

A framework radiation hybrid map of buffalo chromosome 1 ordering scaffolds from buffalo genome sequence assembly

N.B. Stafuzza¹, B.C.M. Naressi¹, E. Yang², J.J. Cai² and M.E.J. Amaral-Trusty¹

¹Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, São José do Rio Preto, SP, Brasil ²Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA

Corresponding author: M.E.J. Amaral-Trusty E-mail: eamaral@ibilce.unesp.br

Genet. Mol. Res. 14 (4): 13096-13104 (2015) Received April 20, 2015 Accepted August 12, 2015 Published October 26, 2015 DOI http://dx.doi.org/10.4238/2015.October.26.5

ABSTRACT. River buffalo chromosome 1 (BBU1) is a sub-metacentric chromosome homologous to bovine chromosomes 1 and 27. In this study, we constructed a new framework radiation hybrid (RH) map from BBU1 using BBURH₅₀₀₀ panel adding nine new genes (*ADRB3, ATP2C1, COPB2, CRYGS, P2RY1, SLC5A3, SLC20A2, SST,* and *ZDHHC2*) and one microsatellite (CSSM043) to the set of markers previously mapped on BBU1. The new framework RH map of BBU1 contained 141 markers (55 genes, 2 ESTs, 10 microsatellites, and 74 SNPs) distributed within one linkage group spanning 2832.62 centirays. Comparison of the RH map

Genetics and Molecular Research 14 (4): 13096-13104 (2015) ©FUNPEC-RP www.funpecrp.com.br

RH map of BBU1

to sequences from bovine chromosomes 1 and 27 revealed an inversion close to the telomeric region. In addition, we ordered a set of 34 scaffolds from the buffalo genome assembly UMD_CASPUR_WB_2.0. The RH map could provide a valuable tool to order scaffolds from the buffalo genome sequence, contributing to its annotation.

Key words: *Bubalus bubalis*; Chromosome 1; Comparative map; Radiation hybrid mapping

INTRODUCTION

Buffalo (*Bubalus bubalis*) plays an important role in world economy, providing highquality milk and meat, mainly in countries with less financial resources for livestock research. Its genome is organized in five pairs of bi-armed chromosomes, 19 pairs of acrocentric chromosomes, and a pair of X and Y sex chromosomes. The largest chromosome in the river buffalo karyotype, BBU1, is a sub-metacentric chromosome with reported homology between BBU1q and bovine chromosome 1 and between BBU1p and bovine chromosome 27 (Iannuzzi et al., 2003; Miziara et al., 2007).

Genome analysis of *B. bubalis* has advanced significantly in the last few years with the availability of genomic tools such as a radiation hybrid (RH) panel for whole genome mapping (Amaral et al., 2008; Stafuzza et al., 2009) and a genomic BAC library (Stafuzza et al., 2012) especially useful for region-specific re-sequencing and characterization of target genes (Stafuzza et al., 2014a,b,c).

In 2014, a buffalo whole genome sequence generated by next-generation sequencing platforms was publicly released in the NCBI database (http://www.ncbi.nlm.nih.gov/assembly/67671). Nevertheless, mapping of the buffalo genome remains important for identification of genes associated with complex economic traits and for evaluating chromosomal evolution among species of the Bovidae family. Considering that buffalo and cattle exhibit an evolutionary divergence estimated at 20 million years (Parma et al., 2004), investigations on chromosomal rearrangements and comparison of position and order of homologous genes are valuable to enhance our understanding of both the genomes.

In the present study, we constructed a new framework RH map from BBU1 using BBURH₅₀₀₀ panel (Amaral et al., 2007), mapping ten new markers including nine coding genes and one microsatellite. The RH map was compared to the sequence from bovine chromosomes 1 and 27 and used to order scaffolds from the buffalo genome assembly UMD_CASPUR_WB_2.0 available in the NCBI database.

