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ABSTRACT. Several post-translational modifications (PTM) have 
been discussed in literature. Among a variety of oxidative stress-
induced PTM, protein carbonylation is considered a biomarker of 
oxidative stress. Only certain proteins can be carbonylated because only 
four amino acid residues, namely lysine (K), arginine (R), threonine 
(T) and proline (P), are susceptible to carbonylation. The yeast 
proteome is an excellent model to explore oxidative stress, especially 
protein carbonylation. Current experimental approaches in identifying 
carbonylation sites are expensive, time-consuming and limited in their 
abilities to process proteins. Furthermore, there is no bioinformational 
method to predict carbonylation sites in yeast proteins. Therefore, we 
propose a computational method to predict yeast carbonylation sites. 
This method has total accuracies of 86.32, 85.89, 84.80, and 86.80% 
in predicting the carbonylation sites of K, R, T, and P, respectively. 
These results were confirmed by 10-fold cross-validation. The ability 
to identify carbonylation sites in different kinds of features was 
analyzed and the position-specific composition of the modification site-
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flanking residues was discussed. Additionally, a software tool has been 
developed to help with the calculations in this method. Datasets and 
the software are available at https://sourceforge.net/projects/hqlstudio/
files/CarSpred.Y/.

Key words: Yeast carbonylation; Carbonylation site prediction; 
CarSPred.Y

INTRODUCTION

Oxidative stress reflects an imbalance between production and degradation of reactive 
nitrogen species (RNS) and reactive oxygen species (ROS). (Kim et al., 2010). Oxidative 
stress arises when an elevated production of ROS has surpassed the detoxification ability of 
the cell for reactive intermediates (Bollineni et al., 2011). As a result, cellular macromolecules 
such as proteins, lipids, nucleic acids and carbohydrates can be modified (Dalle-Donne 
et al., 2003a). Although reversible oxidative modifications are thought to be relevant in 
physiological processes, the irreversible modifications are known to lead to cellular damage 
(Møller et al., 2011). Severe oxidative stress can result in reduced cellular signaling capacity, 
diminished proteasome and lysosome functions, weakened cellular viability, and even cell 
death (Mullineaux and Baker, 2010; Madian et al., 2011).

Among a variety of oxidative stress-induced PTM, protein carbonylation is an 
irreversible process, and considered a biomarker of oxidative stress (Dalle-Donne et al., 
2003b). Only select proteins can undergo carbonylation that can only occur on four amino 
acid residues: lysine (K), arginine (R), threonine (T), and proline (P) (Maisonneuve et al., 
2009). The yeast proteome has been shown to be an excellent model to study oxidative stress, 
especially protein carbonylation. As a eukaryotic cell with a short life cycle, yeast can be 
studied in several different experimental conditions in a short period of time. Furthermore, 
yeast has a small but well-defined genome. Lastly, yeast expresses numerous proteins that 
are orthologous to mammalian proteins (MacLean et al., 2001; Longo and Fabrizio, 2002; 
Mirzaei and Regnier, 2008). However, the yeast genome encodes for approximately 6000 
proteins (Mirzaei and Regnier, 2006), and current experimental approaches used to identify 
carbonylation sites are expensive, time-consuming, and limited in protein processing abilities. 
Moreover, there is no bioinformatics method to predict carbonylation sites in yeast proteins. 
The only tools currently employed, CSPD (Maisonneuve et al., 2009) and CarSPred 1.0 (Lv 
et al., 2014), are limited to Escherichia coli and human proteomes, respectively. Therefore, it 
is necessary to develop a computational method for prediction of carbonylation sites in yeast 
proteins.

In this paper, a computational method for predicting carbonylation sites on K, R, T, and 
P in yeast proteins was proposed. Datasets were gathered from the latest proteomic studies on 
yeast carbonylation. Information regarding amino acid composition (AAC), position-specific 
amino acid propensity (PSAAP), as well as physicochemical and biochemical properties, were 
extracted from sample sequences. Student’s t-test evaluation criterion and incremental feature 
selection (IFS) were combined to determine the final optimization feature sets. Weighted 
support vector machine (WSVM) was applied for the classification of unbalanced training 
samples. In addition, the ability to identify carbonylation sites using different types of available 
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information was analyzed. Position-specific composition of flanking residues at modification 
sites was also discussed. Finally, a software tool was developed as a computational aid for the 
proposed method under the win32 environment.

