
©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (3): 8733-8743 (2015)

Methodology

A fast neighbor joining method
J.F. Li

School of Computer Science and Technology,
Civil Aviation University of China, Tianjin, China

Corresponding author: J.F. Li
E-mail: jfli@cauc.edu.cn

Genet. Mol. Res. 14 (3): 8733-8743 (2015)
Received March 2, 2015
Accepted April 6, 2015
Published July 31, 2015
DOI http://dx.doi.org/10.4238/2015.July.31.22

ABSTRACT. With the rapid development of sequencing technologies,
an increasing number of sequences are available for evolutionary
tree reconstruction. Although neighbor joining is regarded as the
most popular and fastest evolutionary tree reconstruction method [its
time complexity is O(n3), where n is the number of sequences], it is
not sufficiently fast to infer evolutionary trees containing more than
a few hundred sequences. To increase the speed of neighbor joining,
we herein propose FastNJ, a fast implementation of neighbor joining,
which was motivated by RNJ and FastJoin, two improved versions of
conventional neighbor joining. The main difference between FastNJ
and conventional neighbor joining is that, in the former, many pairs of
nodes selected by the rule used in RNJ are joined in each iteration. In
theory, the time complexity of FastNJ can reach O(n2) in the best cases.
Experimental results show that FastNJ yields a significant increase
in speed compared to RNJ and conventional neighbor joining with a
minimal loss of accuracy.

Key words: Evolutionary tree reconstruction; Neighbor joining;
FastNJ

8734J.F. Li

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (3): 8733-8743 (2015)

INTRODUCTION

Evolutionary tree reconstruction is a basic and important research field in bioinfor-
matics. A rich variety of evolutionary tree reconstruction methods has been developed. These
methods can be divided into three categories: distance-based, maximum parsimony, and maxi-
mum likelihood. With the time complexity of O(n3) (where n is the number of sequences),
the neighbor joining distance-based method (Saitou and Nei, 1987) is often regarded as the
fastest evolutionary tree reconstruction method. Moreover, owing to the topological accuracy
demonstrated in many studies (Mihaescu et al., 2009), neighbor joining has been widely used
by molecular biologists.

With the rapid development of sequencing technologies, an increasing number of se-
quences are available for evolutionary tree reconstruction. For example, there are currently
14,831 families in the Pfam database (Finn et al., 2006), where the number of sequences in
approximately 52% of families is more than 1000, while the number of sequences in approxi-
mately 7% of families is more than 5000. However, neighbor joining is not sufficiently fast
to infer evolutionary trees containing more than a few hundred sequences. The main idea of
neighbor joining is to iteratively join the pair of nodes with mini, jQ(i, j); the most time-inten-
sive aspect of each iteration is searching for the pair of nodes to join. Since 2000, a method
of increasing the speed of neighbor joining has become a research focus. Many methods have
been proposed to improve neighbor joining by reducing the time spent on finding nodes to join
or by reducing iteration times.

Mailund et al. (2006), for example, published a fast neighbor joining approach called
QuickJoin to speed up the search for mini, jQ(i, j) by a quad-tree. The quad-tree is built according
to an approximated matrix of Q, and the nodes of the quad-tree store the information about the
lower bounds on parts of the Q matrix. Then, the process of searching in Q for mini, jQ(i, j) is
transformed into a process of searching in the quad-tree. During this search, QuickJoin does
not spend time in exploring those sub-trees whose lower bounds are higher than the current
minimal of Q. This avoids the scanning of all Q(i, j) and it gains considerable time savings.
QuickJoin can construct the same evolutionary trees as canonical neighbor joining. It can
reduce the practical running time of neighbor joining to Θ(n2); nevertheless, in the worst case,
the running time remains O(n3). Because an additional quad-tree is stored, QuickJoin is space-
consuming. This makes it infeasible to use QuickJoin for reconstructing evolutionary trees that
contain more than 8,000 sequences.