MATERIAL AND METHODS

Nine new genes (*ADRB3*, *ATP2C1*, *COPB2*, *CRYGS*, *P2RY1*, *SLC5A3*, *SLC20A2*, *SST*, and *ZDHHC2*) and one microsatellite (CSSM043) derived from bovine chromosomes 1 and 27

Genetics and Molecular Research 14 (4): 13096-13104 (2015)

were typed by polymerase chain reaction (PCR) on the buffalo RH panel (Amaral et al., 2007). The reference for each marker is listed in Table 1.

PCR was performed in a *Veriti*[®] *Thermal Cycler* (Life Technologies[™], Carlsbad, CA,USA) with thermal gradient software. Bovine DNA samples were included as controls in each amplification experiment since the PCR primers were cattle-derived. The markers were scored after amplification of DNA from 90 RH cell lines and buffalo and hamster control DNA. The PCR mixtures included: 10 mM Tris-HCI, 1.5 mM MgCl₂, 50 mM KCI, 10 mM dNTPs, 0.2 mM each primer, 0.5 unit AmpliTaq Gold[®] DNA polymerase (Life Technologies[™]), and 50 ng DNA in a 10 µL reaction volume. The PCR conditions were as follows: initial denaturation at 94°C for 10 min, followed by 35 cycles at 94°C for 30 s (denaturation), 50-65°C for 30 s (annealing depending on the individual marker as described in Table 1), extension at 72°C for 30 s, and a final extension at 72°C for 7 min. The PCR products were electrophoresed on 2% agarose gels in 1X TBE buffer containing ethidium bromide and photographed under UV light. PCR products were scored as 0 for absent, 1 for present, and 2 for ambiguous amplification. All primer sets were typed twice with the RH panel DNA and scored independently to increase the accuracy of the results. Primer pairs that showed ambiguous results were typed a third time.

The RH map was constructed using the software rh_tsp_map (Schäffer et al., 2007) and CONCORDE (Applegate et al., 1998) linked to Qsopt (http://www.tsp.gatech.edu/concorde.html), adding the 10 new markers to the set of markers previously mapped on BBU1 (Amaral et al., 2008). We used the maximum likelihood estimation (MLE) criterion for creating framework MLE-consensus map (Agarwala et al., 2000). Considering the number of markers, the linkage group was made using a pairwise LOD score (logarithm of the odds) threshold of 8.0. The maps were drawn using the MapChart version 2.1 software (Voorrips, 2002).

The BBU1 RH map was compared to the sequence from bovine chromosomes 1 and 27 and used to order scaffolds from the buffalo genome assembly (UMD_CASPUR_WB_2.0).

RESULTS

The framework RH map of BBU1 constructed in this study contained 141 markers (55 genes, 2 ESTs, 10 microsatellites, and 74 SNPs) distributed within one linkage group spanning 2832.62 centirays (cR; Figure 1). The retention frequency of the mapped markers ranged from 20.0% for *MX1* and *SEC62* to 51.1% for *IFNGR2* gene. Additional information about all the mapped markers, including their retention frequency and cR position on the map, is compiled in Table 1.

To compare the BBU1 RH map to sequences from bovine chromosomes 1 and 27 (Btau_4.6.1), we constructed a map in mega bases (Mb) using the corresponding positions of the markers available in the NCBI database (Table 2).

A total of 34 scaffolds from the buffalo genome assembly (UMD_CASPUR_WB_2.0) were ordered on BBU1 following the order of the markers on the RH map (Table 3).

Genetics and Molecular Research 14 (4): 13096-13104 (2015)

RH map of BBU1

Figure 1. Comparison of BBU1 framework RH map (left) with the cattle chromosomes 1 and 27 from genome build Btau_4.6.1 (right). Positions in the RH map are in cR5000, while positions in the BTA maps are in megabases (Mb). For better illustration, the BBU RH map shows one marker per 50cR. Markers common on both BBU RH and cattle sequence maps are joined by a solid black line.

