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ABSTRACT. Protein remote homology detection refers to detecting 
structural homology in proteins with an extremely low rate of 
sequence similarity. Such detection is primarily conducted using 
3 methods: pairwise sequence comparisons, generative models 
for protein families, and discriminative classifiers. In this study, a 
discriminative classification method involving N-Grams was adopted 
to extract features using a random forest algorithm to classify data 
sets. Experiments in the SCOP 1.53 data set showed that our approach 
improved the receiver operating characteristic by 6% compared with 
well-known methods. To determine a score threshold that could be used 
to divide the data set, we also used a heuristic method through which 
the precision of positive examples and recall rate reached 0.5647 and 
0.8647, respectively. Few other studies have investigated the recall 
and precision of such examples.
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INTRODUCTION

Rapid development of large-scale sequencing techniques has increased the number 
of known protein sequences (Wu et al., 2006; Cochrane et al., 2009; Shumway et al., 2010; 
Cheng et al., 2011, 2012; Zou et al., 2013a). These sequences must be classified into structural 
and functional classes based on homology. A newly sequenced protein can be annotated by 
transfer annotations from well-characterized homologous proteins. Therefore, development 
of algorithms for detecting protein homology is very important. Specifically, an algorithm for 
protein remote homology detection, which is the detection of evolutionary homology in pro-
teins with low similarity, is an important challenge in bioinformatics.

Protein remote homology detection has been studied for several decades. Numerous 
algorithms have been proposed to address this problem, including pairwise comparison, gen-
erative models for protein families, and discriminative algorithms. Pairwise comparison meth-
ods, such as the pairwise method (Liao and Noble, 2003) and the Smith-Waterman dynamic 
programming algorithm (Smith and Waterman, 1981), measure pairwise similarities between 
protein sequences. These methods are effective for early detection but fail when applied to 
remote homology protein sequences with low similarity. Generative models determine a prob-
ability distribution over a protein family and then generate unknown proteins as new members 
of the family based on a stochastic model, such as a profile hidden Markov model (Karplus 
et al., 1998). Recent methods have applied discriminative algorithms for accurate remote ho-
mology detection (Vapnik, 1998). In contrast to generative methods, discriminative methods 
extract features from initial protein sequences and discriminate protein families based on fea-
tures. Among these 3 methods, discriminative algorithms show state-of-the-art performance 
for detecting protein homology.

In this study, a discriminative method combining N-Gram with random forest was ex-
amined for its ability to detect protein remote homology, unlike top-N-Grams (Liu et al., 2008), 
which extracts profile-based patterns by considering the most frequent elements in profiles. 
We consider the text feature of protein sequences by extracting features directly from protein 
sequences and then use random forest to classify the data set. Experiments on a benchmark data 
set revealed that our method showed desired performance regarding the mean receiver operat-
ing characteristic (ROC). To improve recall and precision, we used a novel method to determine 
a score threshold, and used the threshold to reclassify the data set. Compared with the initial 
classification result, reclassification showed significantly improved recall and precision.

MATERIAL AND METHODS

Data set

A common benchmark (Liao and Noble, 2003) was used to evaluate the performance 
of the method proposed using a data set published at http://noble.gs.washington.edu/proj/svm-
pairwise/. This benchmark has been used to evaluate the performance of various homology de-
tection methods (Saigo et al., 2004; Lingner and Meinicke, 2006; Dong et al., 2006); thus, our 
results could be compared with those of previous studies. The data set contains 4352 proteins 
derived from the SCOP database version 1.53. These proteins were extracted from the Astral 
database (Brenner et al., 2000), with sequence similarity of any pair less than an E-value of 
10-25. The 4352 distinct protein sequences were classified into 54 families. In each family, 
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positive test samples were derived from proteins within the family. Proteins outside the fam-
ily but within the same superfamily were considered to be positive training samples. Protein 
sequences outside the superfamily were selected as negative samples and were separated into 
training and test sets.

