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ABSTRACT. Nowadays, there are many phylogeny reconstruction
methods, each with advantages and disadvantages. We explored the
advantages of each method, putting together the common parts of trees
constructed by several methods, by means of a consensus computation.
A number of phylogenetic consensus methods are already known. Un-
fortunately, there is also a taboo concerning consensus methods, be-
cause most biologists see them mainly as comparators and not as phylo-
genetic tree constructors. We challenged this taboo by defining a con-
sensus method that builds a fully resolved phylogenetic tree based on the
most common parts of fully resolved trees in a given collection. We also
generated results showing that this consensus is in a way a kind of “me-
dian” of the input trees; as such it can be closer to the correct tree in
many situations.
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INTRODUCTION

There are many cases in which, having a collection of similar elements, one desires to
compare these elements or combine the information of the whole collection into a single, con-
sensus element. Probably, the most widely known consensus in bioinformatics is the consensus
between sequences. Sequence consensi may be used both for comparison, for instance, to point
out probable SNPs in a collection of very similar sequences, and for the reconstruction of a
larger or more accurate sequence, in the case of EST clustering or genome assembling.

In the field of phylogenetics, a consensus is mostly used to summarize similarities be-
tween trees. As a result, we have many consensus methods designed to point out the common
parts of phylogenetic trees. Examples include strict and semi-strict consensus (Kitching, 1998),
Nelson-Page consensus (Bryant, 2003), majority rule consensus (Margush and McMorris, 1981)
and Adams consensus (Bryant, 2003). Only a few methods, such as the asymmetric median
tree (AMT) proposed by Phillips and Warnow (1996), are designed to be used as a final step in
tree reconstruction. The main difference between AMT and the other consensus methods is
that the former is designed to produce a tree that is a substitute for the collection of trees used
to build it; whereas the trees of the other consensus methods are just an image, or a summary,
of the whole collection.

One problem with the AMT is that it relies on an optimization problem that is NP-hard
in general. We define a new kind of consensus tree, which we call the most probable tree. Its
definition relies on a maximization problem that can be solved efficiently by dynamic program-
ming, yielding a polynomial time algorithm for its computation.

In addition, we tested the properties of our new method with several experiments. The
first batch of experiments, designed to determine to what extent our tree can be said to be “in
between” the trees used to construct it, used artificially generated data. A final experiment,
which shows a particular case where our tree came closer to the “original” or “true” tree than
most reconstruction methods, is based on the ribosomal RNA sequences used as a standard
reference of the phylogeny of living organisms.

BASIC CONCEPTS

Phylogenetic trees

In the present study, we only consider unrooted phylogenetic trees. Therefore, every
time that the term phylogenetic tree, or simply tree, appears in this text, it refers to an unrooted
phylogenetic tree. A phylogenetic tree is basically a set of nodes connected by branches, as in
Figure 1. The nodes connected to a certain node are its neighbors. If a node has only one
neighbor, it is called a leaf; otherwise it is an internal node. There are no nodes with exactly two
neighbors in the trees, since they are unrooted. Nodes with more than three neighbors are called
polytomies. In our work, both the trees in the given collection and the consensus trees have no
polytomy, and therefore they are called fully resolved.

Clusters

We denoted the set of leaves of a phylogenetic tree with the letter L. Any non-empty
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Figure 1. A collection of fully resolved phylogenetic trees.

subset of L is called a cluster defined on L. When comparing two different clusters, if their sizes
differ, we indicated that the cluster with less elements is smaller than the other. For instance, if
we have two different clusters R and S, with R having 2 elements and S having 3, then R is
smaller than S and we can write R < S. If the two clusters have the same number of elements,
we have the situation shown in Figure 2. In this case, we use an enumeration of the elements of
L as a tiebreaker as follows:

1. Consider the elements that are in exactly one of the clusters only.
2. Choose the element numbered with the smallest number.
3. The cluster that has the chosen element is the smallest one.