Instead of joining pairs of nodes with mini, jQ(i, j) for all i and j, as in conventional
neighbor joining, relaxed neighbor joining (RNJ) (Evans et al., 2006) joins nodes i and j that
meet Q(i, j) ≤ Q(i, k) ∧Q(i, j) ≤ Q(k, j) for 0 ≤ k < r and k ≠ i, k ≠ j. Once such a pair of nodes
is found, the procedure of searching for the best pair stops at this point, which avoids the
searching of all Q(i, j). The worst case running time for RNJ is O(n3). However, an efficient
implementation of RNJ called Clearcut (Sheneman et al., 2006) shows that RNJ is signifi-
cantly faster in practice than both QuickJoin and conventional neighbor joining. There is no
guarantee that RNJ will join pairs with the minimal value in Q; therefore, the trees produced
by RNJ can significantly differ from those produced by neighbor joining. However, experi-
ments have shown that RNJ can reconstruct evolutionary trees with accuracy comparable to
that of conventional neighbor joining for additive matrices.

Fast neighbor joining (FNJ) (Elias and Lagergren, 2009) is another approach that
improves neighbor joining by modifying the selection criterion. The basic idea in FNJ is to

8735A fast implementation of neighbor joining

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (3): 8733-8743 (2015)

maintain a set, L, which contains O(n) pairs that are all likely candidates for minimal Q(i, j),
and then to search for minimal Q(i, j) only from the pairs in L. Because the size of L is always
O(n), it takes O(n) time to search for the minimal Q(i, j) in each iteration. After each join, not
all entries in L are updated; rather, only the ones relative to i or j are updated. That is, all cluster
pairs where i or j is an element are removed from L. Next, all Q values for the joined cluster
(a = i ∪ j) are computed and the pair {a,k} = mink Q(a, k) is inserted in L. By using an update
formula to compute Q(a, k), this update of L involves time O(n); therefore, the resulting worst
case running time for FNJ is O(n2). However, after the first iteration, L is no longer guaranteed
to contain the cluster pair that corresponds to mini, jQ(i, j); consequently, FNJ cannot be ex-
pected to correctly construct the trees. Elias and Lagergren (2009) focused more attention on
FNJ accuracy; therefore, we cannot comment on the speedup in actual application.

RapidNJ (Simonsen et al., 2008) reduces the running time of neighbor joining by using
two auxiliary matrixes, S and I, to find the closest pairs before viewing all entries in Q. S con-
tains the distances in D, but with each row sorted in increasing order, I maps the ordering in S
back to positions in D. In each iteration, the maximum, Rmax = maxiRi, is first determined, where
the time spent on calculating all of Ri is O(r2), and that used to find Rmax is O(r). Moreover, Qmin
is initiated as infinity. Then, RapidNJ scans the entries in Q row by row. If Q(i, I(i,j)) < Qmin,
then Qmin = Q(i, I(i, j)), and the best pair is {i, j}. However, RapidNJ stops searching row I when
Sij - Ri - Rmax > Qmin becomes true. Thus, the time used to scan all entries in row I after column j
is thereby saved. While the worst-case running time of RapidNJ remains O(n3), experiments on
datasets smaller than 10,000 taxa showed that RapidNJ outperforms QuickJoin and Clearcut.
Moreover, RapidNJ can correctly construct the trees. However, the memory consumption of
RapidNJ is increased on account of the two additional matrices, S and I. Consequently, research
efforts have been devoted to reducing the memory consumption of RapidNJ, such as ErapidNJ
(Simonsen et al., 2011) and NINJA (Wheeler, 2009).

