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ABSTRACT. To improve single-nucleotide polymorphism (SNP) 
association studies, we developed a method referred to as maximal 
information coefficient (MIC)-based SNP searching (MICSNPs) by 
employing a novel statistical approach known as the MIC to identify 
SNP disease associations. MIC values varied with minor allele 
frequencies of SNPs and the odds ratios for disease. We used a Monte 
Carlo-based permutation test to eliminate the effects of fluctuating MIC 
values and included a sliding-window-based binary search whose time-
cost was 0.58% that of a sequential search to save time. The experiments 
examining both simulation and actual data demonstrated that our 
method is computationally and statistically feasible after reducing the 
resampling count to 4 times the number of markers and applying a 
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sliding-window-based binary search to the method. We found that our 
method outperforms existing approaches.

Key words: Sliding-windows; Maximal information coefficient (MIC); 
Fluctuation of MIC values; Monte Carlo-based permutation test; 
Binary search; SNP disease association studies

INTRODUCTION

Since publication of a study examining age-related macular degeneration by Klein et 
al. (2005) in 2005, several single-nucleotide polymorphism (SNP) disease association studies 
have been conducted to identify disease-associated markers in the genome. Increasing evidence 
suggests that association studies are an effective approach for identifying genes involved in 
common human diseases. Examples include breast cancer (Ritchie et al., 2001; Thomas et 
al., 2009; Fletcher et al., 2011), coronary artery disease (Kumar et al., 2011), type 1 diabetes 
(Barrett et al., 2009), obesity (Meyre et al., 2009), Parkinson’s disease (Simón-Sánchez et al., 
2009), schizophrenia (Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) 
Consortium, 2011), and body measurement traits (Xue et al., 2011).

SNP disease studies search for patterns of genetic variation/markers, i.e., SNPs, be-
tween cases and controls. Several algorithms/approaches have been developed to search for 
patterns of genetic variation, including logic regression (LogicReg) (Kooperberg et al., 2007), 
Bayesian epistasis association mapping (BEAM) (Zhang and Liu, 2007), multifactor dimen-
sionality reduction (Ritchie et al., 2001), tool set PLINK for whole-genome association and 
population-based linkage analyses (Purcell et al., 2007), Boolean operation-based screening 
and testing (Wan et al., 2010), maximum entropy conditional probability modeling (Miller et 
al., 2009), support vector machine, random forest rankings (Roshan et al., 2011), and Hierar-
chical Naïve Bayes Classifier (Malovini et al., 2012). 

In this study, we developed the maximal information coefficient (MIC)-based SNP 
searching (MICSNPs) method by employing a novel statistical approach known as the MIC 
(Reshef et al., 2011) to identify disease-associated markers in case-control genotype marker 
data to further optimize these studies. MIC is an exploratory statistical analysis tool proposed 
by Reshef et al. in 2011. MIC is an excellent approach for detecting undiscovered associa-
tions in large data sets. We attempted to identify the threshold of MIC for identifying disease-
associated markers while directly applying the approach to SNP disease association studies. 
We found that MIC values can fluctuate widely as minor allele frequencies (MAFs) of mark-
ers or the odds ratios (ORs) for diseases change. Thus, we mapped the MIC values onto P 
values to eliminate the effects of the fluctuation. Although an MIC-P table was provided by 
the authors of MIC studies, we used a Monte Carlo (MC)-based permutation test to generate 
empirical P values because the MIC values of genotype data sets are out of the range of the 
table. MICSNP infers disease-associated markers based on P values calculated from the MIC 
value representing the degree of association of a marker with disease risks. In addition, we 
combined a sliding-window and a binary search method as a sliding-window-based binary and 
time-saving search to identify disease-associated markers.

Using extensive simulations, we demonstrated that: i) it was impossible to identify a 
feasible threshold for selecting significant markers from a genotype data set when we intro-



10865

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 13 (4): 10863-10877 (2014)

Method of identifying SNP disease association based on MIC

duced MIC into SNP disease association studies, ii) the effects of fluctuation of MIC values 
can be eliminated by mapping MIC values onto P values using the MC-based permutation test, 
iii) using 4 times the number of SNPs as the resampling count for the MC-based permutation 
test and employing the sliding-window-based binary search method are feasible and save time, 
and iv) MICSNP comprehensively outperforms existing methods for identifying associations 
between SNPs and disease. We also applied MICSNPs to an association study of coronary 
artery disease (CAD) (Wellcome Trust Case Control Consortium, 2007), which included ap-
proximately 500,000 SNP markers, and our method identified 8 disease-associated SNPs that 
were not found in the benchmarks.