Figure 2. Example of two different clusters of the same size. In these cases, we use an enumeration of the elements of L
to determine which cluster is the smaller one. The enumeration chosen in the example is the alphabetical order of species
names. Note that, among the six species considered (shaded region), the one that has the smallest number is Bos taurus.
Therefore, we can say that A < B.
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Quitzau and Meidanis (2005) proved that, when using a fixed enumeration, if one has
three different clusters A, B and C, with A < B and B < C, then A < C. This is an important result
because it allows us to sort a collection of clusters and find a cluster very quickly by binary
search.

Two clusters A and B such that A ∩ B = ∅ or A ∪ B = A or A ∪ B = B are called
compatible; otherwise they are incompatible. Clusters can be combined to form trees only when
they are compatible.

Splits

It is easy to see that the removal of any branch in a phylogenetic tree transforms it into
a pair of rooted phylogenetic trees with smaller sets of leaves, as Figure 3 exemplifies. The sets
of leaves of the new trees are clearly clusters of L and have the property of being disjoint; that
is, they have no common element. At the same time, their union is the set of leaves of the
original phylogenetic tree. A pair of clusters with these two properties is called a split of the set
of leaves. Note that, since a split is a pair of different clusters, it is always possible to compare
them and define which one is the small cluster and which is the large cluster of a split. In
addition, two splits are compatible if their small clusters are compatible; otherwise they are
incompatible (Quitzau and Meidanis, 2005).

Figure 3. A phylogenetic tree and one of its splits. Note that the sets A = {Escherichia coli, Zea mays, Oryza sativa,
Arabidopsis thaliana, Saccharomyces cerevisiae, Caenorhabditis elegans} and B = {Drosophila melanogaster, Takifugu
rubripes, Danio rerio, Bos taurus, Mus musculus, Homo sapiens} are such that A ∩ B = ∅, and A ∪ B is the whole set of
leaves.

Every single branch in a phylogenetic tree corresponds to a different split on its set of
leaves. The set of all splits of a phylogenetic tree corresponds to its split system. We denote the
split system of a phylogenetic tree T by S[T]. Finally, two different splits found in the split system
of the same phylogenetic tree are always compatible.

Split distances

It is possible to measure the distance between two trees by counting the minimum
number of changes that must be made in the split system of the first tree in order to obtain the
split system of the second one. There are only two possible changes that can be made in a split
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system: the addition and the removal of a split. The minimum number of changes is called split
distance (Waterman, 1995; Quitzau and Meidanis, 2005) and may be calculated using the for-
mula:

ρ(S[T
1
], S[T

2
]) = |S[T

1
]| + |S[T

2
]| - 2|S[T

1
] ∩ S[T

2
]| ,

where T
1
 and T

2
 are the first and the second trees, respectively, and |S[T]| denotes the size, or

the number of elements, of the split system S[T]. Figure 4 shows an example of two trees and
one of the minimal sequences of operations that transforms the first tree into the second.

Figure 4. Two fully resolved phylogenetic trees with split distance four, and one of the possible sequences of changes in
the split system that transforms one into the other in four steps. The sign + represents the addition and the sign - the
removal of a split. The upper arrows show a path from Tree 1 to Tree 2, whereas the lower arrows show the reverse path.

Sets of small clusters

A set of clusters that are all subsets of the same set X is an n-tree if and only if it has the
four properties below:

1. It contains the cluster X.
2. It contains a cluster {i} for all elements i ∈ X.
3. It does not contain the empty set, since it is not a cluster.
4. All its pairs of clusters are compatible.

If T is a phylogenetic tree, then the set of all small clusters of S[T], denoted by F[T], is
a set of disjoint n-trees. In particular, if T is fully resolved, then F[T] has exactly three disjoint
maximal n-trees.

Weights

Let T be a collection of phylogenetic trees, S be a split, and S
s
 the small cluster of S.

Then the weight of S with respect to T, p(S, T), is the relative frequency of S in T, given by the
formula



J.A.A. Quitzau and J. Meidanis 274

Genetics and Molecular Research 5 (1): 269-283 (2006) www.funpecrp.com.br

which corresponds to the probability of finding S in T. The weight can also be defined for
clusters, as follows

In fact, recalling that S
s
 denotes the small cluster of S, we have

p(S, T) = p(S
s
, T).