MATERIAL AND METHODS

Datasets

Collected datasets consisted of carbonylated protein sequences and K, R, T and P 
carbonylation sites in yeast. Since carbonylation data cannot be found in any of the public 
databases, relevant data were extracted from literature. A dataset for carbonylation sites of 
yeast proteins was established that comprised 224 carbonylated protein sequences as well as 
135 K, 92 R, 62 T, and 90 P carbonylation sites from six yeast proteomic studies. The statistics 
and corresponding references of all sources are shown in S1 Table.

Positive and negative carbonylation sites

Protein sequences were excluded if there was any ambiguity regarding the car-
bonylation sites. The accession numbers, corresponding references, reasons for elimina-
tion, and other relevant information about these protein sequences are shown in S2 Table. 
The remaining sequences were used to prepare positive and negative carbonylation sites. 
Carbonylation sites in the sequences were regarded as positive carbonylation sites, unless 
certain criteria were fulfilled to be considered as a negative site. If a residue has the same 
amino acid type with an experimentally verified carbonylation site, and this residue has 
not been reported to be a positive site, it can be considered as a negative site. In addi-
tion, a negative site has to be located within a protein sequence which contains positive 
sites. Lastly, a negative site should be extracted from a dataset which contained the same 
type of positive sites. Residues that satisfied all three criteria were denoted as negative 
carbonylation sites.

Sample preparation

The ± n (N = 6, 7, …, 13) flanking residues of positive and negative carbonylation 
sites were used as positive and negative candidate sample sequences, respectively. Since the 
central residue is always the same, it was excluded from each candidate sample sequence. 
The CD-HIT program (Huang et al., 2010) was employed to retrieve non-redundant sample 
sequences with a cut-off threshold of 65%.

Sample imbalance correction

The order of magnitude for the numbers of positive and negative sample sequences 
was different. It is known that carbonylation sites are vastly dominated by the same type 
of residues in a carbonylated protein. However, highly imbalanced samples may induce 
inaccuracy of some classifiers (Japkowicz and Stephen, 2002), and may result in artificial 
evaluation of these methods. In view of this, negative samples were chosen to match the 

http://www.geneticsmr.com/year2016/vol15-2/pdf/8006-su1.pdf
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positive samples. The number of negative samples was approximately six times that of 
positive samples. This approach was applied to all the four types of residues (K, R, T and P). 
The final samples contained 86 K, 56 R, 44 T, and 59 P positive training sample sequences, 
as well as 536 K, 363 R, 271 T, and 358 P negative training sample sequences. The dataset 
is summarized in Table 1.

Group No. of carbonylated proteins No. of carbonylation sites 
K R T P 

Original sequences 224 135 92 62 90 
Positive samples 216 86 56 44 59 
Negative samples 216 536 363 271 358 

No. of carbonylated proteins corresponding to the original sequences is smaller than that corresponding to the 
samples, since eight proteins have been filtered out. For details, please refer to S2 Table.

Table 1. Carbonylation datasets of the yeast presented in this study.

Feature extraction

AAC, PSAAP, and HQI, were included in the feature extraction procedure. A total of 
20 native amino acids and one dummy amino acid, X, was included in the feature extraction 
approach.

AAC features

It has been demonstrated that a large number of carbonylation sites are found in 
RKPT-enriched regions (Maisonneuve et al., 2009; Rao and Møller, 2011). In addition, the 
sequences flanking the RKPT-enriched regions are rich in various residues including iron-
binding sites and hydrophobic amino acids (Maisonneuve et al., 2009). Based on the above, 
AAC was employed to extract amino acid composition information from residues flanking the 
carbonylation sites.

The composition of different types of amino acids in each sample sequence was 
considered. The frequencies corresponding to 20 native amino acids were calculated, and the 
dummy amino acid X was neglected. Therefore, a 20-dimensional feature vector was extracted 
from each sample sequence, with a sum of 1. The dimension of AAC vector was independent 
of residue length of sample sequences, as AAC describes the composition of amino acids, and 
is not affected by residue positions.