In addition to MICSNPs, under the constraint of monotonicity between P values and 
tested variables, the MC-based permutation test with the sliding-window-based binary search 
suggests potential uses in cases where a traditional permutation test can be used.

MATERIAL AND METHODS

Simulation data

PLINK enables the generation of large-scale SNP/marker data sets for case-control 
studies or other purposes. We used 2 simulation scenarios to generate data sets using PLINK.

Scenario 1: Included 4 groups of data sets with 10, 20, 500, and 1000 SNPs. For each 
group, there were 10 ORs (1.1, 1.2, …, 2.0, respectively), each composed by 5 data sets. By lim-
iting the range to 0.05-0.50, the MAFs of all data sets were randomly generated using PLINK. 
The number of cases in each data set was 1000 and an equal number of controls was included.

Scenario 2: A total of 500 independent data sets, each composed of 1000 cases, 1000 
controls, and 1000 SNPs, were included. A total of 10 ORs (1.1, 1.2, …, 2.0, respectively), 
each composed by 10 MAFs (0.05, 0.10, …, 0.5 respectively), were used as parameters for 
PLINK. For each combination of ORs and MAFs, 5 simulated data sets were generated by 5 
re-generations.

First scenario data sets were used to determine an acceptable resampling count for 
the MC-based permutation test. In addition, other scenario data sets were designed to assess 
the performance of MICSNPs and compare its performance with the BEAM, PLINK, and 
BoNB methods.

Real data

To assess the performance of our method for detecting disease-associated markers 
involved in real case-control data sets, a ground-truth data set was used in our experiments. 
The data set included CAD data in the WTCCC1 study data set from the Wellcome Trust Case 
Control Consortium (WTCCC), which was described previously (Wellcome Trust Case Con-
trol Consortium, 2007). 

As a case-control data set, CAD data were composed of 1988 cases and 1500 controls; 
490,032 autosomal SNPs were mapped onto chromosomes 1-22. To ensure the validity of the 
data, several pre-processing steps were conducted for the CAD data in this study. The steps 
included analysis of Hardy-Weinberg equilibrium, an MAF test, allele missing rate test for 
each SNP, and SNP missing rate test for each sample, with thresholds of 0.01, 0.05, 0.05, and 
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0.05, respectively. Here, the allele missing rate test was used to calculate the percentage of 
missing alleles within an SNP and then delete SNPs whose percentages were higher than the 
preset threshold. Similarly, an SNP missing rate test was used to calculate the percentage of 
missing SNPs within a sample and then remove the samples whose percentages were higher 
than the preset threshold. Furthermore, we excluded SNPs included on the SNP exclusion list 
provided by the WTCCC.

MICSNP consists of 3 modules: i) MIC, ii) MC-based permutation test, and iii) slid-
ing-window-based binary search. The MICSNP algorithm uses case-control genotype marker 
data as input and produces, using the MIC method, MIC values of all markers, and then infers 
which markers are associated with disease risks based on the MIC values tested using the MC-
based permutation test with a sliding-window-based binary search.

MIC in MICSNPs

Using nonparametric properties, MIC is suitable for SNP disease association studies 
that do not depend on real models of genetic effects. MIC is used to explore a data set that 
includes tens of thousands of variables, which may contain important, undiscovered relation-
ships. MIC is based on the idea that if a relationship exists between 2 variables, a grid can 
be drawn on the scatter plot of the 2 variables that partitions the data to enclose the relation-
ship (Reshef et al., 2011). Reshef et al. (2011) defined MIC of a set D of 2-variable data with 
sample size n and x-by-y grid size less than B(n) as

 ( ) ( ){ }yxnBxy
DMDMIC ,)(

max
<

= (Equation 1)

where  )()()1( 1 εω −<< nOnB  for some 0 < ɛ < 1, and M(D) denotes the characteristic matrix 
of D.

With sufficiently large samples, MIC values generally converge at both ends of the 
interval [0, 1] of MICs, rather than being spread over the entire interval. Thus, if we employ 
MIC to identify associations between variables, performance will be improved.