The most probable tree

Let the weight p(T, T) of a phylogenetic tree T with respect to a collection of phyloge-
netic trees T be defined as follows:

Note that p(T, T) should correspond to the probability of finding T in T, if the choice of
the splits of S[T] could be made independently; therefore, we call T a most probable tree of a
collection T if the following conditions are satisfied:

1. T is a fully resolved phylogenetic tree.
2. There is no fully resolved phylogenetic tree T* such that p(T, T) < p(T*, T).

Algorithm

The algorithm presented in this section takes advantage of the correspondence be-
tween split systems and disjoint sets of n-trees and finds trios of n-trees instead of compatible
split systems. To begin with, we rewrite the tree weight function as a function of the small
clusters of a phylogenetic tree and the collection of trees. The weight of an n-tree can be
defined as

Therefore, the weight function used in the algorithm is:

knowing that the maximal n-trees of F[T] are disjoint (Quitzau and Meidanis, 2005).
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We now make some considerations about trivial n-trees and the combination of n-trees.
If a cluster C has only a single element, we may trivially associate an n-tree to it, since the set
ψ

C
 = {C} satisfies all the n-tree conditions. Note that, in this case, the trivial n-tree is maximal,

therefore fully resolved. Furthermore, if A and B are two disjoint clusters, ψ
A
 is an n-tree on A

and ψ
B
 is an n-tree on B, then the set ψ

C
 = {A ∪ B} ∪ ψ

A
 ∪ ψ

B
 is an n-tree on C = A ∪ B. In

this case, if ψ
A
 and ψ

B
 are fully resolved, then ψ

C
 is also a fully resolved n-tree.

We call a cluster C solved when there is at least one fully resolved n-tree ψ
C
 associ-

ated with it and p(ψ
C
, T) is maximal.

The algorithm uses the dynamic programming paradigm, using solutions to smaller problem
instances to build solutions for larger instances. During an algorithm run, the cluster solutions
and the phylogenetic trees with maximal weights are stored in a data structure constructed with
the building blocks shown in Figure 5. The most basic type is the “Cluster”, which records the
main information of a cluster. It has four fields: elements, which store the cluster elements; p,
which stores the cluster relative frequency; bs, which stores a list of pairs of clusters whose
best solutions, together with the represented cluster, form an n-tree of maximal weight. The
“Tree” type stores a trio of disjoint clusters that cover the set of leaves. The “Solution” type
stores a pair of disjoint clusters. The field bsl of the “Cluster” type is actually a linked list of
“Solutions”.

Figure 5. Graphic representation of the three basic types used to build the data structure that stores all the most probable
trees. The “Cluster” type records the elements of a cluster (elements), its relative frequency (p), the weight of the stored
n-trees (bs) and the pairs of clusters that can be combined with the actual cluster in order to build n-trees with the stored
weight (bsl). The “Tree” type stores a trio of pointers to clusters. Finally, the type “Solution” stores a pair of disjoint
clusters. Black arrows are pointers to “Clusters”, while white arrows are pointers to “Trees” or “Solutions”.

Two important sub-routines are the one that store the best solutions found for a cluster,
called Cluster, and the one that stores the best phylogenetic trees, called Forest. Both are de-
scribed below:

Cluster(C, A, B)
1 if (C.p * A.bs * B.bs > C.bs)
2 then C.bsl ← {(A, B)}
3 C.bs ← C.p * A.bs * B.bs
4 else if (C.p * A.bs * B.bs = C.bs)
5 then C.bsl ← C.bsl ∪ {(A, B)}
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Forest(A, B, C’, F)
1  if (A.bs * B.bs * C’.bs > F.bs)
2  then F.bsl ← {(A, B, C’)}
3 F.bs ← A.bs * B.bs * C’.bs
4  else if (A.bs * B.bs * C’.bs = F.bs)
5 then F.bsl ← F.bsl ∪ {(A, B, C’)}

These two sub-routines are almost identical. In fact, the only differences between them
are the formula of the calculated value and the type of the elements stored in the linked lists. In
the case of Cluster, the calculated value is the weight of an n-tree, which is the product of the
weights of two smaller n-trees and the relative frequency of a cluster. The element stored in this
case is a “Solution”. Concerning the Forest sub-routine, the calculated value is a phylogenetic
tree weight and the stored type is a “Tree”.

