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ABSTRACT. Developing appropriate methods for constructing 
phylogenetic networks from tree sets is an important problem, and 
much research is currently being undertaken in this area. BIMLR 
is an algorithm that constructs phylogenetic networks from tree 
sets. The algorithm can construct a much simpler network than 
other available methods. Here, we introduce an improved version 
of the BIMLR algorithm, QuickCass. QuickCass changes the 
selection strategy of the labels of leaves below the reticulate nodes, 
i.e., the nodes with an indegree of at least 2 in BIMLR. We show 
that QuickCass can construct simpler phylogenetic networks than 
BIMLR. Furthermore, we show that QuickCass is a polynomial-
time algorithm when the output network that is constructed by 
QuickCass is binary.
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INTRODUCTION

Developing appropriate methods to infer phylogenetic networks from biological 
data has been viewed as an important problem (Doolittle, 1999; Linder et al., 2004; Huson, 
2005; Wang et al., 2012). There are many recent reports in this area (Huson and Scornavacca, 
2011; Huson et al., 2011), which mainly generate 2 kinds of networks: unrooted phylogenetic 
networks and rooted phylogenetic networks. The unrooted phylogenetic networks include 2 
important classes: split networks and quasi-median networks (Buneman, 1971; Bandelt and 
Dress, 1992; Bandelt et al., 1999). The SplitsTree4 program (Huson and Bryant, 2006) is a 
convenient tool for inferring unrooted phylogenetic networks from sequences, distances, trees, 
or splits. This tool collects a lot of methods, such as neighbor-net (Bryant and Moulton, 2004) 
and the Z-closure super-network method (Huson et al., 2004). The Dendroscope program (Hu-
son and Scornavacca, 2012) is an available tool for computing rooted phylogenetic networks. 
This tool contains a lot of methods, such as Cass (van Iersel et al., 2010), the galled network 
(Huson et al., 2009), and the cluster network (Huson and Rupp, 2008).

The rooted phylogenetic networks can be classified into 4 categories. The first is hy-
bridization networks (Maddison, 1997; Linder and Rieseberg, 2004), where the goal is to 
compute a rooted phylogenetic network from a set of incongruent trees. The second is recom-
bination networks (e.g., Hein, 1993; Huson and Klöepper, 2005; Song and Hein, 2005) and has 
recently received more attention under the constraint of the galled tree property (e.g., Gusfield 
et al., 2003; Gusfield, 2005; Gusfield and Bansal, 2005). Here, the task is to construct a rooted 
phylogenetic network from a set of binary sequences. The third is horizontal gene transfer 
networks, where the goal is to explain the discrepancies between gene trees and a species tree 
(e.g., Gusfield et al., 2007; Semple, 2007; Gambette, 2009; Nakleh, 2009; van Iersel et al., 
2010). The fourth is the construction of rooted phylogenetic networks from triplets (van Iersel 
et al., 2008; van Iersel and Kelk, 2011).

Let X be a set of taxa. A rooted phylogenetic tree T on X represents a cluster C, which 
is a proper subset of X, if there is an edge e in T such that the set of taxa below e equals C. 
Each rooted phylogenetic tree is uniquely defined by the set of clusters that are represented by 
it. What are clusters represented by a rooted phylogenetic network N on X? There are 2 differ-
ent answers to this question. A rooted network N represents a cluster C in the hardwired sense 
if there is a tree edge e = (u,v), i.e., the edge whose head v has an indegree of at most 1, such 
that the set of taxa below e equals C. Alternatively, we say that N represents C in the softwired 
sense if there is some tree edge e for each reticulate node, i.e., the node with an indegree of 
at least 2, switching 1 incoming edge on and all others off, such that the set of leaves that is 
reachable below e is labeled precisely by C. In this paper, we will always use “represent” in 
the softwired sense.

The rooted phylogenetic network can, in theory, be used to explicitly describe evolu-
tion in the presence of reticulate events, such as hybridization, horizontal gene transfer, and 
recombination. However, in biology, these reticulate events are considered “expensive”. In 
the context of phylogenetic analysis, the clusters represent putative monophyletic groups of 
related species. Therefore, we invoke the parsimony principle to argue that the best network 
representing a set of clusters in the softwired sense is one that minimizes the number of clus-
ters that are represented by the network on the premise of as few reticulate nodes as possible. 
The Cass algorithm, which was developed by van Iersel et al. (2010), can construct a phyloge-
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netic network in the softwired sense. The phylogenetic network that is constructed by the Cass 
algorithm has fewer reticulate nodes than other methods. The BIMLR algorithm, which was 
developed by Wang et al. (2013), is an improved version of the Cass algorithm. The phyloge-
netic network constructed by BIMLR has fewer reticulate nodes than almost all other methods 
and represents fewer clusters than all other methods. BIMLR saves a lot of running time over 
the Cass algorithm.