Suppose n samples were genotyped at l SNP markers. Let the phenotypes be:
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denoting the phenotype of the ith sample, and let genotypes be  1 2( , , , )lG g g g=   with the 
jth SNP’s genotypes  

1 2( , , , )T
j j j njg g g g=   (j = 1, 2, …, l), where gij denotes the count of the 

minor alleles of the jth SNP in the ith sample, then the model of genetic effect will be written 
as  )( jgfS = . Based on this model, regardless of the real model of genetic effects, the MIC 
value Mj can be calculated between gj and S and the degree of the association between SNP 
j and disease risk can be determined. Here, with 2 phenotypes and 3 genotypes at most in a 
marker data set, the xy < B(n) in (Equation 1) can be simplified into xy ≤ 6.
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MC-based permutation test for MIC

Our experiments showed, however, that the MIC values fluctuate roughly with MAFs 
and ORs when applying MICs in SNP disease association studies, and we failed to identify 
a feasible threshold of MIC for selecting significant markers from the genotype data set. We 
mapped MIC values onto P values to overcome this limitation. The authors of MIC studies 
provided an MIC-P table with an MIC range of 0.15-1.0 and a sample range of 20-760. As a 
genotype data set with thousands of samples exceeding 760, the MIC range of the real CAD 
data was 1.81 x 10-8-0.75, as calculated based on our experiments. Although the maximum 
MIC was 0.75 in the real data, most MIC values were lower than the lower limit of 0.15 in the 
MIC-P table, as the mean of the MIC values was 0.02. The range of MIC values in genotype 
data was out of the range of the MIC values in the MIC-P table. Thus, we employed a permuta-
tion test to generate P values for MIC values.

Using the permutation test to generate empirical P values for the exploratory tool 
MIC, we examined how to reduce the time necessary to run the algorithm. We used the more 
efficient MC-based permutation test in MICSNPs, which scaled-up well.

Sliding-window-based binary search

Although the MC-based permutation test performed faster, the computational time cost 
was still significant because of the core difficulty resulting from the very large size of the genome-
wide data. If a genotype data set contains n samples and l SNPs, for an MIC with a runtime of t, 
the time cost of the MC-based permutation test with m resamplings for MIC can be represented as:

T = (m + 1)nlt (Equation 2)

For a given genotype data set, Equation 2 suggested that T is directly proportional to t 
if m ≥ 1.The time cost of the algorithm decreased as m, n, or l decreased.

For a given data set, n, l, and t were constant (in fact, for different SNPs involved with 
the same data, there were very small differentials among ts, and we omitted the difference 
here); thus, m was found to be a unique factor affecting T. Because not all SNPs in a genotype 
data set are associated with disease risk, we generated P values for partial SNPs rather than 
overall P values, which lowered the value of l. The methods for reducing m were experimental, 
and the results are described below in the Results section.

After sorting the sequence by l MIC values, disease-associated SNPs were gathered 
at one end of the ordered sequence as a monotonic relationship between MIC values and the 
degrees of SNPs associated with disease risk was observed. Therefore, once the junction v 
(Figure 1) was used, all disease-associated markers could be extracted entirely at once rather 
than relying on individual extraction, which costs additional time. The binary search algorithm 
was highly efficient and fast, and is widely used when analyzing very large data sets. In this 
study, we used a binary search to accelerate the steps for identifying the junction v. Compared 
with the complexity O(l) in the sequential search, the complexity of the binary search was only 
leading to dramatic reductions in computation time.

 2(log )O l (Equation 3)
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In our study, P values were generated from MIC values, forming a single-valued map-
ping of an MIC value into a P value (We used an MIC-P pair to describe mapping in this pa-
per). With a requirement of sorting in the binary search, it is logically required that the P values 
monotonically change with the MIC values. Fortunately, this requirement was well satisfied 
for the MIC-P pairs (Figure 2).

Figure 1. Principle of sliding-window-based binary search. A. Raw MIC-P pairs (disordered). Based on this 
sequence, all P values were generated to search for significant markers. B. Ordered MIC-P pairs (descending order 
by MICs). Based on the inverted sequence, significant markers were gathered at the first end of the ordered pairs. 
The junction v denotes the dividing point, which was used to represent the boundary between significant and non-
significant markers. The dashed frame was the first location of the window, and the solid was the last. All markers 
were significant in the windows except for the last, so we only applied a binary search algorithm to identify the 
junction v based on the subsequence contained in the last window and skipped the others. In the search method, 
only the P values that were useful in identifying the junction v were generated.

