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ABSTRACT. With the rapid development of sequencing technologies, 
an increasing number of sequences are available for evolutionary 
tree reconstruction. Although neighbor joining is regarded as the 
most popular and fastest evolutionary tree reconstruction method [its 
time complexity is O(n3), where n is the number of sequences], it is 
not sufficiently fast to infer evolutionary trees containing more than 
a few hundred sequences. To increase the speed of neighbor joining, 
we herein propose FastNJ, a fast implementation of neighbor joining, 
which was motivated by RNJ and FastJoin, two improved versions of 
conventional neighbor joining. The main difference between FastNJ 
and conventional neighbor joining is that, in the former, many pairs of 
nodes selected by the rule used in RNJ are joined in each iteration. In 
theory, the time complexity of FastNJ can reach O(n2) in the best cases. 
Experimental results show that FastNJ yields a significant increase 
in speed compared to RNJ and conventional neighbor joining with a 
minimal loss of accuracy.
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INTRODUCTION

Evolutionary tree reconstruction is a basic and important research field in bioinfor-
matics. A rich variety of evolutionary tree reconstruction methods has been developed. These 
methods can be divided into three categories: distance-based, maximum parsimony, and maxi-
mum likelihood. With the time complexity of O(n3) (where n is the number of sequences), 
the neighbor joining distance-based method (Saitou and Nei, 1987) is often regarded as the 
fastest evolutionary tree reconstruction method. Moreover, owing to the topological accuracy 
demonstrated in many studies (Mihaescu et al., 2009), neighbor joining has been widely used 
by molecular biologists.

With the rapid development of sequencing technologies, an increasing number of se-
quences are available for evolutionary tree reconstruction. For example, there are currently 
14,831 families in the Pfam database (Finn et al., 2006), where the number of sequences in 
approximately 52% of families is more than 1000, while the number of sequences in approxi-
mately 7% of families is more than 5000. However, neighbor joining is not sufficiently fast 
to infer evolutionary trees containing more than a few hundred sequences. The main idea of 
neighbor joining is to iteratively join the pair of nodes with mini, jQ(i, j); the most time-inten-
sive aspect of each iteration is searching for the pair of nodes to join. Since 2000, a method 
of increasing the speed of neighbor joining has become a research focus. Many methods have 
been proposed to improve neighbor joining by reducing the time spent on finding nodes to join 
or by reducing iteration times.

Mailund et al. (2006), for example, published a fast neighbor joining approach called 
QuickJoin to speed up the search for mini, jQ(i, j) by a quad-tree. The quad-tree is built according 
to an approximated matrix of Q, and the nodes of the quad-tree store the information about the 
lower bounds on parts of the Q matrix. Then, the process of searching in Q for mini, jQ(i, j) is 
transformed into a process of searching in the quad-tree. During this search, QuickJoin does 
not spend time in exploring those sub-trees whose lower bounds are higher than the current 
minimal of Q. This avoids the scanning of all Q(i, j) and it gains considerable time savings. 
QuickJoin can construct the same evolutionary trees as canonical neighbor joining. It can 
reduce the practical running time of neighbor joining to Θ(n2); nevertheless, in the worst case, 
the running time remains O(n3). Because an additional quad-tree is stored, QuickJoin is space-
consuming. This makes it infeasible to use QuickJoin for reconstructing evolutionary trees that 
contain more than 8,000 sequences.

Instead of joining pairs of nodes with mini, jQ(i, j) for all i and j, as in conventional 
neighbor joining, relaxed neighbor joining (RNJ) (Evans et al., 2006) joins nodes i and j that 
meet Q(i, j) ≤ Q(i, k) ∧Q(i, j) ≤ Q(k, j) for 0 ≤ k < r and k ≠ i, k ≠ j. Once such a pair of nodes 
is found, the procedure of searching for the best pair stops at this point, which avoids the 
searching of all Q(i, j). The worst case running time for RNJ is O(n3). However, an efficient 
implementation of RNJ called Clearcut (Sheneman et al., 2006) shows that RNJ is signifi-
cantly faster in practice than both QuickJoin and conventional neighbor joining. There is no 
guarantee that RNJ will join pairs with the minimal value in Q; therefore, the trees produced 
by RNJ can significantly differ from those produced by neighbor joining. However, experi-
ments have shown that RNJ can reconstruct evolutionary trees with accuracy comparable to 
that of conventional neighbor joining for additive matrices.