N-Gram method

The lengths of various protein sequences vary widely. To classify proteins using the 
discriminative method, sequences must be transformed into fixed-length feature vectors. In 
this study, an N-Gram model (Manning and Schuetze, 1999) was applied to protein sequences 
to extract feature vectors. We counted the frequency of N consecutive amino acids in the pro-
tein sequence (N = 1, 2, 3). Because there are 20 different amino acids commonly observed in 
protein sequences, the vector length of the N-Gram was 20N. For example, a vector length of 
2-Gram is 400. The steps for transforming the protein sequences of a protein of length L into 
feature vectors are described as follows. A flow chart of the feature vector based on 2-Gram 
is shown in Figure 1.

Figure 1. Flow chart of feature vector based on 2-Gram.

Step 1. Initialization of a feature vector for the protein sequence. The vector element 
represents one possible combination of an N-Gram, and its value was initialized to 0.

Step 2. Transversion of the protein sequence and counting all combinations of amino 
acids. In this step, an N-size window was applied to slide from the ith position to the i + n-1th 
position (i = 1, 2, ...L – n + 1). When the window slid on each position, the occurrence of each 
encountered N-Gram was stored.

Step 3. Normalization of the count vector into a frequency vector. We summed the val-
ues of the vector generated by the second step and divided each value by the accumulated value.
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In this study, we used only N = 1-3 and the combination of the features of these 3 
values. Increasing N significantly increased the calculation and reduced prediction accuracy. 
Thus, we extracted 20-D features for 1-Gram, 400-D features for 2-Gram, and 8000-D fea-
tures for 3-Gram. The performance of various values of N is discussed below in the ‘Optimiz-
ing random forest’ section.

Improving recall and precision

When the random forest method was applied to the feature data set, the classifier re-
turned a prediction score of every instance. In previous experiments, we set a score threshold 
and used the threshold to divide the data set into positive and negative classes. Mean recall and 
precision of various thresholds are listed in Table 1.

Threshold                                                      Negative class                                                  Positive class

 Recall  Precision Recall Precision

0.6 0.991465   0.994948 0.49997 0.55733
0.7 0.982034 0.99713   0.731501 0.50415
0.8   0.9666807   0.998174   0.864449 0.42416

Table 1. Mean recall and mean precision of various thresholds.

Different thresholds showed different recall and precision rates. A trade-off was ob-
served between recall and precision: an increased threshold raised the recall rate of the posi-
tive class and precision of the negative class but reduced the recall of the negative class and 
precision of the positive class.

To improve mean recall and precision, we used a heuristic method to discretely deter-
mine the thresholds for each family. For each family, we sampled training sets to form a new 
training set and test set, which we used to determine the best threshold according to the created 
metric. Finally, we used the threshold to classify the original test set. The detailed steps are 
described below.

Step 1: We randomly divided the training set (denoted as TR) into a new test set (NTE) 
and new training set (NTR) based on a ratio. For instance, 70% training data were extracted 
randomly to construct the new training set and the remaining data were used to create the new 
test set.

Step 2: NTR was used as the training set and the random forest method was used as a 
classifier for NTE to restore the prediction scores and true class label of NTE.

Step 3. We found the best score threshold for NTE. As the data set was unbalanced 
(more negative samples than positive samples), the recall and precision of positive samples 
were mainly considered in threshold determination. As described, a trade-off exists between 
recall and precision; thus, when the score threshold was determined, an F-measure was used 
as a metric:

(Equation 1)
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where P (precision) was calculated according to the following formula:

(Equation 2)

and R (recall) was calculated by

(Equation 3)

β was a parameter used to adjust the weight between P and R.
Consequently, only the scores of the positive samples were considered to be potential 

thresholds. When the prediction score of the positive sample was set as the threshold and if 
the score of an instance was higher than the threshold, it was labeled as negative; otherwise, it 
was classified as positive. We then calculated the F-value of this positive sample. Finally, we 
selected the prediction score with the highest F-value as the final threshold.