FastJoin (Wang et al., 2012) shows that, in an additive matrix, besides i0 and j0, with
the minimal Q value for all i and j being true neighbors, i′ and j′ with the smallest Q value
for all i(i ≠ i0) and j(j ≠ j0) are also true neighbors. Therefore, based on the upper bound com-
putation optimization of RapidNJ, and the external storage of ErapidNJ methods, FastJoin
improves neighbor joining by selecting two pairs of nodes and merging them as two new
nodes in each iteration. Thus, the number of iterations in FastJoin is reduced by half. The
time complexity of FastJoin remains O(n3); however, experiments show that FastJoin can
efficiently improve RapidNJ.

Furthermore, with the exponential growth of computing power over the past 10 years,
along with the ubiquitous availability of different hardware platforms - such as multi-processor
and multi-core computers, computer clusters, and graphics processing units (GPUs) - many
parallel algorithms have been proposed to improve neighbor joining. For example, Rucci et
al. (2013) presented a parallel algorithm for neighbor joining based on the multicore cluster,
Sahoo et al. (2010) proposed a parallel algorithm based on the Pthread library, and Al-Neama
et al. (2014) implemented a parallel algorithm on OpenMP. In addition, Du and Feng (2006)
proposed the pNJTree parallel method for neighbor joining using a message passing interface
(MPI) running on a workstation cluster, and Liu et al. (2009) developed a parallel neighbor
joining algorithm based on GPUs.

From the above examples, it is evident that the speeding up of neighbor joining has
become an important issue in evolutionary tree reconstruction. Motivated by the simplicity
and efficiency of RNJ and FastJoin, we therefore propose FastNJ, a fast implementation of

8736J.F. Li

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (3): 8733-8743 (2015)

neighbor joining. The main idea of FastNJ is that all pairs of nodes i and j that meet Q(i, j)
≤ Q(i, k) ∧ Q(i, j) ≤ Q(k, j) for 0 ≤ k < r and k ≠ i, k ≠ j are joined in each iteration. Thus, the
total iteration time can be reduced and the total running time can thereby be expected to be
decreased.

The remainder of this paper is organized as follows. In the ‘Methods’ section, we
introduce the conventional neighbor joining method. It addition, we detail the process of
FastNJ, derive the distance update formula, and analyze its time complexity in theory. In the
‘Results and Discussion’ section, we experimentally evaluate the efficiency of FastNJ. In the
‘Conclusions’ section, we summarize the paper.

MATERIAL AND METHODS

Conventional neighbor joining

Neighbor joining is a greedy algorithm that attempts to minimize the sum of all branch-
lengths on the constructed tree. Conceptually, it begins with a star-formed tree, whereby each
leaf node corresponds to a sequence. It iteratively selects two nodes adjacent to the root and
joins them by inserting a new node between the root and the two selected nodes (Guo et al.,
2008). When joining nodes, the method selects the pair of nodes i and j that are closest under
the transformed distance measure (Equation 1):

(Equation 1)

where dij is the distance between nodes i and j (which assumes symmetry; that is, dij = dji), Rk
is the sum over row k of the distance matrix Rk = Σxdkx (where x ranges over all nodes adjacent
to the root node), and r is the remaining number of nodes adjacent to the root. Once the pair
i and j is selected to join, a new node, C, which represents the root of the new cluster, is cre-
ated. Then, the length of branches (C, i) and (C, j) is computed according to Equation 2 (Guo
et al., 2008):

(Equation 2)

Finally, the “distance matrix D is reduced by replacing the distances relative to se-
quence i and sequence j by those between the new node C and any other node k” (Li and Guo,
2008). Distance dCk is given by Equation 3:

(Equation 3)

8737A fast implementation of neighbor joining

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (3): 8733-8743 (2015)

From the above, we can see that, in each iteration, neighbor joining “uses time O(r2)
to search for mini, jQ(i, j), and it joins i and j, uses time O(r) to update D, and there are n - 3
iterations (n is the number of sequences in D)” (Guo et al., 2008). Therefore, “the total time
complexity becomes O(n3), and the space complexity becomes O(n2)” (Guo et al., 2008).

