variable length (repeat A: three copies 150 bp, and repeat B: two copies 100 bp).

4) Types: the repeats can be classified into interspersed, tandem, and compound 
repeats. Each type also can be classified into many different sub-types. The complexity of 
repeat types is an obstacle for capturing repeats. Eukaryote genomes contain different types 
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of repeats. Notably, the compound repeats are found nearly everywhere. For example, Figure 
5 shows two repeats (A with three copies and B with two copies) and one repeat (C with two 
copies, containing A and B), making it difficult to determine which one is correct. If a research 
focuses on the length of the detected repeat it would use the C repeat, while those focusing on 
the copy number may prefer the two repeats A and B.

5) Classification and annotation: the abilities of repeat classification and annotation 
are also important features for repeat capture tools. In addition, the annotation of repeats is 
helpful for the downstream bioinformatics analysis. Moreover, the inclusion of classification 
abilities may improve their overall utility and encourage a widespread use. However, the 
classification and annotation of repeats are continually changing as new element types and 
relations between elements are being discovered. Consequently, the current NGS-based repeat 
capture tools lack generalized classification and annotation abilities.

6) Identification of short repeats, such as motifs. De novo repeat capturers assemble 
sequences or sequence sets searching for nucleotide motifs that occur more commonly than 
expected if nucleotide distribution were random. For the repeats larger than the read length, the 
current tools can easily capture them by assembling from NGS reads, whereas for those smaller 
than the read length, such as motifs, the assembly-based tools are useless. Consequently, for 
capturing short repeats, a motif identification-based method, such as kmerHMM (Wong et al., 
2013), will be more helpful than the assembly-based method.

CONCLUSION

Eukaryotic genomes contain large number of repeats, which can be used in the 
construction of high-density genetic maps and enable the molecular tagging of genes. The 
identification of these repeats is gaining importance. Simultaneously, the fast development of 
NGS technologies has inspired a flood of new projects aiming to sequence a variety of animals 
and plants. Consequently, capturing repeats directly from NGS data in the genome assembly 
process is becoming more attractive. However, the current leading assemblers perform poorly 
in directly capturing repeats from NGS reads. An optimal genome assembler not only should 
assemble genomes, but also should capture repeats from NGS data.

To this end, a de novo genome assembly for capturing repeats based on NGS data, 
named NGSReper, is proposed herein. The strategy of NGSReper is based on the combination 
of dynamic overlapping assembly and a greedy extension graph. To evaluate the performances 
of NGSReper, different types of datasets, including simulated and real NGS data, were used. 
Simulated data was used to validate the feasibility of NGSReper, whereas real NGS reads 
were used for cross validation. Consequently, extensive comparisons were conducted with 
other seven leading assemblers, such as Velvet, SOAPdenovo, SGA, MSR-CA, Bambus2, 
ALLPATHS-LG and ABySS, in real NGS datasets. Our results indicate that: 1) In terms of the 
completeness and accuracy of captured repeats, NGSReper performed best among the eight 
tested assemblers, and 2) in terms of the robustness in capturing repeats from different species, 
NGSReper also outperformed other assemblers. Consequently, NGSReper is a suitable repeat 
capture tool for NGS data.
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