Step 4: We found the score threshold for the test set. In step 3, each family showed the 
best threshold for the new test set. First, this threshold was used on the test set directly, and 
performance was found to be less than satisfactory. We then assumed that the new and original 
test sets were identically distributed. Thus, the position of the best threshold, rather than its 
value, was used. Experiments indicated that using position information enhances performance.

The algorithm to reclassify the data set is described in Legend 1, and the function 
Threshold in Legend 1 was used to determine the position of the NTE threshold. The algorithm 
is described in Legend 2. We denoted E<n,p,k> as a structure to calculate recall and preci-
sion, where n is the number of negative instances of the test set, p is the number of positive 
instances, and k expresses the threshold.

RESULTS

ROC and ROC50

The simply measured error rates did not precisely indicate performance in terms of 
the unbalanced data set. In this case, a ROC score is typically used as a metric to evaluate the 
method (Gribskov and Robinson, 1996). A ROC score is the normalized area under a curve 
that plots true-positives against false-positives for different classification thresholds. If the 
method perfectly separates positive samples from negative samples, the ROC score equals 
1, whereas 0 indicates that no sequence selected by the algorithm is positive. Another perfor-
mance metric is the ROC50 score (Liu et al., 2013), which represents the area under the ROC 
curve up to the first 50 false-positives. The algorithm used to calculate the ROC value (Shah 
et al., 2008) is described in Legend 3.

Comparison of methods

In this study, all 4 types of N-Grams, including 1-Gram, 2-Gram, 3-Gram, and C3-
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Gram (a combination of 1-Gram to 3-Gram) were used to extract features. The ROC and 
ROC50 for these 4 N-Grams are shown in Table 2. An additional 6 previous methods are 
shown in the table for comparison with our methods. The PseAAC Index (Liu et al., 2013), 
N-Gram (Leslie et al., 2002), pattern (Dong et al., 2005), motif (Ben-Hur and Brutlag, 2003), 
and binary profiles (Dong et al., 2007) are based on 5 building blocks of proteins. HHsearch 
(Söding, 2005) employs a novel profile based on hidden Markov models.

Table 2 shows that the performance of the proposed method was highly comparable 
to that of HHsearch, a state-of-the-art method. The ROC50 of C3-Gram was 7.9% lower 
than that of HHsearch. However, its ROC was higher than that of HHsearch by 6.0%. The 
proposed method outperformed the other methods in terms of ROC and ROC50. The pro-
posed N-Gram is an efficient method of remote homology detection.

Based on Dong et al. (2006), the difference between N-Grams can be revealed 
through a family-by-family comparison of ROC scores between C3-Gram and the 3 other N-
Grams plotted in Figure 2. Every point in the graph represents one of the 54 SCOP families. 
The point above the diagonal indicates that C3-Gram outperformed the method labeled by 
the x-axis in the family it represents. From (A), (B), and (C), we can see that C3-Gram out-
performed the other N-Grams, and 2-Gram was highly comparable with C3-Gram, whereas 
3-Gram showed the worst performance. Thus, each N-Gram positively contributed to C3-
Gram, and the contribution of 2-Gram was the most significant. Based on computational 
complexity, 2-Gram is preferable to C3-Gram.

Optimizing random forest

In studies on protein detection, the ensemble classifier is typically considered to 
be a priority classifier (Cai et al., 2010; Chen et al., 2012; Lin et al., 2013). In this study, 
random forest was selected as a classifier, which is a powerful ensemble classification algo-
rithm for protein remote homology detection. Compared with other classifiers, the random 
forest algorithm showed unique advantages for dealing with high-dimensional feature sets 
and was highly suitable for balancing errors between imbalanced data sets. To optimize the 
parameters of random forest, an experiment was designed to evaluate its performance with 
trees of different numbers. We calculated the ROC values of trees of different numbers 
(Figure 3).