Table 1. New cattle-derived markers mapped on BBU1 with the BBURH5000 panel, along with their retention frequencies (RF %), PCR primer references and PCR annealing temperatures (Tm).

Marker		PCR primers reference	RF (%)	Tm (°C)
Symbol	Name			
ADRB3	Adrenergic, beta-3, receptor	Everts-van der Wind et al., 2004	34.4	54
ATP2C1	ATPase, Ca++ transporting, type 2C, member 1	Ma et al., 1998	23.3	56
CSSM043	Microsatellite	Barendse et al., 1994	32.2	58
COPB2	Coatomer protein complex, subunit beta 2	Everts-van der Wind et al., 2004	41.1	56
CRYGS	Crystallin, gamma S	¹ F: AGTATCCTGAGTACCAGCACTG	25.5	65
		R: TGACTGAAGTCTCAGCAGCCAA		
P2RY1	Purinergic receptor P2Y, G-protein coupled, 1	1F: CTTGTGAAGATGCAGGAATCCC	24.4	58
		R: CACGAGGTGTAGGCATTTCCAC		
SLC5A3	Solute carrier family 5, member 3	Jann et al., 2006	43.3	50
SLC20A2	Solute carrier family 20, member 2	Everts-van der Wind et al., 2004	30.0	58
SST	Somatostatin	Stafuzza et al., 2014a	24.4	60
ZDHHC2	Zinc finger, DHHC-type containing 2	Everts-van der Wind et al., 2004	37.7	60

¹Designed using Primer3plus (Untergasser et al., 2007), based on the gene sequence from *Bos taurus* UMD_3.1 reference assembly (GenBank accession No AC_000158.1).

Genetics and Molecular Research 14 (4): 13096-13104 (2015)

 Table 2. Framework markers mapped on BBU1 and their respective position on BBU1 (cR5000) and on bovine sequence from chromosomes 1 and 27 (Btau_4.6.1).

Marker	Position on BBU1 (cR5000)	Position on Bos taurus genome (bp)
BBU1p		BTA27
rs29012090	0.00	43633072
rs29025654	7.96	43629497
rs29020649	31.33	41093242
SH2D4A	42.52	40495081
THAP1	53.53	39760978
SLC20A2	64.54	39466243
rs29013339	79.14	39532022
ADAM2	97.38	36663247
ADRB3	140.00	35215574
CSSM036	153.51	35129771
BRF2	167.14	35109839
rs29012498	184.44	32961800
rs29012293	203.18	33393165
rs29024459	229.71	32281344
NRG1	241.32	29416336
DCTN6	255.61	28223036
CSSM043	266.70	29861771
WRN	283.26	29024009
KIAA1456	309.04	25830826
rs29016185	325.99	24178540
ZDHHC2	342.32	21578329
CNOT7	355.23	21558961
MTNR1A	374 29	17584825
rs29013544	385.30	17250896
TI R3	399.63	17342873
SI C25A4	416 35	16657012
BM1856	432.15	17420230
0073	450.96	14505500
CDKN2AIP	475.07	15423000
re20010442	404.33	15461470
re20012623	512.83	12210114
DEED1	512.05	7415644
BMS1001	539.80	11835506
	611.02	FE6266
CLN8	620.61	1111549
	020.01	DTA1
	660.05	DIAI 40417
SLOSAS	602.29	40417
	714.60	1208004
AVV207 109	714.00	1299041
	724.07	11/00/3
NR1AP0	755.03	3020907
TCL A 40	772.49	3040000
IGLA49	762.14	320/030
SOD1	808.70	29027 19
1829012042	650.24	30/3/23
1529010139	00.100	3469251
r\$29012844	870.64	3073460
rs29025993	891.77	5297323
r\$43708450	904.92	6306960
1529013300	915.37	8023064
rs29013440	925.90	7923870
AJ490103-UZ1.3P0-429	939.15	Unknown
1529009037	908.29	11228029
rs29013338	1016.33	14723290
rs29013314	1039.31	16827182
rs29019581	1050.92	16917608
IMPRSS15	1068.22	18220248
RM095	1086.93	19538641
HSPA13	1102.32	22524113