PSAAP features

PSAAP has been successfully used in various applications as well as in PTM prediction 
of phosphorylation and S-nitrosylation sites (Tang et al., 2007; Xu et al., 2013). In the PSAAP 
encoding scheme, the absolute frequencies of different types of residues in sample sequences 
were computed to construct a position-specific amino acid propensity matrix. The feature 
vector of a query sample sequence can be generated by looking up the corresponding elements 
in this matrix. The position-specific amino acid propensity matrix was given by:

http://www.geneticsmr.com/year2016/vol15-2/pdf/8006-su2.pdf
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where the dimension of ( , )P i j  was 21 x 2n; 21 is the number of amino acid types, and 2n 
denotes the residue length of sample sequences. ( , )POSF i j  represents the absolute frequency 
of amino acid type i  appearing at position j  in positive training samples; FNEG(i, j) is similarly 
represented. δNEG(j) denotes the standard deviation of column j of the absolute frequency matrix 
FNEG.

We generated a 2n-dimensional feature vector for each given sample sequence using 
the PSAAP encoding scheme. The vector described the position-specific probability of amino 
acids in the residue fragments flanking a possible carbonylation site.

HQI features

AAIndex was used to determine the biochemical and physicochemical properties of 
amino acids. It is a database widely used in PTM site predictions (Kawashima et al., 2008; 
Chen et al., 2013). One problem was that overfitting and computational tractability would 
arise if a large number of properties are involved in a classification problem (Trost and 
Kusalik, 2013). Therefore, high-quality indices (HQI) was introduced to deal with the electric 
properties, hydrophobicity, alpha and turn propensities, physicochemical properties, residue 
propensity, composition, beta propensity, as well as intrinsic propensities of amino acids using 
a sophisticated method called consensus fuzzy clustering (Saha et al., 2012).

The normalized HQI8 was used to generate a 2n x 8-dimensional feature vector 
for each sample sequence. The corresponding value of residue X was set to 0. This vector 
described the biochemical and physicochemical properties of residues flanking a potential 
carbonylation site.

Student t-test and the IFS curve

The Student t-test is a univariate feature selection criterion, which ranks all features 
according to a statistical significance score. Surprisingly, the simple Student’s t-test can 
outperform more complex wrappers or embedded feature selection methods in the study of 
molecular signatures (Haury et al., 2011). In addition, it has been used to analyze the solvent 
accessible property of PTM sites (Xu et al., 2010). In this paper, three kinds of features were 
extracted from each sample sequence, and the total number of these features was 21 + 2n + 
2n x 8. For instance, when the window size parameter n is equal to 6, the total number of 
feature will be 129. These features were then ranked according to the Student t-test evaluation 
criterion, and IFS curves were employed to determine the dimensions of the final optimization 
feature sets.

WSVM classifier

Support vector machine (SVM) is a popular classifier used in many bioinformatics 
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approaches (Liu et al., 2015). It can be applied to determine the decision surface from two 
distinct classes of positive and negative samples in a feature space. WSVM is based on the 
standard SVM, and has additional abilities to compensate for bias due to imbalanced dataset 
by assigning each subset a different penalty coefficient. In this paper, the WSVM in libsvm 
(Chang and Lin, 2011) was used to solve the classification problem of unbalanced samples, 
which is available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

Performance assessment

In this paper, the 10-fold cross-validation was chosen for preparation of validation 
datasets. Matthew’s correlation coefficient (MCC) and total accuracy (TA) were used to 
quantitatively evaluate the reliability and capability of the proposed method. The TA and MCC 
were given by:

,

( )(TP FN)(TN FP)(TN FN)

TP TNTA
TP TN FP FN

TPxTN FPxFNMCC
TP FP

+ = + + +
 − =

+ + + +

(Equation 2)

where TP and FN are the number of positive data that are predicted to be positive and negative, 
respectively; TN and FP denote the number of negative data that is predicted to be negative 
and positive.