Both sub-routines consist of two analogous comparisons leading to one of three differ-
ent actions. At line 1, the new calculated weight is tested, and if it is greater than the stored
weight, lines 2 and 3 discard the old list and initialize a new one, with the newly calculated
weight. Otherwise, the sub-routines test if the new weight is equal to the stored one. If the
answer is affirmative, the new “Solution”/“Tree” is added to the best solution list (bsl); other-
wise it is discarded. It is not difficult to see that the running time of each sub-routine is bound by
a constant.

The core algorithm is presented in pseudo-code below. The procedure Small just ex-
tracts the small clusters of T and calculates their relative frequencies, returning a sorted array
of clusters.

Most-Probable-Tree(T)
1 Small ← Small(T)
2 F.bsl ← ∅
3 F.bs ← -∞
4 for each A in Small, in increasing order
5 do for each B in {B ∈ Small  B < A}
6 do if (A ∩ B = ∅)
7 then C ← A ∪ B
8 if (C ≤ L/2)
9 then if (C ∈ Small)

10 then Cluster(C, A, B)
11 else Discard (A, B)
12 else C’ ← L \ C
13 if (C’ < B and C’ ∈ Small)
14 then Forest(A, B, C’, F)
15 else Discard (A, B, C’)
16 else Discard (A, B)
17 return F

The core of the algorithm is quite simple. It starts by creating an array of clusters at line
1. This array, called Small, contains all small clusters found in the collection T of fully resolved



A fully resolved consensus between phylogenetic trees 277

Genetics and Molecular Research 5 (1): 269-283 (2006) www.funpecrp.com.br

phylogenetic trees and is sorted in increasing order. Lines 2 and 3 create an empty list of most
probable trees, and initialize the weight of the best tree found, respectively. After that, the
algorithm finds at least one maximal n-tree for each cluster in a bootstrap fashion. In other
words, it trivially solves the singleton clusters and then starts to build solutions for larger clusters
using the already-solved clusters. This is achieved by processing all the clusters A ∈ Small in
increasing order and then analyzing all pairs formed by A and the other clusters B such that B <
A. Only pairs formed by disjoint clusters are further analyzed. These pairs fall in exactly one of
three cases:

A ∪∪∪∪∪ B ∈∈∈∈∈ Small: In this case, for all n-trees ψ
A
 such that p(ψ

A
, T) is maximal and for all

n-trees ψ
B
 such that p(ψ

B
, T) is maximal, {A ∪ B} ∪ ψ

A
 ∪ ψ

B
 may be an n-tree on A ∪ B with

maximal weight. This case is treated in lines 9 and 10.
L \ (A ∪ ∪ ∪ ∪ ∪ B) ∈ ∈ ∈ ∈ ∈ Small: In this case, A, B and L \ (A ∪ B) are three disjoint sets that cover

the set of leaves. Therefore, the n-trees associated with these clusters together correspond to a
fully resolved phylogenetic tree, and the weight of this tree is compared to the best weight
stored so far, in lines 13 and 14.

Useless case: In this case, A ∪ B is not part of a split found in the collection T of
phylogenetic trees. Such a pair must be discarded.

When all possible pairs have been analyzed, the clusters in Small are organized in a
structure, such as the one shown in Figure 6. Quitzau and Meidanis (2005) proved that, after the
execution of the algorithm, the returned structure represents all and only the most probable trees
for the collection T given as input.

Figure 6. Example of the data structure returned by the algorithm. All four most probable trees of the collection
presented in Figure 5 are represented in this structure. The weight of these trees is 0.0703125. The clusters BC and CD are
present in the collection, but none of the most probable trees T has any of these clusters in F[T].
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The algorithm running time

Every fully resolved phylogenetic tree has 2l - 3 edges, where l is the number of leaves.
If collection T has t fully resolved phylogenetic trees, then there are 2lt - 3t small clusters to be
inserted into the array Small. We implemented the algorithm using an array of bits to represent
the clusters. Therefore, the comparison between two clusters takes O(l) time. To create the
Small array, we need to find the position of 2lt - 3t clusters in the array by binary search, which
takes O(l2t lg s - 3lt lg s), where s = Small. In addition, s clusters must be inserted in the array,
each one at the cost of O(s). Summing up, the total time spent in the preparation of the array
Small is

O(l2t lg s + s2).