Continued on next page

Genetics and Molecular Research 14 (4): 13096-13104 (2015)

©FUNPEC-RP www.funpecrp.com.br

RH map of BBU1

Table 2. Continued.		
Marker	Position on BBU1 (cR5000)	Position on Bos taurus genome (bp)
rs29026806	1124.27	22002538
rs29011682	1147.65	24884732
rs43709788	1161.97	24238388
rs29013247	1178.97	26816631
rs29012747	1201.58	35117150
POUTF1	1209.49	35723143
PPOS1	1220.00	34312971
ST3GAL6	1257 68	43994350
rs29013985	1266 17	44609625
FILIP1L	1274.25	45119183
rs29013984	1291.25	44609344
rs29010923	1319.30	47123631
rs29012653	1327.80	48804954
rs29012654	1341.75	48805054
rs29017614	1400.14	52511890
ALCAM	1430.18	50417917
BBX	1444.02	52670743
LUC151584	1454.86	52966936
rs29013000	1403.30	50000206
re43709748	1402.24	50700/61
rs29012531	1504.34	59725040
BMS527	1516.78	62536761
BM1312	1534.75	61174083
BMS4030	1552.05	65413568
rs29013617	1572.74	68201840
CASR	1581.83	67574173
rs43705567	1607.14	68447239
PDIR	1648.84	68394647
KALRN	1670.37	69451283
rs43710098	16/8./1	71574739
AFOD re/3700701	1700 58	75019925
rs43708475	1709.38	78106961
rs29009958	1735 39	78856792
SST	1762.02	81184020
CRYGS	1770.67	82232306
rs29015647	1779.40	82593594
rs29022387	1792.18	88075394
rs43705570	1802.41	85828502
rs29009859	1835.02	89329402
rs43706833	1851.31	89898926
rs29010311	1860.75	92071361
rc20025711	1888.63	93761792
SEC62	1908.87	99158891
rs29025486	1925.21	99613024
rs29020368	1933.71	101031521
rs29022894	1975.25	100428314
rs29015261	2040.34	91411837
rs29022893	2099.84	100428167
rs29012901	2131.51	109599237
rs43702504	2143.87	115024260
P2RY1	2156.23	116995048
IS427 I25 I0 ro20012024	2172.12	121129104
II 120	2100.02	108584853
rs29021684	2279 49	146683590
C1H8orf42	2303.82	149961374
BMS2263	2327.50	156871277
rs29010039	2336.93	157546306
AF440368-538	2381.62	Unknown
CBR1	2407.46	151929713
HLCS	2422.99	152889925
CRYAA	2440.96	146540499
MX1	2456.15	144732426
ATP201	2405.51	141332311
re20024361	2470.UD 2400.13	137303003
rs29026838	2513.20	144906700

Continued on next page

Genetics and Molecular Research 14 (4): 13096-13104 (2015)

©FUNPEC-RP www.funpecrp.com.br

13101

Table 2. Continued.