PRELIMINARY INFORMATION

A rooted phylogenetic network N on X is a directed acyclic graph with a single node 
of indegree 0, called the root, and leaves that are bijectively labeled by X. The indegree of a 
node v is denoted by δ- (ν). Any node of δ- (ν) ≥ 2 is called a reticulate node or reticulation, 
and all others are called tree nodes. Any edge leading to a reticulate node is called a reticulate 
edge, and all others are called tree edges. The reticulation number of a phylogenetic network 
N = (V,E) is defined as the following:

: ( ) 0

( ( ) 1)
v V v

v
δ

δ
−

−

∈ >

−∑  = |E| - |V| + 1.

A graph is called connected if every pair of nodes is connected by some (undirected) 
path. A cut node or cut edge is a node or edge (except the leaves and the edges leading to 
leaves), respectively, whose removal disconnects the graph. A graph is biconnected if it con-
tains no cut nodes. A biconnected component of a graph is a maximal biconnected subgraph.

A phylogenetic network is called a level-k network if each biconnected component 
has a reticulation number of at most k. A level-k network is called a simple level-≤k network 
if it has no cut nodes. A phylogenetic network is binary if each reticulate node has indegree 2 
and outdegree 1 and each internal tree node has outdegree 2.

Let X be a set of taxa. A cluster C on X is any proper subset of X, excluding both the 
empty set ∅  and the full set X. Two different clusters C1 and C2 on X are called compatible if 
they are disjoint or one contains the other, that is, if C1 ∩ C2 = ∅ , C1 ⊂  C2 or C2 ⊂  C1; oth-
erwise, it is called incompatible. A set of clusters C on X is called compatible if and only if C 
is pairwise compatible; otherwise, it is called incompatible. The incompatibility graph IG(C) = 
(V,E) for C is the undirected graph with node set V = C and edge set E such that any 2 clusters 
C1, C2 ∈ C are connected by an edge if and only if they are incompatible. The incompatibility 
degree of a cluster set C, denoted by d(C), is the number of edges in the incompatibility graph 
IG(C). The incompatibility degree of a taxon x ∈ X with respect to C denoted by d(x), is d(x) = 
d(C) - d(C|X {x}), where C|X {x} denotes the resultant set of clusters removing x from each cluster in 
C. The frequency of a taxon x ∈ X with respect to C, denoted by f(x), is f(x) = |{C: x ∈ C,C ∈ C}|.

Let C be a set of clusters on X. Given a subset S of X, the restriction of C to S, denoted 
by C|S, is the result of removing all elements of X\S from each cluster in C. S with |S| > 1 is 
called an ST-set (strict tree set) with respect to C, if S and any 1 cluster C ∈ C is compatible 
and any 2 clusters C1, C2 ∈ C|S are also compatible. An ST-set S is maximal if there is no ST-
set W containing S except itself. There is a subtree with respect to a maximal ST-set S, which 
is constructed for the cluster set {C|C ∈ C, C ⊂  S} ∩ S.
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BIMLR

This section briefly describes the BIMLR algorithm. The readers can gain more detail 
in the report (Wang et al., 2013). BIMLR first decomposes the incompatibility graph IG(C) into 
biconnected components and then constructs a simple level-≤k network using the BIMLR(k) 
algorithm for each biconnected component separately. Then, BIMLR combines those simple 
level-≤k networks into the resulting phylogenetic networks. Informally, the BIMLR(k) algo-
rithm for constructing a simple level-≤k network operates as follows.

BIMLR(k) removes an incompatible taxon with maximal frequency from each cluster 
of a given cluster set. It subsequently collapses all maximal ST-sets of the resulting cluster set. 
The algorithm repeats this step k times. After that, the resulting cluster set is compatible, and the 
second phase of the algorithm begins. BIMLR(k) creates a network, i.e., the unique phylogenetic 
tree, for the resulting cluster set. Then, the algorithm “decollapses”, i.e., it replaces each leaf 
that is labeled by a maximal ST-set with its corresponding subtree. Subsequently, BIMLR(k) 
adds a new leaf below a new reticulate node and labels it by the latest removed taxon.

Following this, BIMLR(k) tries adding the reticulate node below each pair of edges. 
The algorithm continues with a new decollapse step followed by hanging the next leaf below a 
reticulate node. This network represents the cluster set of this step and then saves it. BIMLR(k) 
finds all networks representing the cluster set of this step and sorts them in descending order 
of the number of clusters represented, which aims to reduce the number of redundant clusters 
of the resulting phylogenetic network and weaken the influence of input data order for the 
Cass algorithm. These steps are also repeated until all removed taxa are appended to the phy-
logenetic networks, which represent all input clusters. BIMLR outputs the resulting network, 
which has a minimal number of redundant clusters.