Fast neighbor joining (FNJ) (Elias and Lagergren, 2009) is another approach that 
improves neighbor joining by modifying the selection criterion. The basic idea in FNJ is to 
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maintain a set, L, which contains O(n) pairs that are all likely candidates for minimal Q(i, j), 
and then to search for minimal Q(i, j) only from the pairs in L. Because the size of L is always 
O(n), it takes O(n) time to search for the minimal Q(i, j) in each iteration. After each join, not 
all entries in L are updated; rather, only the ones relative to i or j are updated. That is, all cluster 
pairs where i or j is an element are removed from L. Next, all Q values for the joined cluster 
(a = i ∪ j) are computed and the pair {a,k} = mink Q(a, k) is inserted in L. By using an update 
formula to compute Q(a, k), this update of L involves time O(n); therefore, the resulting worst 
case running time for FNJ is O(n2). However, after the first iteration, L is no longer guaranteed 
to contain the cluster pair that corresponds to mini, jQ(i, j); consequently, FNJ cannot be ex-
pected to correctly construct the trees. Elias and Lagergren (2009) focused more attention on 
FNJ accuracy; therefore, we cannot comment on the speedup in actual application.

RapidNJ (Simonsen et al., 2008) reduces the running time of neighbor joining by using 
two auxiliary matrixes, S and I, to find the closest pairs before viewing all entries in Q. S con-
tains the distances in D, but with each row sorted in increasing order, I maps the ordering in S 
back to positions in D. In each iteration, the maximum, Rmax = maxiRi, is first determined, where 
the time spent on calculating all of Ri is O(r2), and that used to find Rmax is O(r). Moreover, Qmin 
is initiated as infinity. Then, RapidNJ scans the entries in Q row by row. If Q(i, I(i,j) ) < Qmin, 
then Qmin = Q(i, I(i, j)), and the best pair is {i, j}. However, RapidNJ stops searching row I when 
Sij - Ri - Rmax > Qmin becomes true. Thus, the time used to scan all entries in row I after column j 
is thereby saved. While the worst-case running time of RapidNJ remains O(n3), experiments on 
datasets smaller than 10,000 taxa showed that RapidNJ outperforms QuickJoin and Clearcut. 
Moreover, RapidNJ can correctly construct the trees. However, the memory consumption of 
RapidNJ is increased on account of the two additional matrices, S and I. Consequently, research 
efforts have been devoted to reducing the memory consumption of RapidNJ, such as ErapidNJ 
(Simonsen et al., 2011) and NINJA (Wheeler, 2009).

FastJoin (Wang et al., 2012) shows that, in an additive matrix, besides i0 and j0, with 
the minimal Q value for all i and j being true neighbors, i′ and j′ with the smallest Q value 
for all i(i ≠ i0) and j(j ≠ j0) are also true neighbors. Therefore, based on the upper bound com-
putation optimization of RapidNJ, and the external storage of ErapidNJ methods, FastJoin 
improves neighbor joining by selecting two pairs of nodes and merging them as two new 
nodes in each iteration. Thus, the number of iterations in FastJoin is reduced by half. The 
time complexity of FastJoin remains O(n3); however, experiments show that FastJoin can 
efficiently improve RapidNJ.

Furthermore, with the exponential growth of computing power over the past 10 years, 
along with the ubiquitous availability of different hardware platforms - such as multi-processor 
and multi-core computers, computer clusters, and graphics processing units (GPUs) - many 
parallel algorithms have been proposed to improve neighbor joining. For example, Rucci et 
al. (2013) presented a parallel algorithm for neighbor joining based on the multicore cluster, 
Sahoo et al. (2010) proposed a parallel algorithm based on the Pthread library, and Al-Neama 
et al. (2014) implemented a parallel algorithm on OpenMP. In addition, Du and Feng (2006) 
proposed the pNJTree parallel method for neighbor joining using a message passing interface 
(MPI) running on a workstation cluster, and Liu et al. (2009) developed a parallel neighbor 
joining algorithm based on GPUs.