Marker	Position on BBU1 (cR5000)	Position on Bos taurus genome (bp)
rs29026456	2536.27	142785760
rs29024604	2558.27	139456223
NCK1	2573.81	134262058
BP230018B20G10	2590.57	132497697
FOXL2	2600.04	132085550
rs29022779	2609.32	130916681
RNF7	2621.86	129473169
rs29027942	2630.88	128394472
U2SURP	2655.21	128037601
CD96	2750.20	56951704
rs43708463	2791.31	57086245
COPB2	2832.62	131999543

Marker	Position on BBU1 (cR ₅₀₀₀)	Buffalo scaffold UMD_CASPUR_WB_2.0
SH2D4A	42.52	NW_005784720.1
THAP1	53.53	NW_005785655.1
SLC20A2	64.54	NW_005785655.1
DRB3	140.00	NW_005784334.1
3RF2	167.14	NW_005784334.1
IRG1	241.32	NW_005785682.1
OCTN6	255.61	NW_005784975.1
VRN	283.26	NW_005785682.1
(IAA1456	309.04	NW_005785635.1
DHHC2	342.32	NW_005785878.1
NOT7	355.23	NW_005785878.1
/TNR1A	374.29	NW 005785680.1
LR3	399.63	NW 005784957.1
SLC25A4	416.35	NW_005785619.1
DKN2AIP	475.07	NW 005785619.1
DLGAP2	611.03	NW 005784735.1
SLC5A3	669.05	NW 005784098.1
FNAR1	693.38	NW_005784098.1
FNGR2	724.07	NW_005784098.1
RTAP8	755.03	NW_005784558.1
SOD1	808.70	NW_005784534.1
MPRSS15	1068.22	NW_005784906.1
ISPA13	1102.32	NW_005785817.1
POU1F1	1209.49	NW 005785338.1
ST3GAL6	1257.68	NW_005784065.1
ILIP1L	1274.25	NW_005784065.1
LCAM	1430.18	NW_005784632.1
BBX	1444.02	NW 005784504.1
CASR	1581.83	NW 005785537.1
PDIR	1648.84	NW_005785826.1
ALRN	1670.37	NW 005785826.1
POD	1690.32	NW 005784025 1
ST	1762.02	NW_005785332.1
RYGS	1770.67	NW 005784864.1
EC62	1908 87	NW 005784729 1
12A	2220 19	NW_005785508.1
II CS	2422 99	NW_005783537_1
RYAA	2440.96	NW_005785117_1
1X1	2456.15	NW 005785734 1
TP2C1	2465 51	NW 005784738 1
ICK1	2573.81	NW 005785398 1
	2600.04	NW 005785379 1
NF7	2600.04	NW 005785806 1
ISURP	2655 21	NW 005785806 1
2001	2000.21	NW 005785563 1
	2100.20	1111 _0007 00000.1

Genetics and Molecular Research 14 (4): 13096-13104 (2015)

©FUNPEC-RP www.funpecrp.com.br

13102

RH map of BBU1

DISCUSSION

In the present study, we obtained a framework RH map of buffalo chromosome 1 based on cattle-derived markers. The BBU1 framework map presented, herein, provided a comparison of the gene order from buffalo chromosome 1 and bovine chromosomes 1 and 27. The alignment of this RH map to the current bovine genome sequence assembly (Btau_4.6.1) indicated regions of possible rearrangements between the chromosomes of both the species. A set of linked markers on the telomeric region of BBU1q showed a rearrangement when compared to the sequence from bovine chromosome 1, revealing an inversion in the region flanked by the markers rs29021684 and COPB2 (Figure 1). In the previous RH maps constructed for this buffalo chromosome (Miziara et al., 2007; Amaral et al., 2008), an inversion in the same region was also observed when compared to the bovine chromosome 1.

The RH map constructed in this study could provide a valuable tool to order scaffolds from the buffalo genome sequence, thereby contributing to the annotation of the buffalo genome, an important agricultural species whose genetic improvement has lagged behind other species because of limited genomic characterization previously.

Conflicts of interest

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

Research funded by grants from FAPESP (São Paulo Research Foundation - Brazil; grant #2011/11889-3) to MEJA and a post-doctoral fellowship to NBS (fellowship #2011/02478-0).