Figure 2. Monotonicity of MIC-P.
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Although a binary search can greatly reduce computational complexity, the time cost will 
not be underestimated in searching a genome-wide data set because of the very large markers l 
shown in Equation 3. This raises the question of how to further reduce the time cost in association 
studies. Because disease-associated SNPs gathered at one end of the ordered sequence, we 
implemented a binary search for the smaller sequence containing the junction v rather than the 
entire sequence to save time. This is why we combined a sliding-window and binary search.

Let the size of the sliding-window be w (w ≤ l) and the significance level be Ps. The 
framework of the sliding-window-based binary search can be described as follows:

Sort the sequence of MIC values in descending order.
Generate the P value P0 of the first MIC value in the inverted sequence. If  0 sP P> , 

then go to step (v), which denotes that all SNPs are not associated with disease risks.
Generate the P values for the MIC values located at 

 
1( , 1,2, , )liw iw l i

w
 − ≤ =   

  in 
the sequence until  i sP P>  or 

 li
w
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. Next, apply a binary search to the subsequence con-
tained in the window i (the solid frame in Figure 1) to identify the junction v when  i sP P> , or 
let v = l when 

 li
w
 =   

 and  i sP P≤ .
Take all SNPs located at the front of the junction v as significant SNPs.

Algorithm ends

Using this method, the very large l-value can be mapped onto the smaller w; thus, 
l is greatly decreased in practice. Therefore, a sliding-window-based binary search may be 
more efficient than a traditional binary search. It is easy to demonstrate that the complexity of 
sliding-window-based binary search is determined by:

 








++



 1log 2 w

w
dO (Equation 4)

where d is the number of disease-associated markers and “1” denotes the procedure for gener-
ating P0. In practice, when d ≤ l, it is possible that w ≤ l. This means that with an appropriate 
value for w, the complexity of the sliding-window-based binary search method may be lower 
than that of a traditional binary search.

RESULTS

To assess the performance of MICSNPs, we chose 3 typical methods, BEAM, PLINK, 
and BoNB, as benchmarks in our experiments. BEAM is a method used to identify markers as-
sociated with disease risk via a Bayesian partition model. In this model, each posterior probabil-
ity of disease-associated markers is computed using the Markov Chain Monte Carlo approach 
(Zhang and Liu, 2007), and then significant markers are filtered according to the preset threshold 
of the posterior probability. The experiments conducted by the authors showed that BEAM out-
performs all other existing methods, including multifactor dimensionality reduction and logic 
regression (Zhang and Liu, 2007). PLINK, an important tool set for genome-wide association 
studies or other genetic studies, was issued in 2007 (Purcell et al., 2007). Its latest version, 1.07, 
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provides an approach for association analysis by logistic regression. PLINK imposes the clas-
sical Newton-Raphson iteration for estimating the parameters of the logistic regression model. 
PLINK, with logistic regression, was used as a benchmark in our study and is a classical and 
widely used algorithm in the biomedical field (Agresti, 2002). By testing the genotype data set 
type 1 diabetes released by the WTCCC, BoNB obtained significantly higher accuracy than 
both the standard Naïve Bayes algorithm and HyperLASSO. BoNB uses the Naïve Bayes algo-
rithm as a base classifier for Bagging and majority voting with a threshold of 5% for selecting 
biomarkers, and then tests these markers by running a Wilcoxon test procedure.

In our experiments, all benchmarks were implemented according to the source codes 
provided by the authors without modification. Unless otherwise stated, we set i) the parameter 
SINGLE_ONLY in BEAM to 1 to test for marginal associations only, ii) the MC resampling 
count to 4 times the number of SNPs, iii) the size of sliding-window for MICSNPs to 6, and 
iv) the significance level of all methods to P ≤ 0.05 (all P values of MICSNPs as well as of 
PLINK were corrected based on Bonferroni’s correction). In addition to these settings, other 
values were set to default values according to the benchmarks.

Selecting an acceptable resampling count for an MC-based permutation test

To generate a P value with a precision of 0.01, m in Equation 2 was up to 10,000n. In 
association studies, the resampling count is so large that a common PC cannot be used for calcu-
lation. More precise P values will reduce type I error; however, type II error will increase as type 
I error decreases. Statistical power decreased when we reduced the false-positive rate (FPR) by 
generating more precise P values. Thus, an acceptable resampling count for an MC-based per-
mutation test must be selected to make a compromise among FPR, power, and time cost.