FastNJ

Like conventional neighbor joining, FastNJ is used to iteratively join nodes. How-
ever, the difference between FastNJ and conventional neighbor joining is that, in the latter,
only one pair of nodes is joined in each iteration, and the total number of iterations is n - 3. In
FastNJ, on the other hand, multiple pairs of nodes i and j that meet Q(i, j) ≤ Q(i, k) ∧ Q(i, j) ≤
Q(k, j) for 0 ≤ k < r and k ≠ i, k ≠ j are joined in each iteration. Accordingly, the iteration time
in FastNJ is much shorter than that in conventional neighbor joining. In detail, as shown in
Figure 1, FastNJ includes the following steps in each iteration.

First, for row i in D, it computes Q(i, j) according to (1) for 0 ≤ j ≤ r, stores min i, 0 ≤ j ≤ rQ(i,
j) in min and stores the indexes of minimums in min_index_vector [i] [1... min_no] (Step 2.1).

Second, it finds all pairs of nodes that meet Q(i, j) ≤ Q(i, k) ∧ Q(i, j) ≤ Q(k, j) for 0 ≤ k
< r and k ≠ i, k ≠ j and stores them in array nodes_to_join [1...2 * num_node_to_join] (Step 2.4).

Third, it joins the neighbors in nodes_to_join and produces num_node_to_join new
nodes (Step 2.6).

Finally, it updates D according to the following two cases (Steps 2.7 and 2.8):
1) If i is a new node generated in Step 2.6, the distance between i and the other node,

j, is updated according to (2).
2) If i and j are both new nodes - supposing that it is feasible that i is produced by

joining a and b, and that j is produced by joining c and d - then the distance between i and j is
updated according to Equation 4:

(Equation 4)

The derivation process of Equation 4 is shown as follows. According to Equation 2,
we can obtain Equation 5:

(Equation 5)

According to Equation 1, we can obtain Equation 6:

(Equation 6)

8738J.F. Li

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (3): 8733-8743 (2015)

According to Equations 5 and 6, we can obtain Equation 7:

(Equation 7)

In a similar way, we can obtain Equation 8:

(Equation 8)

From Equations 7 and 8, we can obtain Equation 9:

(Equation 9)

Then, (4) is

achieved.

As shown in Figure 1, the time consumption of FastNJ in each iteration is primarily
reflected in the following five points:

1) It computes Q(i, j) and finds mini, 0 ≤ j ≤ rQ(i, j) for every row i (Step 2.1). For every
row i, the time used to compute Q(i, j) is O(r), and the time used to find mini, 0 ≤ j ≤ rQ(i, j) is also
O(r). If there are r rows, then the total time consumption is O(r2).

2) It finds all the pairs of nodes that can be joined (Step 2.4). For node i, there are
min_noi nodes j that meet Q(i,j) == mini, 0 ≤ j ≤ rQ(i, j); for every j, there are min_noj nodes k
that meet Q(j,k) == mini, 0 ≤ j ≤ rQ(j, k). In addition, node i can only be joined with another node,
j; therefore, once a node j that meets Q(i, j) ≤ Q(i, k) ∧ Q(i, j) ≤ Q(k, j) is found, other nodes

8739A fast implementation of neighbor joining

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (3): 8733-8743 (2015)

after j in min_index_vector [i] [1... min_no] will not be scanned. Therefore, for i, FastNJ uses
O(min_noi * min_noj) to find node j to be joined with i at the most. If there are r nodes, then
the total time consumed in this step is O(r * min_noi * min_noj). For node i, min_noi is gener-
ally very small relative to r; therefore, it can be neglected. The time used in this step is O(r).

Figure 1.Pseudo code of FastNJ.