However, since the number of distinct clusters in a collection is 2l - 3, when all trees are
equal, and l + lt - 3t, when all the trees are totally different, the time spent with the preparation
of Small is

O(l2t lg lt + l2t2).

To find the cluster solutions, s2 pairs of clusters are analyzed and, in the worst case, the
analysis of a cluster requires a binary search in Small, which can be made in O(l lg s). There-
fore, the total time used to find the solutions for all clusters is

O(s2l lg s),

which is an upper bound for the running time of the algorithm and may be written as

O(l3t2 lg lt).

MATERIAL AND METHODS

Data sets

We tested the efficiency of the most probable tree as a reconstruction method using
four artificial sequence sets taken from the repository maintained by Gascuel (http://www.lirmm.fr/
~w3ifa/MAAS/US-MAAS.html). We chose four artificial data sets simulating different hy-
potheses of the evolutionary mechanism:

K2P - This sequence set was created using Kimura’s two-parameter evolutionary model,
together with a gamma distribution of transition/transversion rates across sites. The tree topol-
ogy used was a phylogenetic tree with edge lengths that are not necessarily consistent with the
molecular clock hypothesis.

K2Pm - The conditions under which these sequences were created are similar to the
first sequence set. The only difference is that the edge lengths are consistent with the molecular
clock hypothesis.

COV - The evolutionary model used for the creation of artificially evolved sequences in



A fully resolved consensus between phylogenetic trees 279

Genetics and Molecular Research 5 (1): 269-283 (2006) www.funpecrp.com.br

this set was the covarion model (Nei, 1975). As in the K2P data set, the tree topology used does
not take the molecular clock hypothesis into account.

COVm - For the creation of this data set, the covarion model was used over a topology
compatible with the molecular clock hypothesis.

A fifth data set was created with sequences of small ribosomal subunit RNAs taken
from the Ribosomal Database Project (Cole et al., 2003). This data set is called REAL and the
reference tree used in this case was the tree published by the Ribosomal Database Project.

Creation of the collections of trees

We chose eight publicly available softwares to create our collections of phylogenetic
trees: fastMe (Desper and Gascuel, 2002); Mega (version 3 for Windows) (Kumar et al.,
2004); the softwares dnacomp, dnaml, dnamlk, dnapars, and neighbor from the PHYLIP
(Felsenstein, 1989) package (version 3.6), and weighbor (Bruno et al., 2000). These softwares
allowed us to work with seven phylogenetic reconstruction methods: DNA compatibility, maxi-
mum likelihood, maximum parsimony, minimum evolution, neighbor joining, UPGMA, and weighted
version of the neighbor joining. In cases where it was necessary to estimate the distance be-
tween sequences, three evolutionary models where used: Jukes and Cantor’s model, Kimura’s
two-parameter model (Graur and Li, 1999; Quitzau and Meidanis, 2005), and the Tamura-Nei
model (Tamura and Nei, 1993). We call a constructor a combination of a software, a tree
reconstruction method and, when necessary, the evolutionary model used to estimate distances
between sequences, and we used the 18 constructors shown in Table 1 to build collections of
trees. All softwares were used with the default parameters. In the case of the methods DNA
compatibility and maximum parsimony, whenever more than one tree was produced, only the
first tree in the output file was considered for further analysis. The constructor PML was unable
to produce an output for the data set REAL in less than 24 h. It was therefore stopped, and its
result not considered.

After creating the trees with the constructors, we used them to create a most probable
tree for each collection. In the end, each data set included a reference tree, a set of recon-
structed trees and a most probable tree. The distances between each pair of trees were calcu-
lated and used for further analysis.

RESULTS

Average distances

To perform the analysis based on average distances, we used only distances between
the reconstructed trees and distances between most probable and reconstructed trees (Table
2). The code CONS corresponds to our most probable tree.