METHODS

Definitions

Let C be a set of clusters on X. For any 1 taxon x ∈ X, we remove it from each cluster 
in C and obtain the cluster set Cx on Xx = X \ {x} after collapsing all maximal ST-sets with 
respect to C|X\{x}. Then, x is called the real incompatible taxon with respect to C if d(Cx) = 0. 
Otherwise, there exists an incompatible taxon z with respect to Cx. Then, the incompatibility 
degree of Cx|X\{z} is called a potential incompatibility degree of x denoted by pd(x). Here, we 
specifically point out that if x is the real incompatible taxon with respect to C, then we define 
its potential incompatibility degree as -1, i.e., pd(x) = -1. A taxon x is called a potential incom-
patible taxon with respect to C if pd(x) = min{pd(y)| y ∈ X}. Obviously, a real incompatible 
taxon with respect to C is also a potential incompatible taxon with respect to C.

QuickCass

When constructing phylogenetic networks, BIMLR, in each step, finds all networks 
representing the cluster set of this step and sorts them in descending order of the number of 
clusters represented. Then, the networks representing the minimum number of clusters can be 
used for the next step. Those operations are mainly used to reduce the number of redundant 
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clusters of the resulting phylogenetic network. However, the number of reticulations of the re-
sulting phylogenetic network that is constructed by BIMLR is mainly decided by the number of 
removed incompatible taxa. Importantly, when the resulting phylogenetic network that is con-
structed by BIMLR is binary, the two networks are equals. However, the number of removed 
incompatible taxa is the number of steps from the set of input clusters C to the final compatible 
set of clusters by removing the incompatible taxa with maximal frequency. In each step of con-
structing phylogenetic networks, BIMLR removes the taxon with a maximal incompatibility 
degree based on the greedy strategy in order to allow the resulting set of clusters to meet the 
compatibility requirements as soon as possible. There may be a pathway from the set of input 
clusters to the compatible set of clusters that has no incompatible taxa. Based on this heuristic, 
we improved the BIMLR algorithm by using the potential incompatibility degree.

QuickCass first decomposes the incompatibility graph IG(C) into biconnected com-
ponents like BIMLR, and then it constructs a simple level-≤k network using the BIMLR(k) al-
gorithm for each biconnected component separately. Then, QuickCass combines those simple 
level-≤k networks into the resulting phylogenetic networks like BIMLR. The method of con-
structing a network for a biconnected component QuickCass(k) for a simple level-≤k network 
is as follows. QuickCass(k) is almost the same as BIMLR(k). The only difference between 
them is that QuickCass(k) removes the potential incompatible taxa with maximal frequency 
rather than the incompatible taxa with maximal frequency from clusters. The following is the 
pseudo-code of QuickCass(k).

QuickCass(k) algorithm: constructing a simple level-≤k network
Input: a set of clusters C
Output: a simple level-≤k network
1. networks: N: = ∅
2. cluster sets: C: = ∅
3. removed taxa: X: = ∅
4. k = 0;
5. if C is compatible, then
compute the rooted phylogenetic tree T for C, and let N = {T}
return N
6. while C is incompatible, do
k = k + 1
add C to C
add x to X, where x is the potential incompatible taxon with maximal frequency with 

respect to C
\{ }: | x= XC C

: \{ }x=X: X
collapse: C: = COLLAPSE(C)
7. construct the unique tree T representing C and push T to N
8. while the reticulation number of the top network N of N is not k, do
9. steps: s = k - 1 - r (r is the reticulation number of N)
10. networks: N0 = ∅
11. removed taxon: x = X [s]
12. set: ' [ ]s=C C
13. decollapse: replace each leaf of N that is labeled by a maximal ST-tree S with 

respect to C
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14. for each pair of (not necessarily distinct) edges e1 and e2, do
15. create 2 nodes r and t, add an edge from r to t, and label t by x
16. insert a new node u1 into e1 and connect u1 to r
17. insert a new node u2 into e2 and connect u2 to r
18. if the resulting network N represents C, then add N to N0
19. if 0 ≠ ∅N , then
20. sort all networks in N0 in descending order of the number of clusters that are rep-

resented and then push them to N
21. else
k = k + 1
add C to C
add δ to X // δ as a dummy taxon not in X
22. continue
23. return N representing the minimal number of clusters among all phylogenetic net-

works in N
•	 LEMMA 1. Let N be a rooted binary phylogenetic network with n leaves and k 

reticulations. Then, N has 2n + 3k - 2 edges.
• It is easy to prove by inducing the number n of leaves and the number k of reticu-

lations.
•	 LEMMA 2. (Performance of QuickCass(k) algorithm). If the resulting phyloge-

netic network that is constructed by QuickCass(k) for a cluster set C is a binary, 
then the time complexity of QuickCass(k) is O(k|X|3|C|2).