Methods ROC ROC50 Source

1-Gram 0.950 0.937 This study
2-Gram 0.971 0.956 This study
3-Gram 0.962 0.955 This study
C3-Gram 0.975 0.911 This study
PseAAC Index 0.880 0.620 (Shah et al., 2008)
PseAAC Index-Profile 0.922 0.712 (Shah et al., 2008)
SVM-N-Gram 0.791 0.584 (Söding, 2005)
SVM-Pattern 0.835 0.589 (Söding, 2005)
SVM-Motif 0.814 0.616 (Söding, 2005)
HHsearch 0.915 0.990 (Söding, 2005)

Table 2. ROC and ROC50 of different methods.

Bold numbers indicate the best results.
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Figure 2. Family-by-family comparison of C3-Gram and other N-Grams.
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Increasing the number of trees gradually increased the ROC value, which showed a 
peak when the trees were increased to 200. The ROC value then decreased, indicating that 
random forest performs best when trees were set to 200, until it reached 0.975494. Therefore, 
200 was selected as the number of random forest trees in this study.

We also selected another 4 classifiers commonly used in protein classification to com-
pare with random forest. The performance of each classifier is described in Table 3.

Figure 3. ROC scores of trees of different numbers.

Classifier ROC ROC50

SMO 0.428 0.428
Naive Bayes 0.858 0.105
J48 0.132 0.132
Random Tree 0.393 0.384
Random Forest 0.975 0.911

SMO = sequential minimal optimization; J48 = decision tree. Bold numbers indicate the best results.

Table 3. Performance of different classifiers.

All classifiers used were implemented in Weka (Hall et al., 2009), a common data 
mining tool, and the 4 compared classifiers were used as default parameters in Weka. Random 
forest outperformed the other classifiers. The compared classifiers were unable to distinguish 
the data set and classified all data sets into the negative class.

Trade-off between recall and precision

Although the proposed method showed the desired performance in terms of ROC, the 
recall and precision of positive samples were unsatisfactory. The heuristic method proposed 
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in the ‘Improving recall and precision’ section was used to improve recall and precision. The 
average recall and precision of positive samples with different β values are shown in Table 4. 
Feature vectors were extracted by C3-N-Gram, and the number of trees used in random forest 
was 200.

β Mean recall Mean precision F1-Measure

0.5 0.59025 0.66593 0.6258
1.0 0.76207 0.61550 0.6810
1.5 0.83841 0.57204 0.6801
2.0 0.86752 0.56470 0.6841
2.5 0.87387 0.55120 0.6760
3.0 0.88551 0.54301 0.6732

Table 4. Mean recall and precision with different β values.

The results shown in Table 4 indicate the trade-off between recall and precision. In-
creased recall reduced the corresponding precision, and β adjusted for this trade-off. Increased 
β also increased recall but reduced precision. Few studies have investigated recall and preci-
sion; therefore, previous data could not be compared with the results of this study. We used 
F1-measure, a simplified F-measure when β is set to 1, to judge the performance of different β 
values. F-measure was used both as a parameter and as a measurement of this method: it was 
first used to adjust for the trade-off between recall and precision with different β values, and 
then used as a measurement with β = 1. Using this measure, the method exhibited the best per-
formance when β = 2 and yielded 0.86752 and 0.56470 for recall and precision, respectively.

DISCUSSION

In this study, the N-Gram model was successfully used to detect protein remote ho-
mology. Experimental evaluation through the benchmark data set showed that the proposed 
method effectively improved prediction performance. A novel method was also proposed to 
improve the recall and precision of positive samples. This method yielded values of 0.86752 
and 0.56470 for mean recall and precision, respectively. Future studies will involve the devel-
opment a web server such as that proposed by Zou et al. (2013b) for the method presented in 
this paper.
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