From the above examples, it is evident that the speeding up of neighbor joining has 
become an important issue in evolutionary tree reconstruction. Motivated by the simplicity 
and efficiency of RNJ and FastJoin, we therefore propose FastNJ, a fast implementation of 
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neighbor joining. The main idea of FastNJ is that all pairs of nodes i and j that meet Q(i, j) 
≤ Q(i, k) ∧ Q(i, j) ≤ Q(k, j) for 0 ≤ k < r and k ≠ i, k ≠ j are joined in each iteration. Thus, the 
total iteration time can be reduced and the total running time can thereby be expected to be 
decreased.

The remainder of this paper is organized as follows. In the ‘Methods’ section, we 
introduce the conventional neighbor joining method. It addition, we detail the process of 
FastNJ, derive the distance update formula, and analyze its time complexity in theory. In the 
‘Results and Discussion’ section, we experimentally evaluate the efficiency of FastNJ. In the 
‘Conclusions’ section, we summarize the paper.

MATERIAL AND METHODS

Conventional neighbor joining

Neighbor joining is a greedy algorithm that attempts to minimize the sum of all branch-
lengths on the constructed tree. Conceptually, it begins with a star-formed tree, whereby each 
leaf node corresponds to a sequence. It iteratively selects two nodes adjacent to the root and 
joins them by inserting a new node between the root and the two selected nodes (Guo et al., 
2008). When joining nodes, the method selects the pair of nodes i and j that are closest under 
the transformed distance measure (Equation 1):

(Equation 1)

where dij is the distance between nodes i and j (which assumes symmetry; that is, dij = dji), Rk 
is the sum over row k of the distance matrix Rk = Σxdkx (where x ranges over all nodes adjacent 
to the root node), and r is the remaining number of nodes adjacent to the root. Once the pair 
i and j is selected to join, a new node, C, which represents the root of the new cluster, is cre-
ated. Then, the length of branches (C, i) and (C, j) is computed according to Equation 2 (Guo 
et al., 2008):

(Equation 2)

Finally, the “distance matrix D is reduced by replacing the distances relative to se-
quence i and sequence j by those between the new node C and any other node k” (Li and Guo, 
2008). Distance dCk is given by Equation 3:

(Equation 3)
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From the above, we can see that, in each iteration, neighbor joining “uses time O(r2) 
to search for mini, jQ(i, j), and it joins i and j, uses time O(r) to update D, and there are n - 3 
iterations (n is the number of sequences in D)” (Guo et al., 2008). Therefore, “the total time 
complexity becomes O(n3), and the space complexity becomes O(n2)” (Guo et al., 2008).

FastNJ

Like conventional neighbor joining, FastNJ is used to iteratively join nodes. How-
ever, the difference between FastNJ and conventional neighbor joining is that, in the latter, 
only one pair of nodes is joined in each iteration, and the total number of iterations is n - 3. In 
FastNJ, on the other hand, multiple pairs of nodes i and j that meet Q(i, j) ≤ Q(i, k) ∧ Q(i, j) ≤ 
Q(k, j) for 0 ≤ k < r and k ≠ i, k ≠ j are joined in each iteration. Accordingly, the iteration time 
in FastNJ is much shorter than that in conventional neighbor joining. In detail, as shown in 
Figure 1, FastNJ includes the following steps in each iteration.

First, for row i in D, it computes Q(i, j) according to (1) for 0 ≤ j ≤ r, stores min i, 0 ≤ j ≤ rQ(i, 
j) in min and stores the indexes of minimums in min_index_vector [i] [1... min_no] (Step 2.1).

Second, it finds all pairs of nodes that meet Q(i, j) ≤ Q(i, k) ∧ Q(i, j) ≤ Q(k, j) for 0 ≤ k 
< r and k ≠ i, k ≠ j and stores them in array nodes_to_join [1...2 * num_node_to_join] (Step 2.4).

Third, it joins the neighbors in nodes_to_join and produces num_node_to_join new 
nodes (Step 2.6).

Finally, it updates D according to the following two cases (Steps 2.7 and 2.8):
1) If i is a new node generated in Step 2.6, the distance between i and the other node, 

j, is updated according to (2).
2) If i and j are both new nodes - supposing that it is feasible that i is produced by 

joining a and b, and that j is produced by joining c and d - then the distance between i and j is 
updated according to Equation 4:

(Equation 4)

The derivation process of Equation 4 is shown as follows. According to Equation 2, 
we can obtain Equation 5:

(Equation 5)

According to Equation 1, we can obtain Equation 6:

(Equation 6)
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According to Equations 5 and 6, we can obtain Equation 7:

(Equation 7)

In a similar way, we can obtain Equation 8:

(Equation 8)

From Equations 7 and 8, we can obtain Equation 9:

(Equation 9)

Then, (4) is

 

achieved.