We can see that the minimum average distance always belongs to the consensus tree.
This means that the most probable tree is centralized with respect to the collection of input
trees. Since we used the split distance to make the comparisons, the distance is closely related
to the number of splits that the trees have in common. As a result, we note that the definition of
the most probable tree actually reached its objective, which was to create trees that have the
most common splits found in a set.
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Distances to the reference tree

We calculated the split distance between each phylogenetic tree, including the consen-
sus tree, and the reference tree (Table 3). As we can see, for the vast majority of the data sets,
the consensus tree is closer to the reference tree than 60% of the trees in the collection used to
build it. The only case where the consensus tree had a bad performance was for the data set
K2Pm. Even so, for the data set containing real sequences, the most probable tree is the tree
that is closest to the reference.

DISCUSSION

We suggest a very simple strategy for a better approximation of reconstructed trees.
The main idea was to determine if phylogenetic consensus makes any sense in the context of
phylogenetic reconstruction. For verification, we chose reference trees as “true trees” and used
sets of DNA sequences to try to reconstruct these trees. In spite of the fact that we knew the
parameters used to create the data sets, we tried to simulate a real case of phylogenetic recon-
struction. Therefore, because no one really knows which model rules natural evolution, we
decided to treat every data set as if we had no idea of the way the sequences evolved. In many
cases, this decision led us to create trees that were quite bad, such as the trees built for the

Table 1. Phylogenetic tree constructors used in the tests.

The column Code presents the codes given for each constructor. The column Software indicates the software used by the
constructor. Finally, the column Methods gives the phylogenetic reconstruction method used to reconstruct the tree and
the evolutionary models used to estimate distances, when necessary. The evolutionary models are represented by the
following abbreviations: JC for the Jukes and Cantor’s one-parameter model; K2P, for Kimura’s two-parameter model, and
TN, for the Tamura-Nei model.

Code Software Methods

FMEJ fastMe Minimum evolution JC
FMEK fastMe Minimum evolution K2P
MMEJ Mega Minimum evolution JC
MMEK Mega Minimum evolution K2P
MMET Mega Minimum evolution TN
M M P Mega Maximum parsimony
MNJJ Mega Neighbor joining JC
MNJK Mega Neighbor joining K2P
MNJT Mega Neighbor joining
PCO dnacomp DNA compatibility
PML dnaml Maximum likelihood
PMP dnapars Maximum parsimony
PNJJ neighbor Neighbor joining JC
PNJK neighbor Neighbor joining K2P
PUPJ neighbor UPGMA JC
PUPK neighbor UPGMA K2P
WNWJ weighbor Weighted neighbor joining JC
WNWK weighbor Weighted neighbor joining K2P
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K2Pm and COVm models. However, our purpose was not to determine whether a reconstruc-
tion method based on a certain model is able to reconstruct a tree based on sequences created
using the same model; they are supposed to do it successfully. The scenario we tried to analyze
was the situation where different, trustworthy methods generate different trees using real data.

In this scenario, we have a tree that is assumed to be correct and unknown. For this
reason we chose artificially created data to represent DNA extracted from nature. Since we
cannot be sure about which evolutionary model best describes actual DNA evolution, we cre-
ated four data sets using two different models (covarions and rate across sites) in two opposite
variations (molecular clock rules × molecular clock does not rule). In addition, we also used a
real data set, based on a well-studied phylogeny: the phylogeny of ribosomal small subunit RNAs.

With the models, the sequences, and the trees in hand, another problem appeared: how
to measure distance among trees? We decided to use the split distance to compare the trees,
since this definition of distance is directly related to the number of groups (clusters) that the
reconstructed tree has in common with the reference cluster. It is unfair to compare partially
resolved trees by split distance, because every cluster in a fully resolved phylogenetic tree that
is not in the reference is counted at least twice, because one has at least to take a split out of the
reconstructed tree and to put the right one in place. This can be seen in Figure 4. In this figure,
if we consider that tree number 2 is the reference tree, then both tree 1 and the tree in the
middle of the figure make the same mistakes: they were not able to group the clusters {B, C, D}
and {F, G} properly; but the tree in the middle has distance 2, while tree 1 has distance 4. It

Table 2. Average split distance between the trees in the collection composed by the reconstructed trees and the most
probable tree.

CONS, which is our most probable tree, consistently gives the minimum values (in italic).