After implementing the data sets simulated in scenario 1 using MICSNPs, we cal-
culated FPRs and powers of the method. The experimental results based on 2000 samples 
showed that with 2-4 times the number of SNPs, a suitable FPR, statistical power, and time 
cost of the algorithm was obtained (Figure 3).

Figure 3. Resampling count affects false-positive rate (FPR) and statistical power. FPR and power were calculated 
from 4 groups of data sets with 10, 20, 500, and 1000 SNPs. Each data set contained 1000 cases and 1000 controls. 
The resampling count was set to 0.1, 0.2, 0.5, 1, 2, 4, 8, and 16 times the number of SNPs.
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The experiments based on 200, 500, and 1000 samples showed the same results 
(Figure S1).

Fluctuation of MIC threshold

After calculating all MICs for the 500 data sets simulated in scenario 2, the 500 MIC 
sequences were sorted in descending order. For each sequence, we extracted a pair of MIC 
values located in the junction between disease- and null-SNPs (each for the 2 SNP types). 
Next, the following procedures were implemented.

Categorize the 500 pairs of MIC values into 10 categories by ORs, group each cat-
egory into 10 groups by MAFs, and then respectively calculate the average of the disease- and 
null-disease MICs for each group (Figure 4).

Figure 4. MICs fluctuate MAFs. MICs were calculated from 500 data sets. Each data set contained 1000 SNPs genotyped 
from 1000 cases and 1000 controls. The null- and disease-associated SNPs were adjacent to each other on the inverted 
sequence of MICs. Each point was averaged from 5 MICs calculated from 5 data sets with the same MAF and OR.

Similarly, categorize these pairs of MIC values into 10 categories by MAFs, group 
each category into 10 groups by ORs, and then respectively calculate the average of the dis-
ease- and null-disease MICs for each group (Figure S2).

As shown in Figure 4 and Figure S2, junctions fluctuated as MAFs/ORs changed. As 
a result, we could not draw a horizontal line to identify disease- and null-SNPs for all cases. 
Thus, we failed to pursue an MIC-threshold to identify the disease- and null-SNPs.

Comparison of BEAM, PLINK, and BoNB with respect to FPR and power

We used all of the methods, including MICSNPs, to search for significant associations 
in the simulated data sets using scenario 2. Based on the groups of MAFs, we calculated the 

http://www.geneticsmr.com/year2014/vol13-4/pdf/gmr4400_supplementary.pdf
http://www.geneticsmr.com/year2014/vol13-4/pdf/gmr4400_supplementary.pdf
http://www.geneticsmr.com/year2014/vol13-4/pdf/gmr4400_supplementary.pdf
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statistical powers and FPRs of the 4 methods. The left panel in Figure 5 shows that MAFs will 
roughly affect the power of all 4 methods. However, MAFs only minimally affected the FPR 
of the methods except for BoNB (right panel in Figure 5). MICSNPs and PLINK showed the 
best statistical power, while BEAM showed the lowest FPR. In addition, MICSNPs showed 
the second lowest FPR, which was lower than that of PLINK. Similarly, all methods were af-
fected by ORs (Figure S3).

Figure 5. Comparison among MICSNPs (M), BEAM (B), PLINK (P), and BoNB (N) on false-positive rate (FPR) 
and power. Statistical power and FPR were calculated from 500 data sets. Each data set contained 1000 SNPs 
genotyped from 1000 cases and 1000 controls. All points were averaged over the groups of MAFs.

Time cost of MICSNPs

Using a Windows 7 PC system with an Intel Core i7 3.4 GHz processor and 16 GB 
memory, running 8 threads simultaneously, we implemented the 500 data sets simulated in 
scenario 2 and the 22 autosomes contained in the CAD data. The average time cost on each 
thread for simulation and real data sets was 21.42 and 49.74 h for MICSNPs, 0.50 and 5.04 
h for BEAM, 0.01 and 0.14 h for PLINK, and 4.00 and 0.12 h for BoNB, respectively. After 
removing module (iii) from our method and using the same PC system platform and the same 
resampling, the method without the sliding-window-based binary search took 65.39 h for each 
thread to implement 10 data sets, which were randomly chosen from the scenario 2 data sets 
by limiting OR = 1.5, MAF = 0.05, 0.10, …, 0.50. MICSNPs required 0.38 h for each thread 
to implement the same data. In addition, we calculated the average time cost of the experiment 
with 1000 SNPs, as described above in the sub-section “Selecting an acceptable resampling 
count for an MC-based permutation test”, over the groups of resampling counts. The result 
showed a good linear relationship between time cost and resampling count (Figure 6).