Algorithm: FastNJ
Input: Distance matrix D=(Dij)m*n
Output: Evolutionary tree
1. r←n;
2. While(r>2)
2.1 For i=0 to r–1 do

compute Q(i,j) according to (1) for 0≤j≤r;
min←mini, 0≤j≤rQ(i, j);
min_no=1;

 For j=0 to r– 1 do
if(|Q(i,j) –min|<0. 1*10-9)
min_index_vector[i][min_no]=j;
min_no++;

min_index_vector[i][0]= min_no – 1;
2.2 flag_joined[0~r]←– 1;
2.3 num_node_to_join←0;
2.4 For (i=0;i<r;)

if(flag_joined[i]==– 1)
 for(j=1;j<=min_index_vector[i][0];j++)
 if(min_index_vector[i][j]>i)
 for(k=1;k<=min_index_vector[j][0];k++)
 if(min_index_vector[min_index_vector[i][j]][k]==i)
 num_node_to_join++;
 if (i<min_index_vector[i][j])
 nodes_to_join[2*num_node_to_join – 1]=i;

nodes_to_join[2*num_node_to_join]=min_index_vector[i][j];
else

 nodes_to_join[2*num_node_to_join – 1]=min_index_vector[i][j];
 nodes_to_join[2*num_node_to_join]=i;

 flag_joined[i]=1;
 flag_joined[min_index_vector[i][j]]= 1;
 goto L;
 L:i++;
2.5 nodes_to_join[0]←num_node_to_join;
2.6 for(j=1;j<=nodes_to_join[0];j+=2)

a←nodes_to_join[2*j– 1];
b←nodes_to_join[2*j];
joina and b;

2.7for(i=0;i<r;i++)//O(rx)
if(flag_joined[i]== – 1)

for(j=1;j<=nodes_to_join[0];j++)
 a←nodes_to_join[2*j– 1];
 b←nodes_to_join[2*j];
 D[i,a]=0.5*(D[i,a]+D[i,b] –D[a,b]);
2.8for(j=1;j<nodes_to_join[0];j+=2)
 a←nodes_to_join[2*j – 1];
 b←nodes_to_join[2*j];
 for(k=j+1;k<=nodes_to_join[0];k+=2)
 c←nodes_to_join[2*k– 1];
 d←nodes_to_join[2*k];
 D[a,c]=0.5*(0.5* D[a,c]+0.5* D[a,d]+0.5* D[b,c]+0.5* D[b,d]–D[a,b] –D[c,d];
2.9 for(j=1;j<nodes_to_join[0];j++)
b←nodes_to_join[2*j];

delete row b from D;
2.10 r←r –num_node_to_join;
3. Return.

Figure 1. Pseudo-code of FastNJ.

8740J.F. Li

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (3): 8733-8743 (2015)

3) The time used to join the neighbors in nodes_to_join and to produce num_node_to_
join new nodes (Step 2.6) is O(num_node_to_join).

4) It then updates the distances between the new nodes and other nodes (Step 2.7).
There are num_node_to_join new nodes and r - num_node_to_join old ones; the time used to
update the distances between them is O[(r - num_node_to_join) * num_node_to_join)].

5) It updates the distances between the new nodes (Step 2.8). The time consumed is
O(num_node_to_join * num_node_to_join).

From the above five points, we can see that, in each iteration, the time consumed is O(r2

+ r * num_node_to_join) and that, in the next iteration, r is updated to r - num_node_to_join.
Therefore, the total time consumed with FastNJ depends on num_node_to_join in each iteration.
Moreover, num_node_to_join in each iteration ranges from 1 to r / 2. When num_node_to_join
equals 1, the total time consumed with FastNJ is O(n3), which is the same as in conventional
neighbor joining. Furthermore, FastNJ is reduced to RNJ; when num_node_to_join equals r / 2,
then the total time consumed with FastNJ is , and
the iteration times are Thus, the time complexity of FastNJ is between O(n2) and O(n3).