Code K2P K2Pm COV COVm REAL

CONS 43.44 77.78 52.67 69.11 60.71
FMEJ 52.78 89.56 64.33 80.11 68.59
FMEK 49.33 90.00 66.33 82.00 72.47
MMEJ 53.89 90.67 59.00 79.89 70.00
MMEK 57.56 90.00 66.11 78.33 70.47
MMET 57.11 92.67 60.11 78.11 74.59
M M P 61.33 115.89 86.00 101.33 90.59
MNJJ 52.33 90.44 59.00 76.33 71.29
MNJK 47.33 89.89 66.56 76.11 69.76
MNJT 52.00 93.11 57.56 77.11 71.41
PCO 147.78 124.78 173.89 117.11 125.29
PML 60.33 112.56 87.22 97.56 -
PMP 60.78 105.11 83.33 98.78 83.76
PNJJ 47.33 82.89 59.33 75.22 75.18
PNJK 47.33 82.33 58.89 78.67 76.82
PUPJ 103.44 129.44 119.56 116.22 76.59
PUPK 105.33 128.56 119.56 116.22 76.71
WNWJ 50.33 88.45 61.33 82.33 74.24
WNWK 51.56 86.78 59.00 83.44 75.53
MINIMUM 43.44 77.78 52.67 69.11 60.71
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could get worse. Note that the tree that has only seven leaves and one internal node has also
distance 4 to tree 2, despite the fact that such a tree represents no information at all.

To overcome this obstacle, we presented a consensus method called most probable
tree, which is able to produce fully resolved consensi for a collection of fully resolved phyloge-
netic trees. This consensus method is based on an optimization criterion. In spite of this, we
presented a fast (polynomial) algorithm able to find all most probable trees for a given collection
of fully resolved phylogenetic trees.

The new consensus method was created with the aim of approximating the trees in a
collection to the true tree. This characteristic of the most probable tree was checked by two
simple tests repeated over five very different data sets. The behavior of the consensus tree was
the same in all the data sets: the consensus tree was centralized with respect to the collection
used to build it and it was, in most cases, one of the trees closest to the reference.

The use of default parameters when constructing the trees used in the tests may appear
to be a weak point of the tests, since better chosen parameters for the reconstruction methods
could have given rise to better trees. Actually, the lack of quality of the rebuilt trees is in fact the
strongest point of the tests. Since the position of the consensus tree in the space of phylogenetic

Table 3. Distances to the reference tree.

The three last rows indicate the percentage of distances that are larger than the distance from consensus to the reference
tree (>), the percentage of distances that are equal (=) and the percentage of distances that are smaller (<) than the distance
from the consensus to the reference tree (in italic).

Code K2P K2Pm COV COVm REAL

CONS 48 118 88 108 88
FMEJ 58 116 86 110 88
FMEK 56 116 88 108 90
MMEJ 46 116 90 114 110
MMEK 58 116 94 114 110
MMET 54 114 92 114 106
M M P 44 114 88 88 106
MNJJ 52 122 90 114 106
MNJK 56 122 100 116 104
MNJT 52 120 92 114 106
PCO 148 124 174 128 130
PML 38 106 68 98 -
PMP 42 112 86 100 94
PNJJ 54 118 92 116 94
PNJK 56 116 96 118 90
PUPJ 112 136 124 118 98
PUPK 114 136 124 118 96
WNWJ 50 116 92 100 96
WNWK 42 114 84 102 92

> (%) 72.22 33.33 66.67 66.67 94.12
= (%) 0.00 5.56 11.11 5.55 5.88
< (%) 27.78 61.11 22.22 27.78 0.00
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trees depends on the position of the trees in the collection used to create it, better trees can only
improve the quality of the consensus. What the results show is that the most probable tree is
centralized with respect to the input trees. If those are distributed around the reference tree, the
consensus will be closer to the reference, regardless of the quality of the trees used to build it.

Of course, five data sets may not be enough to prove that consensus techniques are the
best phylogenetic reconstructors. We must keep in mind that consensus methods are not recon-
struction methods at all, since they are not able to rebuild a tree from raw data. But phylogenetic
consensus methods can be used to improve the quality of a collection of trees built with the
same set of species.
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