•	 PROOF. Paragraph 6 in pseudo-code of QuickCass(k) needs time O(k|X |2| C
|2). Lines 14-18 will be executed in time O(|X|3|C|). If the resulting phylogenetic 
network for C is a binary network, then lines 19-20 will be executed. In this case 
the worst case is that there are O(|X|2) phylogenetic networks that will be sorted 
in descending order of the number of clusters that are represented, for which the 
time complexity is O(|X|3|C|). The best case is that there is only 1 phylogenetic 
network representing C, for which the time complexity is O(|X||C|). Thus, the 
lemma follows.

RESULTS

All experiments were performed on machines with an Intel Xeon E5504 2.0 GHz 
CPU, 8 GB RAM, and 147 GB HDD. The operating system was Debian 4.1 32-bit with Java 
1.6 installed. QuickCass was written in Java.

QuickCass has been tested on both practical and artificial data (https://sites.google.
com/site/cassalgorithm/data-sets) (van Iersel et al., 2010), and the results are summarized in 
Table 1 and Figure 1. The table shows the results of an application of QuickCass and BIMLR 
on several artificial datasets. Here, for each algorithm, the level k, reticulation number r, and 
the number c of redundant clusters of the output network, as well as the running time t in 
minutes and seconds, are given, and the last row gives the average values. Table 1 shows that 
QuickCass consumes less time than BIMLR, and the networks that are constructed by Quick-
Cass have the same reticulation number as those constructed by BIMLR for those artificial 
datasets. Table 1 also shows that the networks that are constructed by QuickCass represent 
fewer redundant clusters than those that are constructed by BIMLR for some datasets.
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Wang et al. (2013) compared BIMLR with Cass, the galled network (Huson et al., 
2009), and the cluster network algorithms (Huson and Rupp, 2008). van Iersel et al. (2010) 
compared HYBRIDINTERLEVE (Collins et al., 2011), which is restricted to 2 input trees, 
and PIRN (Wu, 2010) with Cass. In this paper, we compare QuickCass with BIMLR and Cass. 
Figure 1 visually shows the results of an application of QuickCass, BIMLR, and Cass with 
practical data by a histogram. The phylogenetic networks that are constructed for practical 
datasets are slightly more complicated than those that are constructed for artificial datasets. 
We averaged over those subsets where all of the programs terminated within 44 h. Here, some 
results are eliminated, such as the data with |C| = 127 and |X| = 47 because Cass did not finish 
it within 44 h, while BIMLR and QuickCass finished it within 1 h. As illustrated in Figure 1, it 
follows that the required reticulations of QuickCass and BIMLR are slightly greater than those 
of Cass on average, and QuickCass requires fewer reticulations than BIMLR on average. On 
the other hand, the phylogenetic networks that are constructed by QuickCass represent fewer 
redundant clusters on average than the phylogenetic networks that are constructed by the other 
programs, which is also important for constructing parsimony phylogenetic networks. In terms 
of running time, QuickCass is superior to BIMLR and Cass.

Figure 1. A. The average number of reticulations used by the compared programs. B. The average number of 
redundant clusters represented by the phylogenetic networks constructed by the compared programs.

            Data                         QuickCass                           FastCass

|C| |X| t k r c t k r c

30     5   1s 4 4   0   3s 4 4   1
62     6   4s 5 5   0 11s 5 5   1
42   10   1s 4 4   8   2s 4 4   8
38   11   1s 5 5   8   2s 5 5   8
61   11   1s 5 5 11   3s 5 5 11
77   22   1s 3 3   5   1s 3 3   5
75   30   1s 2 2 19   1s 2 2 19
89   31   1s 4 4 52   1s 4 4 52
180   51   1s 2 2   0   3s 2 2   0
270   76   6s 2 2   0 11s 2 2   0
404 122 25s 2 2   0 51s 2 2   0
120.7     34.1      3.9s 3.4    3.4     9.4      8.1s    3.4    3.4      9.5

Table 1. Results of QuickCass compared with FastCass for several artificial datasets with |C| clusters and |X| taxa.
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CONCLUSIONS

We have introduced the QuickCass algorithm, which can be used to compute a phy-
logenetic network for any cluster set. By experiments, it follows that the algorithm performs 
well on practical data and artificial data. Additionally, experiments show that QuickCass can 
construct simpler networks than BIMLR. Thus, it provides a useful addition to existing soft-
ware. Furthermore, we have shown that QuickCass is a polynomial-time algorithm when the 
resulting phylogenetic network that is constructed by QuickCass is a binary network.
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