http://www.geneticsmr.com/year2014/vol13-4/pdf/gmr4400_supplementary.pdf
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Consistency test between with and without sliding-window-based binary search

The theoretical basis of applying a sliding-window-based binary search (module iii, 
see Material and Methods section) to our method was that the disease-associated markers were 
gathered in ordered MIC-P pairs, allowing the algorithm to skip a large number of markers 
rather than scanning each marker, which saves time while generating P values. To assess the 
bias of this theory in practice, we used the same data sets as inputs for MIC with modules 
ii and iii (namely, without and with sliding-window-based binary search, respectively), and 
compared their outputs to examine consistency. The data sets were selected from the data sets 
generated in scenario 2. We randomly selected one data set from each combination of MAFs 
and ORs, obtaining 100 data sets as inputs for this test.

Here, consistency requires that not only the number but also the position of the 
markers (P ≤ 0.05) detected by the 2 algorithms be the same. We employed statistical power 
and specificity as 2 measures, and used the outputs of MIC without the sliding-window-based 
binary search as the “gold standard” for calculating the 2 measures of the method with sliding-
window-based binary search (i.e., MICSNPs). Therefore, higher power and specificity indicate 
greater consistency among the 2 algorithms. In our experiment, based on the “gold standard”, 
the average power and specificity of MICSNPs were respectively 1.0000 and 0.9998, which 
was close to 1. Furthermore, we plotted the SNP numbers detected using the 2 algorithms on 
the same scatter plot with different colors, which showed consistency by counting the number 
of overlapping points (Figure 7). Figure 7 shows that there were few non-overlapping points 
(blue in left panel and red in right panel).

Figure 6. Linear relationship between time cost and resampling count. The time cost was averaged over the groups 
of 100, 200, 500, 1000, 2000, 4000, 8000, and 16,000 resamplings of MC-based permutation test for testing 50 data 
sets. Each data set contained 1000 SNPs genotyped from 1000 cases and 1000 controls.
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MICSNPs for real data

The real data set, case-control CAD data in WTCCC1, was composed of 22 in-
dependent smaller data sets (each for 1 autosome). Because of the limitations of marker 
amount using BEAM (Zhang and Liu, 2007), smaller data sets were used one by one rather 
than being spliced together in our study. To capture the sets of SNPs with the strongest joint 
effect on the disease, we calculated the correlation coefficients r between any 2 SNPs us-
ing the methods MICSNPs, BEAM, and PLINK, similarly to BoNB. If there were several 
correlation coefficients in a set of SNPs that exceeded the threshold (r2 > 0.1), we used the 
SNP with maximum MIC (for MICSNPs) or with minimum P (for BEAM and PLINK) as 
the result. We found that for MICSNPs, BEAM, PLINK, and BoNB, 63, 65, 44, and 52 
SNPs, respectively, were associated with disease risks and a total of 52 SNPs showed the 
strongest joint effect on the disease in the CAD data set (Tables S1 and S2). Eight of the 63 
SNPs found using MICSNPs were not identified using other methods, and did not exist in 
the results of the benchmarks (Table 1).

Figure 7. Consistency between conditions with and without sliding-window-based binary search. All SNPs in the 
figure were significant at P ≤ 0.05. The degree of overlapping between the points with different colors denotes the 
degree of consistency between the 2 algorithms. A. Left panel. The “without sliding-window-based binary search 
(without SW)” (red) is plotted over the “with sliding-window-based binary search (with SW)” (blue). B. Right 
panel is the contrast to (A).

Chromosome SNPs SNPs with the strongest joint effect

Chr. 2 rs41464947 rs41373446
Chr. 7 rs2030711 -a

 rs34100060
Chr. 10 rs7894018 -
Chr. 16 rs237179 -
Chr. 21 rs2088843 -
Chr. 22 rs5752792 -
 rs688034
aIndicates “none”.