 

As shown in Figure 1, the time consumption of FastNJ in each iteration is primarily 
reflected in the following five points:

1) It computes Q(i, j) and finds mini, 0 ≤ j ≤ rQ(i, j) for every row i (Step 2.1). For every 
row i, the time used to compute Q(i, j) is O(r), and the time used to find mini, 0 ≤ j ≤ rQ(i, j) is also 
O(r). If there are r rows, then the total time consumption is O(r2).

2) It finds all the pairs of nodes that can be joined (Step 2.4). For node i, there are 
min_noi  nodes j that meet Q(i,j) == mini, 0 ≤ j ≤ rQ(i, j); for every j, there are min_noj  nodes k 
that meet Q(j,k) == mini, 0 ≤ j ≤ rQ(j, k). In addition, node i can only be joined with another node, 
j; therefore, once a node j that meets Q(i, j) ≤ Q(i, k) ∧ Q(i, j) ≤ Q(k, j) is found, other nodes 
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after j in min_index_vector [i] [1... min_no] will not be scanned. Therefore, for i, FastNJ uses 
O(min_noi * min_noj) to find node j to be joined with i at the most. If there are r nodes, then 
the total time consumed in this step is O(r * min_noi * min_noj). For node i, min_noi is gener-
ally very small relative to r; therefore, it can be neglected. The time used in this step is O(r).

Figure 1.Pseudo code of FastNJ. 

 

Algorithm: FastNJ 
Input: Distance matrix D=(Dij)m*n 
Output: Evolutionary tree   
1. r←n;
2. While(r>2) 
2.1 For i=0 to r–1 do

compute Q(i,j) according to (1) for 0≤j≤r;
min←mini, 0≤j≤rQ(i, j);
min_no=1;

 For j=0 to r– 1 do 
if(|Q(i,j) –min|<0. 1*10-9) 
min_index_vector[i][min_no]=j; 
min_no++; 

min_index_vector[i][0]= min_no – 1;
2.2 flag_joined[0~r]←– 1;
2.3    num_node_to_join←0; 
2.4    For ( i=0;i<r;) 

if(flag_joined[i]==– 1) 
 for(j=1;j<=min_index_vector[i][0];j++) 
 if(min_index_vector[i][j]>i) 
 for(k=1;k<=min_index_vector[j][0];k++) 
  if(min_index_vector[min_index_vector[i][j]][k]==i) 
  num_node_to_join++; 
  if (i<min_index_vector[i][j]) 
  nodes_to_join[2*num_node_to_join – 1]=i;  

nodes_to_join[2*num_node_to_join]=min_index_vector[i][j];  
else 

  nodes_to_join[2*num_node_to_join – 1]=min_index_vector[i][j]; 
 nodes_to_join[2*num_node_to_join]=i; 

  flag_joined[i]=1; 
  flag_joined[min_index_vector[i][j]]= 1;   
  goto L;     
 L:i++; 
2.5    nodes_to_join[0]←num_node_to_join; 
2.6    for(j=1;j<=nodes_to_join[0];j+=2) 

a←nodes_to_join[2*j– 1]; 
b←nodes_to_join[2*j]; 
joina and b; 

2.7for(i=0;i<r;i++)//O(rx) 
if(flag_joined[i]== – 1)   

for(j=1;j<=nodes_to_join[0];j++) 
 a←nodes_to_join[2*j– 1]; 
 b←nodes_to_join[2*j]; 
 D[i,a]=0.5*(D[i,a]+D[i,b] –D[a,b]); 
2.8for(j=1;j<nodes_to_join[0];j+=2) 
 a←nodes_to_join[2*j – 1]; 
 b←nodes_to_join[2*j]; 
 for(k=j+1;k<=nodes_to_join[0];k+=2) 
 c←nodes_to_join[2*k– 1]; 
 d←nodes_to_join[2*k]; 
   D[a,c]=0.5*(0.5* D[a,c]+0.5* D[a,d]+0.5* D[b,c]+0.5* D[b,d]–D[a,b] –D[c,d]; 
2.9 for(j=1;j<nodes_to_join[0];j++) 
b←nodes_to_join[2*j]; 

delete row b from D; 
2.10  r←r –num_node_to_join; 
3. Return. 
 