RESULTS AND DISCUSSION

To test the efficiency of FastNJ, we performed two experiments that compared FastNJ
and Clearcut, which is an implementation of RNJ. All experiments were performed on a per-
sonal IBM PC with a 2.0-GHZ CPU and 1 GB of RAM on a Linux system.

In the first experiment, FastNJ was compared with Clearcut to test the speed of
FastNJ. In this experiment, the test data were 20 protein sequence alignments in which the
number of sequences ranged from 2000 to 12,000 randomly selected from Pfam. The number
of sequences in each dataset is shown in Table 1.

	 Number of sequences	 	 Number of sequences	 	 Number of sequences

Data1	 2,289	 Data8	 5,857	 Data15	 7,290
Data2	 2,819	 Data9	 6,098	 Data16	 8,344
Data3	 3,802	 Data10	 6,213	 Data17	 8,927
Data4	 4,271	 data11	 6,639	 Data18	 9,521
Data5	 5,088	 Data12	 6,649	 Data19	 10,133
Data6	 5,216	 Data13	 6,717	 Data20	 11,288
Data7	 5,385	 Data14	 6,882

Table 1. Number of sequences in each dataset.

We used the PHYLIP Protdist program (Felsenstein, 2014) to estimate the pairwise dis-
tances according to the Jones-Taylor-Thornton matrix model. The running time of Clearcut and
FastNJ on each dataset is shown in Table 2. In the table, the first and second columns for each data-
set are for the respective running times of Clearcut and FastNJ. The ratio column presents the ratios
between the differences in Clearcut and FastNJ running times and the running times of Clearcut.

From the data in Table 2, we derive the following three points:
(1) On all 20 datasets, FastNJ was faster than Clearcut.
(2) From data in the ratio column, the speedup ratio of FastNJ relative to Clearcut

varied on different datasets; it depended not on the number of sequences in the datasets, but
on the shape of the trees.

(3) The average speedup ratio of FastNJ relative to Clearcut on all 20 datasets was 26.11%.

8741A fast implementation of neighbor joining

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (3): 8733-8743 (2015)

In the second experiment, FastNJ was compared to Clearcut to test the accuracy of
FastNJ on the simulated data. The test data were produced in the same way as in Desper
and Gascuel (2002), which covers the features of most real data sets by choosing parameter
values based on random trees. First, 1000 96-sequence model trees were generated using the
stochastic speciation process described by Kuhner and Felsenstein (1994). These trees were
then made non-ultrametric by multiplying the edge lengths with 1.0 + μX, where X follows the
standard exponential distribution and μ is a tuning factor for adjusting the deviation from the
molecular clock. In this experiment, μ was set to 0.6. Then, we set the mutations per site as
0.02, 0.04, and 0.10 to rescale 1000 trees in order to obtain slow, moderate, and fast evolution-
ary rates. Subsequently, sequence data were generated according to the Kimura two-parameter
model with a transition/transversion ratio of 2.0 using the Seq-Gen program (Rambaut and
Grassly, 1997). The sequence length was set to 500 sites. Finally, the PHYLIP Dnadist pro-
gram was used to compute the pairwise distance matrices by assuming the Kimura model with
a known transition/transversion ratio.

The accuracy was measured by the Robinson-Foulds (RF) distance (Robinson and
Foulds, 1979) between the inferred tree and true tree. This distance corresponds to the propor-
tion of internal branches that are found in one tree and not in another. Its value ranges from
0.0 (both trees are identical) to 1.0 (they do not share a branch in common). Table 3 shows the
average RF distance of neighbor joining for Clearcut and FastNJ of 1000 datasets with various
rates of evolution.

	 Slow	 Moderate	 Fast

Neighbor joining	 0.189	 0.120	 0.118
Clearcut	 0.195	 0.120	 0.1318
FastNJ	 0.208	 0.138	 0.1408

Table 3. Average RF distance between Clearcut and FastNJ with various rates of evolution.