Table 1. Risk SNPs found only by MICSNPs.

http://www.geneticsmr.com/year2014/vol13-4/pdf/gmr4400_supplementary.pdf
http://www.geneticsmr.com/year2014/vol13-4/pdf/gmr4400_supplementary.pdf


10875

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 13 (4): 10863-10877 (2014)

Method of identifying SNP disease association based on MIC

DISCUSSION

The MICSNPs method has 3 essential components: i) MIC, a novel nonparametric 
statistical tool, as the measure used to infer the degree of association of the markers with dis-
ease risks, ii) an MC-based permutation test for mapping MIC values onto P values, and iii) a 
sliding-window-based binary search to save time. Although MIC showed promise in statisti-
cal analysis, our experiments based on case-control genotype marker data showed that MIC 
values fluctuated for both MAFs and ORs, suggesting that it is possible to identify a threshold 
for using MIC directly to measure and identify risk SNPs in SNP disease association studies. 
Previously, MIC has been successfully applied to data sets in gene expression studies (Reshef 
et al., 2011). This may be because a gene expression data set contains continuous variables, 
while a genotype data set contains discrete variables including 6 combinations at most. More 
information involved in calculating an MIC value can be provided by a gene expression data 
set compared to a genotype marker data set, leading to lower deviation of the MIC value pro-
duced by the former than by the latter. After mapping the MIC values onto P values using the 
MC-based permutation test, the effects of the fluctuating MICs were eliminated.

In simulation experiments, we found that MICSNPs and PLINK had the best sta-
tistical power and that MICSNPs has the second lowest FPR, which was lower than that of 
PLINK. Thus, MICSNPs outperformed the benchmarks in comprehensive performance. Fur-
thermore, in the experiment for real data of CAD, our method detected 8 SNPs that were not 
detected by the benchmarks. Of the 8 SNPs, rs41464947 correlated strongly with rs41373446, 
suggesting that these polymorphisms function together in disease.

Notably, in the simulation experiments, some of the benchmarks showed better scores 
than that of the original studies conducted by the author(s). This may have resulted from the 
different simulation models between the original studies and our studies.

For the MC-based permutation test procedure in association studies, to produce a P 
value with precision of ± 0.01, a large number of resamplings is required, which may overload 
a common PC system. As the precision of P values increased, type I error decreased, but type 
II error increased. Thus, there must be a compromise among time cost, type I error, and type 
II error. The experiments involving 200, 500, 1000, and 2000 samples showed that the best 
compromise may be made while the resampling is set to 2-4 times the number of SNPs.

We combined sliding-window and binary search as a sliding-window-based binary 
search to accelerate the steps for searching for significant SNPs. Compared to a sequential 
search, the time cost of our search method was related to window size and the number of risk 
SNPs, but was not related to total SNPs (Equation 4). Risk SNPs are typically far lower than 
the value of total SNPs, indicating that our method will save time (the time cost of MICSNPs 
was 0.58% that of a sequential search, satisfying the relationship between Equation 4 and O(l), 
representing the complexity of a sequential search).

Although the time cost of MICSNPs was higher than that of the benchmarks, the value 
was acceptable. For comparison, we set maximum entropy conditional probability modeling’s 
parameter MAX_DEGREE to 1 and implemented one of the data sets simulated in scenario 
2. For maximum entropy conditional probability modeling, 439.45 h was required, which is 
1292.49 times the time required for MICSNPs to process the data set, whose size was less than 
that of any chromosome in the CAD data set.

For MICSNPs, the consistency of identifying SNP disease associations between con-
ditions with and without the sliding-window-based binary search was very high. Thus, sig-
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nificant markers will gather together after sorting MIC-P pairs by MIC values. The sliding-
window-based binary search used here is feasible and saves time.

Nevertheless, there are several limitations and unanswered questions in this study. For 
example, a permutation test must be applied to MICSNPs, resulting in a large increase in time 
cost. In principle, the MIC value may be used directly to detect disease-associated markers 
if we improve the stability of MICs in the limited amount of combinations of the discrete 
variables.

CONCLUSION

MIC is a novel, recently identified measure that may be used in statistical analysis. 
Our experiments suggested that MIC values fluctuate for both MAFs and ORs of a case-
control genotype marker data set. MICSNPs eliminated the fluctuation, leading to successful 
application of MIC to SNP disease association studies. By testing MICSNPs on simulated data 
sets and a CAD genome-wide association data set, we found that MICSNPs outperformed 
existing approaches in comprehensive performance and were both computationally and statis-
tically feasible on a genome-wide case-control data set.
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