Figure 1. Pseudo-code of FastNJ.
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3) The time used to join the neighbors in nodes_to_join and to produce num_node_to_
join new nodes (Step 2.6) is O(num_node_to_join).

4) It then updates the distances between the new nodes and other nodes (Step 2.7). 
There are num_node_to_join new nodes and r - num_node_to_join old ones; the time used to 
update the distances between them is O[(r - num_node_to_join) * num_node_to_join)].

5) It updates the distances between the new nodes (Step 2.8). The time consumed is 
O(num_node_to_join * num_node_to_join).

From the above five points, we can see that, in each iteration, the time consumed is O(r2 

+ r * num_node_to_join) and that, in the next iteration, r is updated to r - num_node_to_join. 
Therefore, the total time consumed with FastNJ depends on num_node_to_join in each iteration. 
Moreover, num_node_to_join in each iteration ranges from 1 to r / 2. When num_node_to_join 
equals 1, the total time consumed with FastNJ is O(n3), which is the same as in conventional 
neighbor joining. Furthermore, FastNJ is reduced to RNJ; when num_node_to_join equals r / 2, 
then the total time consumed with FastNJ is , and 
the iteration times are  Thus, the time complexity of FastNJ is between O(n2) and O(n3).

RESULTS AND DISCUSSION 

To test the efficiency of FastNJ, we performed two experiments that compared FastNJ 
and Clearcut, which is an implementation of RNJ. All experiments were performed on a per-
sonal IBM PC with a 2.0-GHZ CPU and 1 GB of RAM on a Linux system.

In the first experiment, FastNJ was compared with Clearcut to test the speed of 
FastNJ. In this experiment, the test data were 20 protein sequence alignments in which the 
number of sequences ranged from 2000 to 12,000 randomly selected from Pfam. The number 
of sequences in each dataset is shown in Table 1.

	 Number of sequences	 	 Number of sequences	 	 Number of sequences

Data1	 2,289	 Data8	 5,857	 Data15	   7,290
Data2	 2,819	 Data9	 6,098	 Data16	   8,344
Data3	 3,802	 Data10	 6,213	 Data17	   8,927
Data4	 4,271	 data11	 6,639	 Data18	   9,521
Data5	 5,088	 Data12	 6,649	 Data19	 10,133
Data6	 5,216	 Data13	 6,717	 Data20	 11,288
Data7	 5,385	 Data14	 6,882

Table 1. Number of sequences in each dataset.

We used the PHYLIP Protdist program (Felsenstein, 2014) to estimate the pairwise dis-
tances according to the Jones-Taylor-Thornton matrix model. The running time of Clearcut and 
FastNJ on each dataset is shown in Table 2. In the table, the first and second columns for each data-
set are for the respective running times of Clearcut and FastNJ. The ratio column presents the ratios 
between the differences in Clearcut and FastNJ running times and the running times of Clearcut.

From the data in Table 2, we derive the following three points:
(1) On all 20 datasets, FastNJ was faster than Clearcut.
(2) From data in the ratio column, the speedup ratio of FastNJ relative to Clearcut 

varied on different datasets; it depended not on the number of sequences in the datasets, but 
on the shape of the trees.

(3) The average speedup ratio of FastNJ relative to Clearcut on all 20 datasets was 26.11%.
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In the second experiment, FastNJ was compared to Clearcut to test the accuracy of 
FastNJ on the simulated data. The test data were produced in the same way as in Desper 
and Gascuel (2002), which covers the features of most real data sets by choosing parameter 
values based on random trees. First, 1000 96-sequence model trees were generated using the 
stochastic speciation process described by Kuhner and Felsenstein (1994). These trees were 
then made non-ultrametric by multiplying the edge lengths with 1.0 + μX, where X follows the 
standard exponential distribution and μ is a tuning factor for adjusting the deviation from the 
molecular clock. In this experiment, μ was set to 0.6. Then, we set the mutations per site as 
0.02, 0.04, and 0.10 to rescale 1000 trees in order to obtain slow, moderate, and fast evolution-
ary rates. Subsequently, sequence data were generated according to the Kimura two-parameter 
model with a transition/transversion ratio of 2.0 using the Seq-Gen program (Rambaut and 
Grassly, 1997). The sequence length was set to 500 sites. Finally, the PHYLIP Dnadist pro-
gram was used to compute the pairwise distance matrices by assuming the Kimura model with 
a known transition/transversion ratio.