	 Clearcut	 FastNJ	 Ratio (%)	 	 Clearcut	 FastNJ	 Ratio (%)

Data1	 0.677	 0.65	 3.99	 Data11	 9.60	 8.41	 12.40
Data2	 1.61	 1.46	 9.32	 Data12	 12.04	 4.78	 60.30
Data3	 2.8	 2.14	 23.57	 Data13	 6.68	 4.78	 28.44
Data4	 4.33	 2.72	 37.18	 Data14	 11.98	 10.9	 9.02
Data5	 4.28	 2.59	 39.49	 Data15	 8.12	 6.39	 21.31
Data6	 5.77	 2.49	 56.85	 Data16	 15.5	 15.3	 1.29
Data7	 5.35	 4.26	 20.37	 Data17	 18.35	 16.74	 8.77
Data8	 6.99	 3.56	 49.06	 Data18	 22.21	 17.19	 22.60
Data9	 6.49	 4.198	 35.32	 Data19	 21.18	 20.1	 5.10
Data10	 9.42	 7.9	 16.14	 Data20	 36.89	 14.12	 61.72

Table 2. Running time of Clearcut and FastNJ on each dataset.

From the data in Table 3, we can derive the following three points:
(1) With slow to fast evolution rates, all average RF distances of neighbor joining

were greater than 0.0, which means that neighbor joining could not correctly find the true
trees. This is consistent with the fact that neighbor joining can reconstruct the correct tree only
when the matrix is nearly additive (Atteson, 1999). However, the datasets in this experiment,
like most real datasets, were far from being additive.

8742J.F. Li

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (3): 8733-8743 (2015)

(2) With slow to fast evolution rates, the average RF distances of neighbor joining
decreased, which is consistent with previous experimental results (Li, 2009).

(3) With a moderate rate of evolution, the RF distance of Clearcut was the same as that
of neighbor joining. With slow and fast rates, the RF distance of Clearcut was greater than that
of neighbor joining. This means that, although it was reported that Clearcut can reconstruct
evolutionary trees for additive matrices with accuracy comparable to the canonical neighbor
joining method, the accuracy of Clearcut decreased in real datasets.

(4) With all three rates of evolution, the RF distance of FastNJ was greater than that of
Clearcut. Moreover, compared to the RF distance of FastNJ, the average difference between
the RF distance of FastNJ and that of Clearcut was 8.9%. That is, the accuracy of FastNJ
decreased by 8.9% compared to that of Clearcut.

From these experimental results, it is evident that FastNJ achieved a significant in-
crease (26.11%) in speed with a minimal (8.9%) decrease in accuracy.

CONCLUSION

To increase the speed of neighbor joining, we proposed FastNJ, a fast implementation
of neighbor joining motivated by RNJ and FastJoin. The primary difference between FastNJ
and conventional neighbor joining is that, in FastNJ, the many pairs of nodes selected by the
rule used in RNJ are joined in each iteration. In theory, the time complexity of FastNJ can
reach O(n2) in the best cases. Experimental results showed that FastNJ yields a significant
speedup compared to conventional neighbor joining and RNJ with a minimal loss in accuracy.

Conflicts of interest

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

Research supported by grants from the National Natural Science Foundation of China
(#61103005), the Major Program of Tianjin Basic Application and Cutting-Edge Technology
Research Plan (#14JCZDJC32500), the Science and Technology Project of Civil Aviation
Administration of China (#MHRDZ201206), and the Pre-Research of Major Projects of the
Civil Aviation University of China (#3122013P003).

REFERENCES

Al-Neama MW, Reda NM and Ghaleb FFM (2014). Accelerated guide trees construction for multiple sequence alignment.
Int. J. Adv. Res. 2: 14-22.