RESULTS

Final optimization feature set

The final optimization feature sets were determined by Student t-test feature evaluation 
criterion and IFS curves. Average MCC values with incremental Student’s t-test features and 
different window sizes (N = 7-13) were computed using 10-fold cross-validation, and the 
corresponding IFS curves were plotted in Figure 1. It can be seen that the IFS curves for 
the four types of carbonylation sites (K, R, T and P) peaked when n was equal to 11, 10, 8, 
and 13; the top 14, 12, 7, and 11 Student’s t-test features were selected. Therefore, the four 
optimization feature sets were eventually chosen to serve for K, R, T, and P carbonylation site 
predictions respectively. Additionally, only IFS curves for N = 8-13 are shown in Figure 1 for 
simplification.

Method performance

The WSVM classifiers were trained and tested through 10-fold cross-validation 
based on the K, R, T, and P carbonylation datasets in yeast. The probability results of the 10 
iterations were spliced into one to serve the average TA and MCC computation. The proposed 
method achieved total accuracies of 86.32, 85.89, 84.80, and 86.80% for the four types of 
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carbonylation site (K, R, T, and P) predictions, as evaluated by 10-fold cross-validation. The 
corresponding MCC values were 0.2422, 0.2487, 0.1530 and, 0.3284.

Figure 1. Change of average MCC values versus the number of Student t-test features and different window sizes 
using 10-fold cross-validation.The MCC values show peaks (red circle) when N = 11, 10, 8, and 13. The top 14, 12, 
7, and 11 features were selected separately. A. K carbonylation site prediction. B. R carbonylation site prediction. 
C. T carbonylation site prediction. D. P carbonylation site prediction.

The predictive power of this method is still not very high. It is restricted by the 
following factors in addition to the method itself. Some of the carbonylatable residues were 
assumed to be negative samples, but may be revealed as carbonylation sites under different 
experimental conditions. Therefore, assignment of negative carbonylation sites can only be 
tentative. Additionally, there is a limitation to the training sample size, which will result in 
insufficient training of the classifier to some degree.

CarSPred software

A software tool named CarSPred.Y for win32 was developed to facilitate the 
application of this method. In this software, the four types of carbonylation sites (K, R, T 
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and P) are separately predicted in individual modules. The input format of these modules can 
be FASTA format sequences or a file, and the output can also be chosen from a list outputs 
or bed printed into a file. For the latter output, the locations and probabilities of putative 
carbonylation sites are clearly indicated with new annotations. More detailed instructions can 
be found on the software manual.

DISCUSSION

Feature analysis

The AAC, PSAAP and HQI features discussed in the paper vary in their abilities to 
identify carbonylation sites in yeast proteins. However, relying on counting the total number of 
features in the final optimization feature sets is unreliable as the total dimensions of the three 
types of features are different. Therefore, the average Student t-test scores of the three kinds 
of features based on the positive and negative sample sequences were considered instead. The 
scores corresponding to K, R, T, and P final optimization feature sets at the optimal window 
sizes were computed and shown in Figure 2. It was hypothesized that the AAC and PSAAP 
features play a more important role in the identification of yeast carbonylation sites.

Figure 2. Average Student t-test scores of the three kinds of features in the K, R, T, and P feature sets at the optimal 
window size.

Position-specific composition analysis

The AAC and PSAAP are important features in the Student t-test feature list. Therefore, 
a web-based analysis application named Two Sample Logo (TSL) (Vacic et al., 2006) was 
used to analyze the position-specific composition of residues flanking carbonylation and 
non-carbonylation sites. Using the TSL tool with the default parameter options, statistical 
significance was calculated for each flanking residue at the modification site, which was 
graphically represented.

The position-specific composition differences between positive and negative 
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sample sequences of yeast carbonylation sites were shown in Figure 3. There were obvious 
differences among the K, R, T, and P carbonylation sites. However, for residues sharing the 
same composition as the carbonylation site, the degree of enrichment downstream of the site 
was lower than that found of upstream of the site. This was consistent with our previous study 
on carbonylation sites of human proteins (Lv et al., 2014). Therefore, this may be an important 
and general rule for K, R, T, and P carbonylation sites.

Figure 3. Two-sample-logos of the position-specific composition of residues flanking the positive and negative 
carbonylation sites in yeast proteins. Graphical residues in the positive samples are separated in two groups, enriched, 
and depleted. A. K carbonylation sites, B. R carbonylation sites, C. T carbonylation sites, D. P carbonylation sites.
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