The accuracy was measured by the Robinson-Foulds (RF) distance (Robinson and 
Foulds, 1979) between the inferred tree and true tree. This distance corresponds to the propor-
tion of internal branches that are found in one tree and not in another. Its value ranges from 
0.0 (both trees are identical) to 1.0 (they do not share a branch in common). Table 3 shows the 
average RF distance of neighbor joining for Clearcut and FastNJ of 1000 datasets with various 
rates of evolution.

	 Slow	 Moderate	 Fast

Neighbor joining	 0.189	 0.120	 0.118
Clearcut	 0.195	 0.120	   0.1318
FastNJ	 0.208	 0.138	   0.1408

Table 3. Average RF distance between Clearcut and FastNJ with various rates of evolution.

	 Clearcut	 FastNJ	 Ratio (%)	 	 Clearcut	 FastNJ	 Ratio (%)

Data1	 0.677	 0.65	   3.99	 Data11	     9.60	     8.41	 12.40
Data2	 1.61	 1.46	   9.32	 Data12	   12.04	     4.78	 60.30
Data3	 2.8	 2.14	 23.57	 Data13	     6.68	     4.78	 28.44
Data4	 4.33	 2.72	 37.18	 Data14	   11.98	 10.9	   9.02
Data5	 4.28	 2.59	 39.49	 Data15	     8.12	     6.39	 21.31
Data6	 5.77	 2.49	 56.85	 Data16	 15.5	 15.3	   1.29
Data7	 5.35	 4.26	 20.37	 Data17	   18.35	   16.74	   8.77
Data8	 6.99	 3.56	 49.06	 Data18	   22.21	   17.19	 22.60
Data9	 6.49	 4.198	 35.32	 Data19	   21.18	 20.1	   5.10
Data10	 9.42	 7.9	 16.14	 Data20	   36.89	   14.12	 61.72

Table 2. Running time of Clearcut and FastNJ on each dataset.

From the data in Table 3, we can derive the following three points:
(1) With slow to fast evolution rates, all average RF distances of neighbor joining 

were greater than 0.0, which means that neighbor joining could not correctly find the true 
trees. This is consistent with the fact that neighbor joining can reconstruct the correct tree only 
when the matrix is nearly additive (Atteson, 1999). However, the datasets in this experiment, 
like most real datasets, were far from being additive.
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(2) With slow to fast evolution rates, the average RF distances of neighbor joining 
decreased, which is consistent with previous experimental results (Li, 2009).

(3) With a moderate rate of evolution, the RF distance of Clearcut was the same as that 
of neighbor joining. With slow and fast rates, the RF distance of Clearcut was greater than that 
of neighbor joining. This means that, although it was reported that Clearcut can reconstruct 
evolutionary trees for additive matrices with accuracy comparable to the canonical neighbor 
joining method, the accuracy of Clearcut decreased in real datasets.

(4) With all three rates of evolution, the RF distance of FastNJ was greater than that of 
Clearcut. Moreover, compared to the RF distance of FastNJ, the average difference between 
the RF distance of FastNJ and that of Clearcut was 8.9%. That is, the accuracy of FastNJ 
decreased by 8.9% compared to that of Clearcut.

From these experimental results, it is evident that FastNJ achieved a significant in-
crease (26.11%) in speed with a minimal (8.9%) decrease in accuracy.

CONCLUSION

To increase the speed of neighbor joining, we proposed FastNJ, a fast implementation 
of neighbor joining motivated by RNJ and FastJoin. The primary difference between FastNJ 
and conventional neighbor joining is that, in FastNJ, the many pairs of nodes selected by the 
rule used in RNJ are joined in each iteration. In theory, the time complexity of FastNJ can 
reach O(n2) in the best cases. Experimental results showed that FastNJ yields a significant 
speedup compared to conventional neighbor joining and RNJ with a minimal loss in accuracy.
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