Atteson K (1999). The performance of neighbor-joining methods of phylogenetic reconstruction. Algorithmica 25: 251-278.
Desper R and Gascuel O (2002). Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution

principle. J. Comput. Biol. 9: 687-705.
Du ZH and Feng B (2006). pNJTree: A parallel program for reconstruction of neighbor-joining tree and its application in

ClustalW. Parallel Comput. 32: 441-446.
Elias I and Lagergren J (2009). Fast neighbor joining. Theor. Comput. Sci. 410: 21-23.
Evans J, Sheneman L and Foster J (2006). Relaxed neighbor joining: A fast distance-based phylogenetic tree construction

method. J. Mol. Evol. 62: 785-792.
Felsenstein J (2014). PHYLIP Home Page. Available at [http://evolution.genetics.washington.edu/phylip.html]. Accessed

8743A fast implementation of neighbor joining

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (3): 8733-8743 (2015)

October 28, 2014.
Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, et al. (2006). Pfam: Clans, web tools and services. Nucleic Acids

Res. 34: D247-D251.
Guo M-Z, Li J-F and Liu Y (2008). A topological transformation in evolutionary tree search methods based on maximum

likelihood combining p-ECR and neighbor joining. BMC Bioinformatics 9: S4.
Kuhner MK and Felsenstein J (1994). A simulation comparison of phylogeny algorithms under equal and unequal

evolutionary rates. Mol. Biol. Evol. 11: 459-468.
Li J (2009). Study of methods of constructing evolutionary trees with DNA sequences (in Chinese). PhD dissertation,

Harbin Institute of Technology, Harbin.
Li J and Guo M (2008). A new approach to evolutionary tree reconstruction combining particle swarm optimization with

p-ECR. Int. J. Comput. Intell. Res. 4: 187-195.
Liu Y, Schmidt C and Maskell DL (2009). Parallel reconstruction of neighbor-joining trees for large multiple sequence

alignments using CUDA. Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed
Processing: May 23-29, 2009, Rome, 1-8.

Mailund T, Brodal GS, Fagerberg R, Pedersen CNS, et al. (2006). Recrafting the neighbor-joining method. BMC
Bioinformatics 7:29-36.

Mihaescu R, Levy D and Pachter L (2009). Why neighbor-joining works. Algorithmica 54: 1-24.
Rambaut A and Grassly NC (1997). Seq-gen: An application for the Monte Carlo simulation of DNA sequence evolution

along phylogenetic trees. Comp. Appl. Biosci. 13: 235-238.
Robinson D and Foulds L (1979). Comparison of weighted labelled trees. Lect. Notes Math. 748: 119-126.
Rucci E, Chichizola F, Naiouf M and De Giusti A (2013). A hybrid parallel neighbor-joining algorithm for phylogenetic

tree reconstruction on a multicore cluster. Parallel Cloud Comput. 2: 74-80.
Sahoo B, Behura A and Padhy S (2010). Fine grain construction of neighbor-joining phylogenetic trees with reduced

redundancy using multithreading. Int. J. Distributed Parallel Systems 1: 129-140.
Saitou N and Nei M (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol.

Evol. 4: 406-425.
Sheneman L, Evans J and Foster JA (2006). Clearcut: a fast implementation of relaxed neighbor joining. Bioinformatics

22: 2823-2824.
Simonsen M, Mailund T and Pedersen CNS (2008). Rapid neighbor-joining. Proceedings of the Eighth International

Workshop on Algorithms in Bioinformatics: September 15-19, 2008 (Crandall KA and Lagergren J, eds.). Springer
Berlin, Heidelberg, Karlsruhe, 113-122.

Simonsen M, Mailund T and Pedersen CNS (2011). Inference of large phylogenies using neighbour-joining. Comm.
Comp. Inf. Sci. 127: 334-344.

Wang J, Guo M-Z and Xing LL (2012). FastJoin, an improved neighbour-joining algorithm. Genet. Mol. Res. 11: 1909-
1922.

Wheeler TJ (2009). Large-scale neighbor-joining with NINJA. Lect. Notes Comput. Sci. 5724: 375-389.