REFERENCES

- Agarwala R, Applegate DL, Maglott D, Schuler GD, et al. (2000). A fast and scalable radiation hybrid map construction and integration strategy. *Genome Res.* 10: 350-364.
- Amaral ME, Owens KE, Elliott JS, Fickey C, et al. (2007). Construction of a river buffalo (*Bubalus bubalis*) whole-genome radiation hybrid panel and preliminary RH mapping of chromosomes 3 and 10. *Anim. Genet.* 38: 311-314.
- Amaral ME, Grant JR, Riggs PK, Stafuzza NB, et al. (2008). A first generation whole genome RH map of the river buffalo with comparison to domestic cattle. *BMC Genomics* 9: 631.
- Applegate D, Bixby R, Chvátal V and Cook W (1998). On the solution of traveling salesman problems. Doc. Math., extra volume ICM III 645-656.
- Barendse W, Armitage SM, Kossarek LM, Shalom A, et al. (1994). A genetic linkage map of the bovine genome. *Nat. Genet.* 6: 227-235.
- Everts-van der Wind A, Kata SR, Band MR, Rebeiz M, et al. (2004). A 1463 gene cattle-human comparative map with anchor points defined by human genome sequence coordinates. *Genome Res.* 14: 1424-1437.
- lannuzzi L, Di Meo GP, Perucatti A, Schibler L, et al. (2003). The river buffalo (*Bubalus bubalis*, 2n = 50) cytogenetic map: assignment of 64 loci by fluorescence *in situ* hybridization and R-banding. *Cytogenet. Genome Res.* 102: 65-75.
- Jann OC, Aerts J, Jones M, Hastings N, et al. (2006). A second generation radiation hybrid map to aid the assembly of the bovine genome sequence. *BMC Genomics* 7: 283.
- Ma RZ, van Eijk MJ, Beever JE, Guérin G, et al. (1998). Comparative analysis of 82 expressed sequence tags from a cattle ovary cDNA library. *Mamm. Genome* 9: 545-549.
- Miziara MN, Goldammer T, Stafuzza NB, Ianella P, et al. (2007). A radiation hybrid map of river buffalo (*Bubalus bubalis*) chromosome 1 (BBU1). *Cytogenet. Genome Res.* 119: 100-104.
- Parma P, Erra-Pujada M, Feligini M, Greppi G, et al. (2004). Water buffalo (*Bubalus bubalis*): complete nucleotide mitochondrial genome sequence. *DNA Seq.* 15: 369-373.

©FUNPEC-RP www.funpecrp.com.br

- Schäffer AA, Rice ES, Cook W and Agarwala R (2007). rh_tsp_map 3.0: End-to-end radiation hybrid mapping with improved speed and quality control. *Bioinformatics* 23: 1156-1158.
- Stafuzza NB, Abbassi H, Grant JR, Rodrigues-Filho EA, et al. (2009). Comparative RH maps of the river buffalo and bovine Y chromosomes. *Cytogenet. Genome Res.* 126: 132-138.
- Stafuzza NB, Abbey CA, Gill CA, Womack JE, et al. (2012). Construction and preliminary characterization of a river buffalo bacterial artificial chromosome library. *Genet. Mol. Res.* 11: 3013-3019.
- Stafuzza NB, Borges MM and Amaral-Trusty MEJ (2014a). Comparative analysis of the river buffalo somatostatin gene. *Genet. Mol. Res.* 13: 10017-10024.
- Stafuzza NB, Borges MM and Amaral-Trusty ME (2014b). Sequence characterization and comparative analysis of the gastrotropin gene in buffalo (*Bubalus bubalis*). *Genet. Mol. Res.* 13: 10934-10942.
- Stafuzza NB, Borges MM and Amaral-Trusty MEJ (2014c). Genetic analysis of superoxide dismutase 1 gene in murrah river buffalo. J. Anim. Plant Sci. 24: 1869-1875.
- Untergasser A, Nijveen H, Rao X, Bisseling T, et al. (2007). Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35: W71-W74.
- Voorrips RE (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93: 77-78.